Ασκήσεις σχολικού βιβλίου σελίδας 48. Ερωτήσεις κατανόησης
|
|
- Παραμονιμος Ζέρβας
- 9 χρόνια πριν
- Προβολές:
Transcript
1 .5.6 σκήσεις σχολικού βιβλίου σελίδας 48 ρωτήσεις κατανόησης. Έστω ευθεία ε και σηµείο εκτός αυτής. ν ε και ε (, σηµεία της ε) τότε i) Σ Λ ii) Σ Λ iii) = Σ Λ ιτιολογήστε την απάντηση σας i) ιότι από ένα σηµείο εκτός ευθείας µία κάθετος άγεται προς την ευθεία ii) Προφανώς αφού είναι σωστό το (i) iii) ιότι τα ευθύγραµµα τµήµατα και ταυτίζονται 2. Έστω ισοσκελές τρίγωνο ( = ), σηµείο της βάσης του και οι προτάσεις π : Το είναι ύψος του τριγώνου π 2 :Το είναι διάµεσος του τριγώνου π : Το είναι διχοτόµος του τριγώνου ν για το ισχύει µία από τις προτάσεις π, π 2, π ισχύουν οι άλλες δύο; Ναι. ιατυπώστε τις ανακεφαλαιωτικές περιπτώσεις ισότητας ορθογωνίων τριγώνων i) ύο ορθογώνια τρίγωνα είναι ίσα όταν έχουν δύο οµόλογες πλευρές τους ίσες µία προς µία ii) ύο ορθογώνια τρίγωνα είναι ίσα όταν έχουν µία πλευρά και την προσκείµενη σ αυτή οξεία γωνία αντίστοιχα ίσες µία προς µία
2 2 4. Στο παρακάτω σχήµα έχουµε σχεδιάσει οκτώ ορθογώνια τρίγωνα. Καθένα από αυτά είναι ίσο µε ένα από τα υπόλοιπα. Να βρείτε τα ζεύγη των ίσων τριγώνων και να αναφέρετε τον λόγο για τον οποίο είναι ίσα 4 59 o 4 0 o o 5 59 o Ζ Η i) Το είναι ίσο µε το διότι έχουν τις κάθετες πλευρές τους ίσες µία προς µία ii) Το είναι ίσο µε το Ζ διότι έχουν µία κάθετη πλευρά και την προσκείµενη σ αυτή οξεία γωνία ίσες iii) Το είναι ίσο µε το Θ διότι έχουν την υποτείνουσα και µία προσκείµενη σ αυτή οξεία γωνία ίσες. iν) Το είναι ίσο µε το Η διότι έχουν τις υποτείνουσες και µία κάθετη πλευρά µία προς µία ίσες Θ 5. Συµπληρώστε τα κενά στην επόµενη πρόταση: Ο φορέας του αποστήµατος µίας χορδής είναι µεσοκάθετος της χορδής και διχοτοµεί το αντίστοιχο στην χορδή τόξο. 6. ν, είναι χορδές ενός κύκλου ( Κ ) και Κ, ΚΖ είναι τα αντίστοιχα αποστήµατα τους τότε α. = Κ = 2 ΚΖ β. = Κ > ΚΖ γ = Κ = ΚΖ δ. = 2 Κ = ΚΖ ε. = Κ < ΚΖ κυκλώστε την σωστή απάντηση και δικαιολογήσετε την απάντηση σας. Σωστή απάντηση είναι η (γ) διότι δύο χορδές ενός κύκλου είναι ίσες αν και µόνο αν τα αποστήµατα τους είναι ίσα
3 7. Ποια είναι η χαρακτηριστική ιδιότητα των σηµείων της διχοτόµου µίας γωνίας ; Ισαπέχουν από τις πλευρές της γωνίας 8. ύο ορθογώνια τρίγωνα που έχουν δύο πλευρές τους ίσες είναι πάντοτε ίσα ; αιτιολογήστε την απάντηση σας. Όχι, θα πρέπει οι πλευρές να είναι οµόλογες σκήσεις µπέδωσης. Να αποδείξετε ότι τα ύψη ισοσκελούς τριγώνου, που αντιστοιχούν στις ίσες πλευρές του, είναι ίσα. Έστω = και, τα ύψη. τρ. = τρ. διότι είναι ορθογώνια, έχουν = και ˆ κοινή. Άρα = 2. Να αποδείξετε ότι τα µέσα των ίσων πλευρών ισοσκελούς τριγώνου ισαπέχουν: i) από τη βάση ii) από τις ίσες πλευρές i) Έστω =, και τα µέσα και Κ, Λ οι αποστάσεις K Λ τρ. Κ = τρ. Λ διότι = ˆ ˆ, ορθογώνια και = σαν µισά ίσων ii) Θ Ι Έστω Ι, Θ οι αποστάσεις των µέσων τρ. Ι = τρ. Θ διότι ˆ κοινή, ορθογώνια και = σαν µισά ίσων
4 4. Να αποδείξετε ότι τα άκρα ενός τµήµατος ισαπέχουν από κάθε ευθεία που διέρχεται από το µέσο του. ε Κ Μ Λ Έστω το τµήµα µε µέσο Μ, ε η ευθεία και Κ, Λ οι αποστάσεις των, από την ε. τρ. ΜΚ = τρ. ΜΛ Κ = Λ 4. ν δύο τρίγωνα είναι ίσα, να αποδείξετε ότι και τα ύψη τους, που αντιστοιχούν στα ίσες πλευρές, είναι ίσα. ' Έστω και αντίστοιχα ύψη. ' ' τρ. = τρ. διότι είναι ορθογώνια µε = ˆ ˆ και =. Άρα = ποδεικτικές ασκήσεις. Έστω ισοσκελές τρίγωνο ( = ) και Μ το µέσο της βάσης του. Να αποδείξετε ότι: i) το Μ ισαπέχει από τις ίσες πλευρές του τριγώνου ii) η Μ είναι διχοτόµος της γωνίας που σχηµατίζουν οι αποστάσεις του Μ από τις ίσες πλευρές µεταξύ τους. 2 Μ Μ, Μ οι αποστάσεις i) τρ. Μ = τρ. Μ διότι είναι ορθογώνια, Μ κοινή και ˆ = ˆ 2 αφού η διάµεσος Μ είναι και διχοτόµος. Άρα Μ = Μ ii) τρ. Μ = τρ. Μ Μ=Μ ˆ ˆ Άρα Μ διχοτόµος της Μ ˆ.
5 5 2. Να αποδείξετε ότι αν σε δύο τρίγωνα και είναι και µ =µ α α τότε τα τρίγωνα είναι ίσα. α=α, υ =υ α α ' 2 2 Μ ' ' Μ' ' τρ. Μ = τρ. Μ αφού είναι ορθογώνια µε ίση υποτείνουσα και ίση µία κάθετη πλευρά Μ ˆ =Μ ˆ άρα και Μ ˆ =Μ ˆ σαν παραπληρώµατά τους 2 2 ( Π Π ) τρ. Μ = τρ. Μ = ˆ ˆ και = ( Π Π ) τρ. =. Να αποδείξετε ότι αν σε δύο οξυγώνια τρίγωνα και είναι α=α, υ =υ και υ =υ τότε τα τρίγωνα είναι ίσα. β β γ ' γ ' ' τρ. = τρ. διότι είναι ορθογώνια µε = και = Έ Άρα = ˆ ˆ τρ. = τρ. οµοίως. Άρα = ˆ ˆ ( Π ) τρ. = τρ.
