EFFECTS OF B ON THE MICROSTRUCTURE AND HYDROGEN RESISTANCE PERFORMANCE OF Fe Ni BASE ALLOY

Σχετικά έγγραφα


Z L L L N b d g 5 * " # $ % $ ' $ % % % ) * + *, - %. / / + 3 / / / / + * 4 