6 6 4. ίνεται ορθογώνιο τρίγωνο ( = ˆ ) και η διχοτόµος του. πό το φέρουµε, που τέµνει την στο Ζ. Να αποδείξετε ότι το τρίγωνο Ζ είναι ισοσκελές. τρ. = τρ. διότι ορθογώνια, κοινή και ˆ = ˆ. 2 Άρα = και = () Ζ 2 2 τρ. Ζ = τρ. διότι ορθογώνια, = και ˆ = ˆ 2 Άρα Ζ = (2) () + (2) Ζ = τρ. Ζ ισοσκελές. 5. ίνεται κύκλος (Ο, R), οι ίσες χορδές του, και τα αποστήµατά τους ΟΚ και ΟΛ αντίστοιχα. ν οι προεκτάσεις των και τέµνονται στο Μ, να αποδείξετε ότι: i) τα τρίγωνα ΜΟΚ και ΜΟΛ είναι ίσα ii) M = M και Μ = Μ i) Ίσες χορδές ίσα αποστήµατα ΟΚ = ΟΛ Άρα τρ. ΚΟΜ = τρ. ΛΟΜ Ο Λ Κ Μ ii) πό i) MK = MΛ () αλλά Κ = Κ = Λ = Λ µισά ίσων (2) () + (2) Μ = Μ () (2) Μ = Μ
7 7 Σύνθετα Θέµατα. Θεωρούµε τρίγωνο. Η διχοτόµος της γωνίας Â τέµνει τη µεσοκάθετο της στο σηµείο. Έστω και Ζ οι προβολές του στις πλευρές και αντίστοιχα. i) Να συγκρίνεται τα τρίγωνα και Ζ ii) Να λύσετε το ίδιο πρόβληµα θεωρώντας την εξωτερική διχοτόµο της Â, η οποία τέµνει τη µεσοκάθετο της στο σηµείο, µε προβολές τα σηµεία, Ζ στις πλευρές και αντίστοιχα. iii) Nα αποδείξετε ότι EE = και ΖΖ = i) ανήκει στη µεσοκάθετο της = () ανήκει στη διχοτόµο της Â x y Ζ y M Ζ x = Ζ (2) Eˆ = Zˆ = () (), (2), () τρ. = τρ. Ζ ii) ανήκει στη µεσοκάθετο της = ( ) ανήκει στη διχοτόµο της Â εξ (2 ) = Ζ Eˆ = Zˆ = ( ) ( ), (2 ), ( ) τρ. = τρ. Ζ iii) πό i) = Ζ = x τρ. = τρ. Ζ διότι ορθογώνια, κοινή και διχοτόµος. Άρα = Ζ + x = x 2 x = (4) τρ. ΈΆ = τρ. ΖΆ διότι ορθογώνια, Ά κοινή και Ά εξ. ιχοτόµος. Άρα = Ζ = y πό ii) = Ζ + = ΖΆ + y = y 2 y = (5) (4), (5) x = y = 2 λλά = + + και = x + + y = 2 x + = + = ΖΖ = Ζ Ζ = y x = 2 x = ( ) =.
8 8 2. ν δύο ορθογώνια τρίγωνα, έχουν µία κάθετη πλευρά ίση και η περίµετρος του ενός είναι ίση µε την περίµετρο του άλλου, τότε τα τρίγωνα είναι ίσα. ' Έστω = + + = + + Ά + = + Ά () ' ' ' Προεκτείνουµε την κατά τµήµα = και την κατά τµήµα = () = και επειδή = και ˆ ˆ = θα είναι τρ. = τρ. οπότε ˆ ˆ = (2) Τρ. ισοσκελές ˆ = ˆ () () λλά = ˆ ˆ + ˆ σαν εξωτερική του τριγώνου Οµοίως Η (2) = ˆ ˆ = ˆ 2 ˆ ˆ = 2 ˆ Τελικά τρ. = τρ. αφού είναι ορθογώνια µε = και ˆ ˆ =.
Σε κάθε ισοσκελές τρίγωνο η διχοτόµος της γωνίας της κορυφής είναι και διάµεσος και ύψος.
ΙΩΝΙΣΜ ΕΩΜΕΤΡΙΣ ΥΚΕΙΟΥ 3/0/0 ΕΝΕΙΚΤΙΚΕΣ ΠΝΤΗΣΕΙΣ ΘΕΜ ο ) Να αποδείξετε ότι δύο χορδές ενός κύκλου είναι ίσες αν και µόνο αν τα αποστήµατά τους είναι ίσα. Θεωρία, σελίδα 46 σχολικού βιβλίου Θεώρηµα III
Διαβάστε περισσότεραΕρωτήσεις κατανόησης σελίδας 114. Ασκήσεις σχολικού βιβλίου σελίδας Στα παρακάτω τραπέζια να βρείτε τα x, ψ ω, και θ
5.0 5. σκήσεις σχολικού βιβλίου σελίδας 4 5 ρωτήσεις κατανόησης σελίδας 4. Στα παρακάτω τραπέζια να βρείτε τα x, ψ ω, και θ 3 3 (α) x 0 ψ 4 (β) x ψ 7 (γ) x (δ) θ x+ 3x ω 0 ο πάντηση + 0 Στο σχήµα (α) το
Διαβάστε περισσότερα6.5 6.6. Ασκήσεις σχολικού βιβλίου σελίδας 134. Ερωτήσεις Κατανόησης
6.5 6.6 σκήσεις σχολικού βιβλίου σελίδας 34 ρωτήσεις Κατανόησης. Σε ένα εγγεγραµµένο τετράπλευρο i) Τα αθροίσµατα των απέναντι γωνιών του είναι ίσα Σ Λ ii) Κάθε πλευρά φαίνεται από τις απέναντι κορυφές
Διαβάστε περισσότερα5.6 5.9. Ερωτήσεις Κατανόησης. Ασκήσεις σχολικού βιβλίου σελίδας 110 112. Στα παρακάτω σχήµατα να υπολογίσετε τα x και ψ. Απάντηση Στο σχήµα (α) :
5.6 5.9 σκήσεις σχολικού βιβλίου σελίδας 0 ρωτήσεις Κατανόησης. Στα παρακάτω σχήµατα να υπολογίσετε τα x και ψ (α ) ( β ) A x x, 5 ( γ) ψ x +, 5 x, 5 ε ε ε ε 4 δ δ ε ε B ε ε 4 (δ ) ψ ψ x 60 o 4 (ε) B 5
Διαβάστε περισσότεραΑσκήσεις σχολικού βιβλίου σελίδας Ερωτήσεις Κατανόησης. Ποια από τα παρακάτω τετράπλευρα είναι παραλληλόγραµµα ποια όχι και γιατί;
5. 5.2 σκήσεις σχολικού βιβλίου σελίδας 99 00 ρωτήσεις ατανόησης. Ποια από τα παρακάτω τετράπλευρα είναι παραλληλόγραµµα ποια όχι και γιατί; 3 Π 5 4 Π 2 5 5 Ο 3 4 Ο 4 Π 3 Ν 3 3 Μ 3,5 3,5 Λ Ρ φ Π 4 φ ω
Διαβάστε περισσότερα1 η εκάδα θεµάτων επανάληψης
η εκάδα θεµάτων επανάληψης. ίνεται ορθογώνιο τρίγωνο µε υποτείνουσα την και ɵ = 30 ο. Έστω διάµεσος του και, Ζ, Η τα µέσα των, και αντίστοιχα. Στην προέκταση του Ζ παίρνουµε τµήµα ΖΚ= Ζ. Να δείξετε ότι
Διαβάστε περισσότερα8.1 8.2. Ερωτήσεις Κατανόησης. Ασκήσεις σχολικού βιβλίου σελίδας 177 179
8. 8. σκήσεις σχολικού βιβλίου σελίδας 77 79 ρωτήσεις Κατανόησης. i) ν δύο τρίγωνα είναι ίσα τότε είναι όµοια; ii) ν δύο τρίγωνα είναι όµοια προς τρίτο τότε είναι µεταξύ τους όµοια πάντηση i) Προφανώς
Διαβάστε περισσότεραΒρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd
ρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd..0 σκήσεις σχολικού βιβλίου (σελ. 3 4) ρωτήσεις Κατανόησης. ύο διαφορετικές ευθείες μπορεί να έχουν i) κανένα κοινό σημείο ii) Ένα
Διαβάστε περισσότεραΕρωτήσεις Κατανόησης. Ασκήσεις σχολικού βιβλίου σελίδας
5. 5.5 σκήσεις σχολικού βιβλίου σελίδας 0 04 ρωτήσεις Κατανόησης. Ποια από τα παρακάτω τετράπλευρα είναι Ορθογώνια, ρόµβοι, i τετράγωνα, ποια όχι και γιατί; (α) 5 (β) 5 (γ) (δ) (ε) (ζ) φ 5 φ 5 φ φ (η)
Διαβάστε περισσότερα1.1 ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ. 1. Κύρια στοιχεία τριγώνου : Είναι οι πλευρές του και οι γωνίες του. 2. Είδη τριγώνων από την άποψη των γωνιών : A
1 1.1 ΙΣΟΤΗΤ ΤΡΙΩΝΩΝ ΘΕΩΡΙ 1. Κύρια στοιχεία τριγώνου : Είναι οι πλευρές του και οι γωνίες του 2. Είδη τριγώνων από την άποψη των γωνιών : A Οξυγώνιο τρίγωνο, όλες οι γωνίες οξείες B A µβλυγώνιο τρίγωνο,
Διαβάστε περισσότεραΛΥΣΕΙΣ ΙΑΓΩΝΙΣΜΑ ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ 08/04/10
ΥΣΙΣ ΙΑΩΝΙΣΜΑ ΩΜΤΡΙΑ Α ΥΚΙΟΥ ΘΜΑ ο 08/04/0 Α. Να αποδείξετε ότι η διάµεσος ορθογωνίου τριγώνου που φέρουµε από την κορυφή της ορθής γωνίας είναι ίση µε το µισό της υποτείνουσας. Θεωρία σχολικό βιβλίο σελ.09
Διαβάστε περισσότεραΑΓ=ΑΔ(υπόθεση) ΒΔ = ΓΕ υποθεση
ΙΣΟΤΗΤ ΤΡΙΩΝΩΝ Άσκηση 1.Συγκρίνουμε τα τρίγωνα και. 2 1 =(υπόθεση) = (υπόθεση) = 2 1 κατακορυφήν γωνίες πό το κριτήριο Π--Π τα τρίγωνα είναι ίσα άρα και = Άσκηση 2 Χαράζουμε τις και επειδή τα, είναι σημεία
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 3ο ΤΡΙΓΩΝΑ. Στοιχεία και είδη τριγώνων. Τι καλούμαι κύρια στοιχεία ενός τριγώνου και συμβολίζεται η περίμετρος ενός τριγώνου ;
ΚΕΦΛΙΟ 3ο ΤΡΙΩΝ Στοιχεία και είδη τριγώνων Τι καλούμαι κύρια στοιχεία ενός τριγώνου και συμβολίζεται η περίμετρος ενός τριγώνου ; Οι πλευρές και οι γωνίες ενός τριγώνου λέγονται κύρια στοιχεία του τριγώνου.
Διαβάστε περισσότεραΣτοιχεία τριγώνου Κύρια στοιχεία : Πλευρές και γωνίες ευτερεύοντα στοιχεία : ιάµεσος, διχοτόµος, ύψος
3. 3.9 ΘΕΩΡΙ. Στοιχεία τριγώνου Κύρια στοιχεία : Πλευρές και γωνίες ευτερεύοντα στοιχεία : ιάµεσος, διχοτόµος, ύψος 2. Είδη τριγώνων Ως προς τις πλευρές : Σκαληνό, ισοσκελές, ισόπλευρο. Ως προς τις γωνίες
Διαβάστε περισσότεραΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ
ΠΝΠΤΙΣ ΣΣΙΣ > 90. 1. ίνεται ισοσκελές τρίγωνο µε = και 0 πό την κορυφή φέρνουµε τις ηµιευθείες x κάθετη στην πλευρά και y κάθετη στην πλευρά που τέµνουν την στα σηµεία και αντίστοιχα. Να αποδείξετε α)
Διαβάστε περισσότερα2 η εκάδα θεµάτων επανάληψης
η εκάδα θεµάτων επανάληψης. Έστω τρίγωνο µε + Ένα πρόχειρο σχήµα είναι το διπλανό
Διαβάστε περισσότεραΛΥΣΕΙΣ ΙΑΓΩΝΙΣΜΑΤΟΣ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ 1 / 11 / 09 ΘΕΜΑ 1 ο
ΥΣΕΙΣ ΙΩΝΙΣΜΤΣ ΕΩΜΕΤΡΙΣ ΥΚΕΙΥ 1 / 11 / 09 ΘΕΜ 1 ο ) Χαρακτηρίστε ως σωστή (Σ) ή ως λάθος () καθεµία από τις επόµενες προτάσεις. ύο τόξα ενός κύκλου είναι ίσα, όταν οι αντίστοιχες χορδές τους είναι ίσες.
Διαβάστε περισσότερα4 η εκάδα θεµάτων επανάληψης
4 η εκάδα θεµάτων επανάληψης 3. ίνεται τετράγωνο µε κέντρο Ο και το µέσο του. Η τέµνει την στο. είξτε ότι = Το τρίγωνο είναι ορθογώνιο και ισοσκελές i Ο = 4 Τα ορθογώνια τρίγωνα και έχουν = και = άρα είναι
Διαβάστε περισσότεραΣωστό -λάθος. 2) Δύο τρίγωνα που έχουν τις γωνίες τους ίσες μία προς μία είναι ίσα
Σωστό -λάθος Α. Για καθεμιά από τις παρακάτω προτάσεις να γράψετε στο τετράδιό σας τον αριθμό της και, ακριβώς δίπλα, την ένδειξη (Σ), αν η πρόταση είναι σωστή, ή (Λ), αν αυτή είναι λανθασμένη. 1)Δύο ισόπλευρα
Διαβάστε περισσότεραΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ ( α μέρος )
Πυθαγόρειο ενικό Λύκειο Σάμου ΕΠΝΛΗΨΗ ΕΩΜΕΤΡΙΣ ΛΥΚΕΙΟΥ ( α μέρος ) Να βρείτε στην αντίστοιχη σελίδα του σχολικού σας βιβλίου το ζητούμενο της κάθε ερώτησης που δίνεται παρακάτω και να το γράψετε στο τετράδιό
Διαβάστε περισσότερα10.5. Ασκήσεις σχολικού βιβλίου σελίδας Ερωτήσεις κατανόησης. ΑΒΓ =λ. ύο τρίγωνα ΑΒΓ και Α Β Γ έχουν υ β = υ β και =. β ποιος είναι ο λόγος β
0.5 σκήσεις σχολικού βιβλίου σελίδας 4 5 ρωτήσεις κατανόησης. ( ) ύο τρίγωνα και έχουν υ β = υ β και =. ( ) β ποιος είναι ο λόγος β : : : 9 : 4 5 4 4 9 Κυκλώστε το γράµµα της σωστής απάντησης και αιτιολογήστε
Διαβάστε περισσότερα5.6 5.9. 1. Θεώρηµα, Ε µέσα των ΑΒ, ΑΓ Ε = //
1 5.6 5.9 ΘΩΡΙ 1., µέσα των, = //. µέσο της και // µέσο της 3. = και ////Ζ = Ζ Ζ. Ο γ. τόπος της µεσοπαράλληλης Έστω ε η µεσοπαράλληλη των ε 1, ε. Τότε ισχύουν : i) άθε σηµείο της ε ισαπέχει από τις ε
Διαβάστε περισσότερα4 η εκάδα θεµάτων επανάληψης
4 η εκάδα θεµάτων επανάληψης 3. ίνεται τετράγωνο µε κέντρο Ο και Μ το µέσο του. Η Μ τέµνει την στο. είξτε ότι = Το τρίγωνο είναι ορθογώνιο και ισοσκελές i ΟΜ = 4 Τα ορθογώνια τρίγωνα Μ και Μ έχουν Μ =
Διαβάστε περισσότεραΓενικές ασκήσεις 6 ου Κεφαλαίου σελίδας 140
ενικές ασκήσεις 6 ου Κεφαλαίου σελίδας 40. ίνεται τρίγωνο ορθογώνιο στο. πό τα άκρα, της υποτείνουσας φέρουµε κάθετες x και y στη και προς το ίδιο µέρος της. πό το µέσο Μ της φέρουµε κάθετη στην, που τέµνει
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 1 Ο ΓΕΩΜΕΤΡΙΑ
ΜΕΡΟΣ ΚΕΦΛΙΟ 1 Ο ΕΩΜΕΤΡΙ 1.1 ΙΣΟΤΗΤ ΤΡΙΩΝΩΝ 1. Ποια ονομάζονται κύρια και ποια δευτερεύοντα στοιχεία τριγώνων; Κύρια στοιχεία ενός τριγώνου ονομάζουμε τις πλευρές και τις γωνίες του. Δευτερεύοντα στοιχεία
Διαβάστε περισσότεραΑσκήσεις σχ. Βιβλίου σελίδας Γενικές ασκήσεις 5 ου Κεφαλαίου (1) (2) (1)
σκήσεις σχ. ιβλίου σελίδας 6 7 ενικές ασκήσεις 5 ου Κεφαλαίου. ίνεται τρίγωνο (β γ) µε Â = 60 ο, τα ύψη του, και τα µέσα Μ, Ν των, αντίστοιχα. Να αποδείξετε ότι Μ = Ν. Τρ. ορθογώνιο µε Â = 60 ο M N ˆB
Διαβάστε περισσότεραΑπέναντι πλευρές παράλληλες
5. 5.5 ΘΩΡΙ. Παραλληλόγραµµο πέναντι πλευρές παράλληλες. Ιδιότητες παραλληλογράµµου πέναντι πλευρές ίσες πέναντι γωνίες ίσες Οι διαγώνιοι διχοτοµούνται Το σηµείο τοµής των διαγωνίων είναι κέντρο συµµετρίας
Διαβάστε περισσότερα6.1 6.4. 1. Εγγεγραµµένη γωνία, αντίστοιχη επίκεντρη και τόξο. 2. Γωνία δύο χορδών και γωνία δύο τεµνουσών
6. 6.4 ΘΩΡΙ. γγεγραµµένη γωνία, αντίστοιχη επίκεντρη και τόξο Το µέτρο της επίκεντρης ισούται µε το µέτρο του αντίστοιχου τόξου. Η εγγεγραµµένη ισούται µε το µισό της αντίστοιχης επίκεντρης. Η εγγεγραµµένη
Διαβάστε περισσότερα5.10 5.11. 2 η ιδιότητα της διαµέσου. 4. Ορισµός Ισοσκελές τραπέζιο λέγεται το τραπέζιο του οποίου οι µη παράλληλες πλευρές είναι ίσες.
5.0 5. ΘΕΩΡΙ. Ορισµοί Τραπέζιο λέγεται το τετράπλευρο που έχει µόνο δύο πλευρές παράλληλες. άσεις τραπεζίου λέγονται οι παράλληλες πλευρές του. Ύψος τραπεζίου λέγεται η απόσταση των βάσεων. ιάµεσος τραπεζίου
Διαβάστε περισσότεραΑ λ γ ε β ρ Λ υ κ ε ι ο υ Γ ε ω μ ε τ ρ ι α Α Λ υ κ ε ι ο υ
Κ Κ α α ι ι τ τ ο ο Λ Λ υ υ σ σ α α ρ ρ ι ι............ λ λ λ λ ι ι ω ς ς!!!!!! λ γ ε β ρ Λ υ κ ε ι ο υ ε ω μ ε τ ρ ι α Λ υ κ ε ι ο υ π ι μ ε λ ε ι α Τ α κ η ς Τ σ α κ α λ α κ ο ς w w w. d r m a t h s
Διαβάστε περισσότερα1.2 ΛΟΓΟΣ ΕΥΘΥΓΡΑΜΜΩΝ ΤΜΗΜΑΤΩΝ
1 1. ΛΟΟΣ ΥΘΥΡΜΜΩΝ ΤΜΗΜΤΩΝ ΘΩΡΙ 1. Παραλληλία και ισότητα ν τρεις τουλάχιστον παράλληλες ορίζουν ίσα ευθύγραµµα τµήµατα σε µία ευθεία τότε θα ορίζουν ίσα ευθύγραµµα τµήµατα και σε οποιαδήποτε άλλη ευθεία
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 5ο ΠΑΡΑΛΛΗΛOΓΡΑΜΜΑ - ΤΡΑΠΕΖΙΑ. Εισαγωγή
ΚΦΛΙΟ 5ο ΠΡΛΛΗΛOΡΜΜ - ΤΡΠΙ ισαγωγή. Τι καλείται τετράπλευρο ; Πόσες διαγώνιες έχει ένα κυρτό τετράπλευρο ; Τι καλείται παραλληλόγραμμο και τι τραπέζιο ; Το ευθύγραμμο σχήμα που έχει τέσσερις πλευρές λέγεται
Διαβάστε περισσότεραΟρισµοί. Ένα τετράπλευρο λέγεται εγγεγραµµένο σε κύκλο, αν οι κορυφές του είναι σηµεία του κύκλου.
6.5 6.6 ΘΩΡΙ. Ορισµοί Ένα τετράπλευρο λέγεται εγγεγραµµένο σε κύκλο, αν οι κορυφές του είναι σηµεία του κύκλου. Ένα τετράπλευρο λέγεται εγγράψιµο σε κύκλο, όταν µπορεί να γραφεί κύκλος που να διέρχεται
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 1 ο ΠΡΩΤΑΡΧΙΚΕΣ ΓΕΩΜΕΤΡΙΚΕΣ ΕΝΝΟΙΕΣ Τα αξιώματα είναι προτάσεις που δεχόμαστε ως αληθείς, χωρίς απόδειξη: Από δύο σημεία διέρχεται μοναδική ευθεία. Για κάθε ευθεία υπάρχει τουλάχιστον ένα σημείο
Διαβάστε περισσότερα2 η δεκάδα θεµάτων επανάληψης
1 η δεκάδα θεµάτων επανάληψης 11. Σε κάθε τρίγωνο να αποδείξετε ότι το τετράγωνο µιας πλευράς που βρίσκεται απέναντι από οξεία γωνία, ισούται µε το άθροισµα των τετραγώνων των δύο άλλων πλευρών ελαττωµένο
Διαβάστε περισσότεραΕρωτήσεις ανάπτυξης. 1. Τα σηµεία Β και Γ είναι σηµεία του επιπέδου p, η ΒΓ είναι ευθεία του p. Η ΒΓ τέµνει την ΑΜ στον
Ερωτήσεις ανάπτυξης 1. Τα σηµεία και είναι σηµεία του επιπέδου, η είναι ευθεία του. Η τέµνει την Μ στον Μ Ν Ν. Το Ν σαν σηµείο της ανήκει στο, άρα και το Μ σαν σηµείο της Ν ανήκει στο. B. Έστω ε µια ευθεία
Διαβάστε περισσότεραΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ. ΚΕΦΑΚΑΙΟ 3 ο -ΤΡΙΓΩΝΑ
ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΟΙ ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ ΑΠΟΤΕΛΟΥΝ ΜΕΡΟΣ ΤΟΥ ΘΕΜΑΤΟΣ Α ΤΩΝ ΕΞΕΤΑΣΕΩΝ (ΘΕΜΑ ΘΕΩΡΙΑΣ) Α. ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ - ΛΑΘΟΥΣ ΚΕΦΑΚΑΙΟ 3 ο -ΤΡΙΓΩΝΑ 1. Ένα τρίγωνο είναι οξυγώνιο όταν έχει
Διαβάστε περισσότεραΜΑΘΗΜΑΤΟΣ & ΕΡΓΑΣΙΑΣ
ΦΥΛΛΟ ΜΑΘΗΜΑΤΟΣ & ΕΡΓΑΣΙΑΣ ΓΕΩΜΕΤΡΙΑ Α ΚΕΦΑΛΑΙΟ 3 3.1-3.6 Τρίγωνα Πλευρές ΑΒ ή ΒΑ ή γ ΑΓ ή ΓΑ ή β ΒΓ ή ΓΒ ή α Γωνίες ˆ ή ˆ ή ˆ ˆ ή ˆ ή ˆ ˆ ή ˆ ή ˆ μ α δ α υ α Διάμεσος ΑΜ ή μ α Διχοτόμος ΑΔ ή δ α Ύψος
Διαβάστε περισσότεραΠΩΣ ΕΙΧΝΩ ΟΤΙ ΥΟ ΕΥΘΕΙΕΣ ΕΙΝΑΙ ΠΑΡΑΛΛΗΛΕΣ 1. είχνω ότι τέµνονται από τρίτη ευθεία και σχηµατίζονται γωνίες
ΠΑΡΑΤΗΡΗΣΕΙΣ ΣΧΟΛΙΑ στη γεωµετρία της Α τάξης ΠΩΣ ΕΙΧΝΩ ΟΤΙ ΥΟ ΕΥΘΕΙΕΣ ΕΙΝΑΙ ΚΑΘΕΤΕΣ 1. είχνω ότι η γωνία τους είναι 90 ο 2. είχνω ότι είναι διχοτόµοι δύο εφεξής και παραπληρωµατικών γωνιών. 3. είχνω ότι
Διαβάστε περισσότεραΘΕΜΑΤΑ & ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΩΝ Α ΓΥΜΝΑΣΙΟΥ
ΘΕΜΤ & ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΣ ΜΘΗΜΤΙΚΩΝ ΥΜΝΣΙΟΥ ΘΕΜ 1. α) Να συµπληρώσετε τις παρακάτω ισότητες. α+0=.. α 1=. α-α=.. α:α=. 0 α=. 0:α=. Το α είναι ένας αριθµός διαφορετικός του 0. β) Στις παρακάτω προτάσεις να
Διαβάστε περισσότεραΘΕΜΑ 1 ο. ΘΕΜΑ 2 ο. ΘΕΜΑ 3 ο
ΕΚΕΜΒΡΙΟΣ 2011 ΘΕΜΑ 1 ο (α) Να αποδειχθεί ότι στον ίδιο ή σε ίσους κύκλους, ίσα αποστήµατα αντιστοιχούν σε ίσες χορδές. (β) Να αποδειχθεί ότι κάθε σηµείο της µεσοκαθέτου ενός ευθύγραµµου τµήµατος ισαπέχει
Διαβάστε περισσότεραΑσκήσεις σχολικού βιβλίου σελίδας
1 7.8 7.9 σκήσεις σχολικού βιβλίου σελίδας 162 163 ρωτήσεις Κατανόησης 1. Να εξηγήσετε γιατί τα ίχνη, της εσωτερικής και εξωτερικής διχοτόμου της γωνίας τριγώνου είναι συζυγή αρμονικά των και. πάντηση
Διαβάστε περισσότεραΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ Γ ΓΥΜΝΑΣΙΟΥ - ΘΕΩΡΙΑ
ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ Γ ΓΥΜΝΑΣΙΟΥ - ΘΕΩΡΙΑ Α. ύο τρίγωνα είναι ίσα όταν µε κατάλληλη µετατόπιση, το ένα συµπίπτει µε το άλλο. Β. Κριτήρια ισότητας τριγώνων Πρώτο κριτήριο Αν όλες οι πλευρές του ενός τριγώνου
Διαβάστε περισσότερα3 o ΓΕ.Λ. ΚΕΡΑΤΣΙΝΙΟΥ. ΖΟΥΖΙΑΣ ΠΑΝΑΓΙΩΤΗΣ Μαθηματικός 2013 2014 EΠΑΝΑΛΗΨΗ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΠΕΡΙΕΧΟΜΕΝΑ
3 o ΓΕ.Λ. ΚΕΡΑΤΣΙΝΙΟΥ Μαθηματικός 2013 2014 EΠΑΝΑΛΗΨΗ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΠΕΡΙΕΧΟΜΕΝΑ 1) ΘΕΩΡΙΑ... 2 2) ΕΡΩΤΗΣΕΙΣ... 5 2.1. ΤΡΙΓΩΝΑ... 5 2.1.1. ΕΡΩΤΗΣΕΙΣ Σωστού - Λάθους στα τρίγωνα... 5 2.1.2.
Διαβάστε περισσότεραΤρίγωνα. Αθανασίου Δημήτρης (Μαθηματικός)
Τρίγωνα Αθανασίου Δημήτρης (Μαθηματικός) www.peira.gr asepfreedom@yahoo.gr 1 3.1 Στοιχεία και είδη τριγώνων 2 Ένα τρίγωνο ΑΒΓ έχει τρεις κορυφές Α, Β, Γ, τρεις πλευρές ΒΓ, ΓΑ, ΑΒ και τρεις γωνίες Β ΑΓ,
Διαβάστε περισσότεραΓενικό Ενιαίο Λύκειο Γεωμετρία - Τάξη Α
ενικό νιαίο Λύκειο εωμετρία - Τάξη 61 Θέματα εξετάσεων περιόδου Μαΐου-Ιουνίου στην εωμετρία Τάξη! Λυκείου ενικό νιαίο Λύκειο εωμετρία - Τάξη 6. Να αποδείξετε ότι διάμεσος τραπεζίου είναι παράλληλη προς
Διαβάστε περισσότερα3 η δεκάδα θεµάτων επανάληψης
3 η δεκάδα θεµάτων επανάληψης. ίνεται το ισοσκελές τραπέζιο µε ɵ = = 45 ο. Έστω Ε, Ζ τα µέσα των και αντίστοιχα και Η. πό το Z φέρνουµε παράλληλη στην που τέµνει την στο Θ. Να δείξετε ότι Το τετράπλευρο
Διαβάστε περισσότερα1. Οµόλογες πλευρές : Στα όµοια τρίγωνα οι οµόλογες πλευρές βρίσκονται απέναντι από τις ίσες γωνίες και αντίστροφα.
1 1.5. ΟΜΟΙ ΤΡΙΩΝ ΘΩΡΙ 1. Όµοια τρίγωνα : ια τα όµοια τρίγωνα ισχύουν όλα όσα αναφέραµε στα όµοια πολύγωνα. 2. ποκλειστικά για τα τρίγωνα : ύο τρίγωνα είναι όµοια όταν έχουν δύο γωνίες ίσες ΣΧΟΛΙ 1. Οµόλογες
Διαβάστε περισσότεραΠΟΡΙΣΜΑ 1. Οι προσκείµενες στη βάση γωνίες ισοσκελούς τριγώνου είναι ίσες.
ΠΟΡΙΣΜΑ 1. Οι προσκείµενες στη βάση γωνίες ισοσκελούς τριγώνου είναι ίσες. Στο ισοσκελές τρίγωνο ΑΒΓ φέρνουµε διχοτόµο ΑΔ Σύγκριση Τριγώνων ΑΒΔ και ΑΓΔ: -ΑΒ=ΑΓ (δεδοµένο) -ΒΑΔ=ΓΑΔ (αφού ΑΔ διχοτόµος) -ΑΔ
Διαβάστε περισσότεραΕΙ Η ΤΕΤΡΑΠΛΕΥΡΩΝ. ( Παραλληλόγραµµα Τραπέζια ) Παραλληλόγραµµο, λέγεται το τετράπλευρο
Παραλληλόγραµµο, λέγεται το τετράπλευρο ΕΙΗ ΤΕΤΡΠΛΕΥΡΩΝ ( Παραλληλόγραµµα Τραπέζια ) που έχει τις απέναντι πλευρές του παράλληλες δηλ. // και //. ΙΙΟΤΗΤΕΣ ΠΡΛΛΗΛΟΡΜΜΟΥ: 1. Οι απέναντι πλευρές του είναι.
Διαβάστε περισσότεραΙΑΓΩΝΙΣΜΑ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ 6/ 11/ 2016
εν είναι δυνατή η προβολή αυτής της εικόνας αυτή τη στιγµή. ΕΠΩΝΥΜΟ:... ΟΝΟΜΑ:... ΤΜΗΜΑ:... ΤΣΙΜΙΣΚΗ &ΚΑΡΟΛΟΥ ΝΤΗΛ ΓΩΝΙΑ THΛ: 270727 222594 ΑΡΤΑΚΗΣ 12 - Κ. ΤΟΥΜΠΑ THΛ: 919113 949422 www.syghrono.gr ΗΜΕΡΟΜΗΝΙΑ:...
Διαβάστε περισσότεραΑσκήσεις σχολικού βιβλίου σελίδας Ερωτήσεις κατανόησης
0. 0.3 σκήσεις σχολικού βιβλίου σελίδας 7 8 Ερωτήσεις κατανόησης. Να γράψετε τους τύπους υπολογισµού του εµβαδού Τετραγώνου Ορθογωνίου i Παραλληλογράµµου iν) Τριγώνου ν) Τραπεζίου πάντηση Ε = α Ε = α β
Διαβάστε περισσότερα3.1 ΣΤΟΙΧΕΙΑ ΤΡΙΓΩΝΟΥ ΕΙ Η ΤΡΙΓΩΝΩΝ
1 3.1 ΣΤΟΙΧΕΙ ΤΡΙΩΝΟΥ ΕΙΗ ΤΡΙΩΝΩΝ ΘΕΩΡΙ 1. Κύρια στοιχεία τριγώνου Τα κύρια στοιχεία ενός τριγώνου είναι οι πλευρές, οι γωνίες και οι κορυφές. Ονοµασία : Πλευρές είναι οι,, Κορυφές είναι τα σηµεία,, ωνίες
Διαβάστε περισσότερα24 ΔΙΑΓΩΝΙΣΜΑΤΑ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ 1 Ο. ΘΕΜΑ 2 Ο : Δίνεται ΑΒΓ ισοσκελές (ΑΒ=ΑΓ) τρίγωνο.αν ΒΔ και ΓΕ οι διχοτόμοι των γωνιών Β και
ΔΙΩΝΙΣΜ 1 Ο ΘΕΜ 1 Ο : ) Να αποδείξετε ότι : Το ευθύγραμμο τμήμα που ενώνει τα μέσα τα των δύο πλευρών τριγώνου είναι παράλληλο προς την τρίτη πλευρά και ίση με το μισό της.(13 μονάδες) ) Να χαρακτηρίσετε
Διαβάστε περισσότερα2.4-2.5 ΣΥΜΜΕΤΡΙΑ ΩΣ ΠΡΟΣ ΣΗΜΕΙΟ
1 4-5 ΣΥΜΜΤΡΙ ΩΣ ΠΡΣ ΣΗΜΙ ΚΝΤΡ ΣΥΜΜΤΡΙΣ ΘΩΡΙ Το συµµετρικό σηµείου ως προς κέντρο σηµείο νοµάζουµε συµµετρικό του ως προς κέντρο το σηµείο µε το οποίο συµπίπτει το περιστρεφόµενο περί το κατά γωνία 180
Διαβάστε περισσότερα5 η δεκάδα θεµάτων επανάληψης
1 5 η δεκάδα θεµάτων επανάληψης 1. Σε κύκλο (Ο, R) προεκτείνουµε µία διάµετρο του εκατέρωθεν των και και στις προεκτάσεις παίρνουµε τµήµατα = = R. Έστω ΕΜ τέµνουσα του κύκλου τέτοια ώστε Μ = R 7 Να αποδείξετε
Διαβάστε περισσότεραΛΥΣΕΙΣ ΙΑΓΩΝΙΣΜΑ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ 05/01/10
ΥΕΙ ΙΑΩΝΙΜΑ ΕΩΜΕΤΡΙΑ Α ΥΚΕΙΟΥ 05/0/0 ΘΕΜΑ ο Α. Να αποδειχτεί ότι σε κάθε παραλληλόγραµµο οι απέναντι πλευρές είναι ίσες. Θεωρία σελίδα 97 B. Να χαρακτηρίσετε µε την ένδειξη σωστό () ή λάθος () καθεµιά
Διαβάστε περισσότεραΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ
ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ 1)Τι ονομάζεται διχοτόμος μιας γωνίας ; Διχοτόμος γωνίας ονομάζεται η ημιευθεία που έχει αρχή την κορυφή της γωνίας και τη χωρίζει σε δύο ίσες γωνίες. 2)Να
Διαβάστε περισσότεραΒ.1.8. Παραπληρωματικές και Συμπληρωματικές γωνίες Κατά κορυφήν γωνίες
Β.1.6. Είδη γωνιών Κάθετες ευθείες 1. Ορθή γωνία λέγεται η γωνία της οποίας το μέτρο είναι ίσο με 90 ο. 2. Οξεία γωνία λέγεται κάθε γωνία με μέτρο μικρότερο των 90 ο. 3. Αμβλεία γωνία λέγεται κάθε γωνία
Διαβάστε περισσότεραΔ. Ε. ΚΟΝΤΟΚΩΣΤΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ
Δ. Ε. ΚΟΝΤΟΚΩΣΤΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ ΑΣΚΗΣΗ 1 η Να αποδείξετε ότι στις ομόλογες πλευρές δύο ίσων τριγώνων αντιστοιχούν ίσες διάμεσοι. Α Α ΑΠΟΔΕΙΞΗ Β Γ Β Γ Θα δείξουμε ότι ΑΜ=Α
Διαβάστε περισσότεραΑσκήσεις σχολικού βιβλίου σελίδας Ερωτήσεις Κατανόησης
4. -4.5 σκήσεις σχολικού βιβλίου σελίδς 8 83 ρωτήσεις Κτνόησης. i) Πώς ονοµάζοντι οι γωνίες κι β του πρκάτω σχήµτος κι τι σχέση έχουν µετξύ τους; ii) Tι ισχύει γι τις γωνίες γ κι δ ; ε δ ε ε ε γ β ε πάντηση
Διαβάστε περισσότεραΕΡΩΤΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ
ΚΕΦΑΛΑΙΟ 1 ΕΡΩΤΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ Τι είναι ένα ευθύγραμμο τμήμα ΑΒ; Πώς ονομάζονται τα σημεία Α και Β; 1 ος ορισμός : Είναι η «ίσια» γραμμή που ενώνει τα δύο σημεία Α και Β. 2 ος ορισμός : Είναι
Διαβάστε περισσότεραΑσκήσεις σχολικού βιβλίου σελίδας Ερωτήσεις Κατανόησης. Αντιστοιχίστε κάθε µέγεθος της στήλης Α µε την τιµή του στην στήλη Β
1 11.6 11.8 σκήσεις σχολικού βιβλίου σελίδας 50 51 Ερωτήσεις Κατανόησης 1. ντιστοιχίστε κάθε µέγεθος της στήλης µε την τιµή του στην στήλη Στήλη Στήλη Εµβαδόν κυκλικού δίσκου ακτίνας Εµβαδόν κυκλικού τοµέα
Διαβάστε περισσότεραΓΕΩΜΕΤΡΙΑ Γ γυμνασίου από Σχολικό Βιβλίο + Ασκήσεις Εξάσκησης
ΓΕΩΜΕΤΡΙΑ Γ γυμνασίου από Σχολικό Βιβλίο + Ασκήσεις Εξάσκησης ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ Γρήγορη Επανάληψη Θεωρίας Ένα τρίγωνο ανάλογα με το είδος των γωνιών του ονομάζεται: Σε κάθε ορθογώνιο τρίγωνο η πλευρά που
Διαβάστε περισσότεραΓΕΩΜΕΤΡΙΑ. 1 o ΔΙΑΓΩΝΙΣΜΑ ΘΕΜΑ 1
ΩΜΤΡΙ ΛΥΚΙΟΥ ΩΜΤΡΙ ΘΜ o ΙΩΝΙΣΜ. Να αποδείξετε ότι : Ι) διάμεσος που αντιστοιχεί στην υποτείνουσα ορθογωνίου τριγώνου είναι ίση με το μισό της υποτείνουσας. ΙΙ) ν μια διάμεσος τριγώνου είναι ίση με το μισό
Διαβάστε περισσότεραΓΕΩΜΕΤΡΙΑ - ΚΕΦΑΛΑΙΟ 3ο Παραλληλόγραµµα - Τραπέζια
ΓΕΩΜΕΤΡΙΑ - ΚΕΦΑΛΑΙΟ 3ο Παραλληλόγραµµα - Τραπέζια 184 ΕΡΩΤΗΣΕΙΣ ΑΝΑΠΤΥΞΗΣ ΚΑΙ ΑΝΤΙΚΕΙΜΕΝΙΚΟΥ ΤΥΠΟΥ 1. Να αντιστοιχίσετε κάθε στοιχείο της στήλης (Α) µε ένα µόνο στοιχείο της στήλης (Β): στήλη (Α) τετράπλευρα
Διαβάστε περισσότερα2 Β Βάσεις παραλληλογράµµου Βαρύκεντρο Γ Γεωµετρική κατασκευή Γεωµετρικός τόπος (ς) Γωνία Οι απέναντι πλευρές του. Κέντρο βάρους τριγώνου, δηλ. το σηµ
1 ΛΕΞΙΚΟ ΓΕΩΜΕΤΡΙΚΩΝ ΟΡΩΝ Α Ακτίνιο Ακτίνα κύκλου Ακτίνα σφαίρας Άκρα ευθύγραµµου τµήµατος Αµβλεία γωνία Αµβλυγώνιο Ανάλογα ευθύγραµµα τµήµατα Αντιδιαµετρικό σηµείο Αντικείµενες ηµιευθείες Άξονας συµµετρίας
Διαβάστε περισσότεραβ. Η πλευρά που βρίσκεται απέναντι από την κορυφή του ισοσκελούς τριγώνου καλείται βάση.
1 Τρίγωνα 11 Στοιχεία και είδη τριγώνων 111 Κύρια στοιχεία τριγώνου Οι πλευρές και οι γωνίες ενός τριγώνου λέγονται κύρια στοιχεία του τριγώνου Συγκρίνοντας τις πλευρές του τριγώνου μεταξύ τους προκύπτουν
Διαβάστε περισσότεραγεωµετρία του ευκλείδη µε λίγα λόγια για µαθητές α λυκείου (www.sonom.gr) 1 γωνίες Β ευθεία (2 ) οξεία (< 1 ) ορθή ( =1 ) αµβλεία ( > 1 )
γεωµετρία του ευκλείδη µε λίγα λόγια για µαθητές α λυκείου (www.sonom.gr) 1 γωνίες µη κυρτή ευθεία ( ) πλήρης (4 ) κυρτή, οξεία (< 1 ) ορθή ( =1 ) αµβλεία ( > 1 ) συµπληρωµατικές παραπληρωµατικές φ ω ω
Διαβάστε περισσότερα3.3 ΠΑΡΑΛΛΗΛΟΓΡΑΜΜΟ ΟΡΘΟΓΩΝΙΟ
1 3 ΠΛΛΗΛΟΜΜΟ ΟΘΟΩΝΙΟ ΤΤΩΝΟ ΟΜΟΣ ΤΠΙΟ ΙΣΟΣΛΣ ΤΠΙΟ ΘΩΙ Παραλληλόγραµµο Λέγεται το τετράπλευρο που έχει τις απέναντι πλευρές παράλληλες. ( // και // ) άσεις και ύψη στο παραλληλόγραµµο άθε πλευρά του µπορεί
Διαβάστε περισσότεραΦΡΟΝΤΙΣΤΗΡΙΑ «άµιλλα»
1 ΜΕΤΡΙΚΕ ΧΕΕΙ ΘΕΩΡΙΑ Μετρικές σχέσεις στο ορθογώνιο τρίγωνο το ορθογώνιο τρίγωνο το τετράγωνο κάθε κάθετης πλευράς είναι ίσο µε το γινόµενο της υποτείνουσας επί την προβολή της κάθετης στην υποτείνουσα.
Διαβάστε περισσότεραΛ υ μ ε ν ε ς Α σ κ η σ ε ι ς ( Π α ρ α λ λ η λ o γ ρ α μ μ α ) 1
υ μ ε ν ε ς σ κ η σ ε ι ς ( Π α ρ α λ λ η λ o γ ρ α μ μ α ) 1 Προεκτεινουµε τις πλευρες και παραλληλογραμμου κατα τμηματα = και = αντιστοιχως. Να αποδειξετε οτι τα σημεια, και ειναι συνευθειακα. = παραλληλογραμμο
Διαβάστε περισσότεραΕΙΣΑΓΩΓΗ ΣΤΗΝ ΘΕΩΡΗΤΙΚΗ ΓΕΩΜΕΤΡΙΑ
ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΘΕΩΡΗΤΙΚΗ ΓΕΩΜΕΤΡΙΑ ΟΡΙΣΜΟΙ Ευθύγραμμο τμήμα είναι το κομμάτι της ευθείας που έχει αρχή και τέλος. Ημιευθεια Είναι το κομμάτι της ευθείας που έχει αρχή αλλά όχι
Διαβάστε περισσότερα2.3 ΜΕΣΟΚΑΘΕΤΟΣ ΕΥΘΥΓΡΑΜΜΟΥ ΤΜΗΜΑΤΟΣ
1 3 ΜΕΣΚΘΕΤΣ ΕΥΘΥΡΜΜΥ ΤΜΗΜΤΣ ΘΕΩΡΙ Μεσοκάθετος ευθυγράµµου τµήµατος Λέγεται η ευθεία που διέρχεται από το µέσο του ευθυγράµµου τµήµατος και είναι κάθετη σ αυτό. Ιδιότητα : Κάθε σηµείο της µεσοκαθέτου ενός
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 4ο ΠΑΡΑΛΛΗΛΕΣ ΕΥΘΕΙΕΣ. Ποιες οι σχετικές θέσεις δύο ευθειών στο επίπεδο ; Πως ορίζονται οι παράλληλες ευθείες και πως συμβολίζονται ;
ΚΦΛΙΟ 4ο ΠΡΛΛΗΛΣ ΥΘΙΣ Ποιες οι σχετικές θέσεις δύο ευθειών στο επίπεδο ; Πως ορίζονται οι παράλληλες ευθείες και πως συμβολίζονται ; Οι σχετικές θέσεις δυο ευθειών ε και ε, οι οποίες βρίσκονται στο ίδιο
Διαβάστε περισσότεραΤάξη A Μάθημα: Γεωμετρία
Τάξη A Μάθημα: Γεωμετρία Η Θεωρία σε Ερωτήσεις Ερωτήσεις Κατανόησης Επαναληπτικά Θέματα Επαναληπτικά Διαγωνίσματα Περιεχόμενα Τρίγωνα Α. Θεωρία-Αποδείξεις Σελ.2 Β. Θεωρία-Ορισμοί..Σελ.9 Γ. Ερωτήσεις Σωστού
Διαβάστε περισσότεραΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 3 η ΕΚΑ Α
ΣΚΗΣΕΙΣ ΕΠΝΛΗΨΗΣ η ΕΚ. Έστω οι παραστάσεις = 4 4 + 5, Β = 5 (8 + 0) : (7 5) και Γ = 6 : 5 4 Να υπολογίσετε την τιµή των παραστάσεων ν = 5, Β = 6 και Γ = να βρείτε : i) Το ελάχιστο κοινό πολλαπλάσιο των,
Διαβάστε περισσότεραΟι γωνίες και που ονομάζονται «εντός εναλλάξ γωνίες» και είναι ίσες. «εντός-εκτός και επί τα αυτά μέρη γωνίες» και είναι ίσες.
ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΛΥΚΕΙΟ ΑΝΑΒΡΥΤΩΝ ΜΑΘΗΜΑΤΑ ΓΙΑ ΤΟΝ ΔΙΑΓΩΝΙΣΜΟ «ΘΑΛΗΣ» ΤΑΞΗ Α ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΓΕΩΜΕΤΡΙΑ ΒΑΣΙΚΕΣ ΓΝΩΣΕΙΣ 1. Μεσοκάθετος ενός ευθύγραμμου τμήματος ΑΒ ονομάζεται η ευθεία που είναι κάθετη
Διαβάστε περισσότερα2. ίνεται ισοσκελές τρίγωνο ΑΒΓ (ΑΒ=ΑΓ) και οι διχοτόµοι του Β και ΓΕ. Αν ΕΗ ΒΓ και Ζ ΒΓ, να αποδείξετε ότι: β) Τα τρίγωνα ΑΕ και ΑΖ είναι ίσα.
1. Από εξωτερικό σηµείο Σ κύκλου (Κ,ρ) θεωρούµε τις τέµνουσες ΣΑΒ και ΣΓ του κύκλου για τις οποίες ισχύει ΣΒ=Σ. Τα ΚΛ και ΚΜ είναι τα αποστήµατα των χορδών ΑΒ και Γ του κύκλου αντίστοιχα. α) i. τα τρίγωνα
Διαβάστε περισσότεραΚύρια και δευτερεύοντα στοιχεία τριγώνου Είδη τριγώνων.
ΜΕΡΟΣ Β 1.1 ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ 397 1. 1 ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ Κύρια και δευτερεύοντα στοιχεία τριγώνου Είδη τριγώνων. Σε κάθε τρίγωνο οι πλευρές και οι γωνίες του ονομάζονται κύρια στοιχεία του τριγώνου. Οι πλευρές
Διαβάστε περισσότεραΘΕΜΑΤΑ. β. ΜΗΔ = 45 Μονάδες 5. Θέμα 4 ο Δίνεται ορθογώνιο τρίγωνο ΑΒΓ ( Α = 90 ) με ΑΓ > ΑΒ, η διάμεσός του ΑΖ και έστω Δ και
Α. Να χαρακτηρίσετε Σωστές (Σ) ή Λάθος (Λ) τις παρακάτω προτάσεις: α. Οι διχοτόμοι δύο διαδοχικών και παραπληρωματικών γωνιών σχηματίζουν ορθή γωνία. β. Οι διαγώνιες κάθε παραλληλογράμμου είναι ίσες μεταξύ
Διαβάστε περισσότεραΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ (ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ)
ΩΜΤΡΙ ΛΥΚΙΟΥ (ΤΡΠΖ ΘΜΤΩΝ) GI_V_GEO_2_18975 ίνεται τρίγωνο AB με AB=9, A=15. πό το βαρύκεντρο φέρνουμε ευθεία παράλληλη στην πλευρά B που τέμνει τις AB,A στα,e αντίστοιχα. α) Να αποδείξετε ότι A = 2 AB
Διαβάστε περισσότεραΘΕΜΑ Α. Να χαρακτηρίσετε τις παρακάτω προτάσεις ως Σ (σωστή) ή Λ (λανθασμένη)
Διαγώνισμα Γεωμετρίας Α Λυκείου Ισότητα Τριγώνων Κυριακή 8 Νοεμβρίου 2015 Τα θέματα και οι απαντήσεις τους ΘΕΜΑ Α Α 1. Α 2. Α 3. Πως ορίζεται η μεσοκάθετος ευθύγραμμου σχήματος; Να αναφέρετε την ιδιότητα
Διαβάστε περισσότεραΤρίγωνο λέγεται το σχήμα που ορίζεται από τρία σημεία A,B και Γ, μη περιεχόμενα σε μία και μόνον ευθεία, καθώς και τα ευθύγραμμα τμήματα που τα
Τρίγωνο λέγεται το σχήμα που ορίζεται από τρία σημεία A,B και Γ, μη περιεχόμενα σε μία και μόνον ευθεία, καθώς και τα ευθύγραμμα τμήματα που τα ενώνουν. Τα τρία σημεία αυτά λέγονται κορυφές του τριγώνου.
Διαβάστε περισσότερα3.4 Ι ΙΟΤΗΤΕΣ ΠΑΡΑΛΛΗΛΟΓΡΑΜΜΟΥ
1 3.4 ΙΙΤΗΤΕΣ ΠΡΛΛΗΛΡΜΜΥ ΡΘΩΝΙΥ ΡΜΥ ΤΕΤΡΩΝΥ ΤΡΠΕΖΙΥ ΙΣΣΚΕΛΥΣ ΤΡΠΕΖΙΥ ΘΕΩΡΙ 1. Ιδιότητες παραλληλογράµµου Το σηµείο τοµής των διαγωνίων του είναι κέντρο συµµετρίας (Το κέντρο συµµετρίας) ι διαγώνιες διχοτοµούνται,
Διαβάστε περισσότερα1. Γενικά για τα τετράπλευρα
1. ενικά για τα τετράπλευρα Ένα τετράπλευρο θα λέγεται κυρτό αν η προέκταση οποιασδήποτε πλευράς του αφήνει το σχήμα από το ίδιο μέρος (στο ίδιο ημιεπίπεδο, όπως λέμε καλύτερα). κορυφές γωνία εξωτερική
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ
ΓΥΜΝΣΙΟ ΥΜΗΤΤΟΥ ΜΘΗΜΤΙΚ ΓΥΜΝΣΙΟΥ ΜΙ ΠΡΟΕΤΟΙΜΣΙ ΓΙ ΤΙΣ ΕΞΕΤΣΕΙΣ - Σελίδα 1 από 11 - 1. Η ΔΟΜΗ ΤΩΝ ΘΕΜΤΩΝ ΤΩΝ ΕΞΕΤΣΕΩΝ Στις εξετάσεις του Μαίου-Ιουνίου µας δίνονται δύο θέµατα θεωρίας και τρείς ασκήσεις.
Διαβάστε περισσότεραΠΑΡΑΛΛΗΛΟΓΡΑΜΜA. Ιδιότητες παραλληλογράμμων
εωμετρία και Λυκείου ΠΡΛΛΗΛΟΡΜΜA Ορισμός Παραλληλόγραμμο λέγεται το τετράπλευρο που έχει τις απέναντι πλευρές του παράλληλες. ηλαδή το τετράπλευρο είναι παραλληλόγραμμο, όταν // και //. Ιδιότητες παραλληλογράμμων
Διαβάστε περισσότεραΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ. 1. Καθεμιά από τις παρακάτω προτάσεις μπορεί να είναι σωστή ή λάθος Να γράψετε Σ στο
ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ. 1. Καθεμιά από τις παρακάτω προτάσεις μπορεί να είναι σωστή ή λάθος Να γράψετε Σ στο τέλος της πρότασης αν αυτή είναι Σωστή και Λ αν αυτή είναι Λάθος: ύο τρίγωνα είναι ίσα αν έχουν ίσες
Διαβάστε περισσότεραΘΕΩΡΙΑ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΓΙΑ ΤΗΝ Α ΓΥΜΝΑΣΙΟΥ Α. ΓΩΝΙΕΣ - ΚΥΚΛΟΣ
ΘΕΩΡΙΑ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΓΙΑ ΤΗΝ Α ΓΥΜΝΑΣΙΟΥ Α. ΓΩΝΙΕΣ - ΚΥΚΛΟΣ 1. Απόσταση δύο σηµείων Α και Β είναι το µήκος του ευθύγραµµου τµήµατος που τα ενώνει. 2. Γωνία είναι το µέρος του επιπέδου που βρίσκεται µεταξύ
Διαβάστε περισσότεραΑσκήσεις - Πυθαγόρειο Θεώρηµα
Ασκήσεις - Πυθαγόρειο Θεώρηµα. Έστω ορθογώνιο τρίγωνο ΑΒΓ ( Â = 90 ο ) µε ΒΓ = 0 και ΑΓ =. Αν το µέσο της ΒΓ και Ε ΒΓ (Ε σηµείο της ΑΒ) τότε το µήκος της ΑΕ είναι: i) 3 3,5 i 4 iv) 4,5 v) 5. Έστω ορθογώνιο
Διαβάστε περισσότερα5 η εκάδα θεµάτων επανάληψης
5 η εκάδα θεµάτων επανάληψης 4. ίνεται παραλληλόγραµµο και έστω, Μ τα µέσα των και αντίστοιχα Οι προεκτάσεις των τµηµάτων Μ και τέµνονται στο Ζ. Να αποδείξετε ότι Τα τρίγωνα Μ και ΜΖ είναι ίσα i Το τετράπλευρο
Διαβάστε περισσότεραΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ. Α) Να αποδείξετε ότι αν σε ορθογώνιο τρίγωνο μια γωνία του ισούται με 30 ο,
ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ ΘΕΜΑ 1 Ο Α) Να αποδείξετε ότι αν σε ορθογώνιο τρίγωνο μια γωνία του ισούται με 30 ο, τότε η απέναντι πλευρά του είναι το μισό της υποτείνουσας και αντίστροφα.
Διαβάστε περισσότεραΕπαναληπτικό Διαγώνισμα Γεωμετρίας Α Λυκείου
Επαναληπτικό Διαγώνισμα Γεωμετρίας Α Λυκείου Θέμα Α. Να αποδείξετε ότι το ευθύγραμμο τμήμα που ενώνει τα μέσα των δύο πλευρών τριγώνου, είναι παράλληλο προς την τρίτη πλευρά και ίσο με το μισό της (7 μονάδες)
Διαβάστε περισσότεραΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ ΕΠΑΝΑΛΗΠΤΙΚΟ ΦΥΛΛΑΔΙΟ ΕΠΙΜΕΛΕΙΑ ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΕΠΙΜΕΛΕΙΑ: ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ
ΩΜΤΡΙ ΛΥΚΙΟΥ ΠΝΛΗΠΤΙΚΟ ΦΥΛΛΙΟ ΠΙΜΛΙ ΥΡΙΝΟΣ ΣΙΛΗΣ ΠΙΜΛΙ: ΥΡΙΝΟΣ ΣΙΛΗΣ ΘΜΤ ΘΩΡΙΣ ΚΦΛΙΟ ο Τ ΣΙΚ ΩΜΤΡΙΚ ΣΧΗΜΤ ΘΜ ο Τι καλείται μέσο ενός ευθυγράμμου τμήματος και τι ισχύει γι αυτό ; ΠΝΤΗΣΗ Μέσο ενός ευθύγραμμου
Διαβάστε περισσότεραΓραμμή. Σημείο. κεφαλαίο γράμμα. Κάθε γραμμή. αποτελείται. Ευθεία κι αν αρχή και χωρίς. τέλος! x x
1. Οι Πρωταρχικές Γεωμετρικές Έννοιες Σημείο Γραμμή Δεν έχει διαστάσεις!! Υπάρχει μόνο στο μυαλό μας. Συμβολίζεται με κεφαλαίο γράμμα. Κάθε γραμμή αποτελείται από άπειρα σημεία. Ευθεία Δεν είναι εύκολο
Διαβάστε περισσότεραΣΗΜΕΙΩΣΕΙΣ ΜΕΛΕΤΗΣ ΔΙΑΓΩΝΙΣΜΑ
ΣΗΜΕΙΩΣΕΙΣ ΜΕΛΕΤΗΣ ΔΙΑΓΩΝΙΣΜΑ 05-6 (version 3--06) Σημειώστε με μονές, διπλές ή και τριπλές γραμμούλες τα κατάλληλα ίσα κύρια στοιχεία ώστε τα τρίγωνα αυτά να είναι ίσα σύμφωνα με καθένα από τα 3 κριτήρια
Διαβάστε περισσότεραΑσκήσεις σχολικού βιβλίου σελίδας 245. Ερωτήσεις Κατανόησης. Αντιστοιχίστε κάθε µέγεθος της στήλης Α µε την τιµή του στην στήλη Β
.4.5 σκήσεις σχολικού βιβλίου σελίδας 45 Ερωτήσεις Κατανόησης. ντιστοιχίστε κάθε µέγεθος της στήλης µε την τιµή του στην στήλη Β Στήλη Μήκος κύκλου ακτίνας Μήκος τόξου µ ο σε κύκλο ακτίνα Μήκος τόξου α
Διαβάστε περισσότεραΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΓΕΩΜΕΤΡΙΑ 41. Ύλη: Τρίγωνα
ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΓΕΩΜΕΤΡΙΑ 41 Ον/μο:.. Α Λυκείου Ύλη: Τρίγωνα 01-11-15 Θέμα 1 ο : Α. Τι ονομάζουμε γεωμετρικό τόπο; Να αναφέρετε τρεις βασικούς γεωμετρικούς τόπους τους οποίους γνωρίζετε. (7 μον.) Β. Να
Διαβάστε περισσότεραΤο τµήµα που ενώνει τα µέσα δύο πλευρών τριγώνου, είναι παράλληλο προς την τρίτη πλευρά και ίσο µε το µισό της.
5.3 Εφαρµογές των παραλληλογράµµων 155 5.3 Εφαρµογές των παραλληλογράµµων Α Εφαρµογές στα τρίγωνα Α1 Θεώρηµα 1 Το τµήµα που ενώνει τα µέσα δύο πλευρών τριγώνου, είναι παράλληλο προς την τρίτη πλευρά και
Διαβάστε περισσότερα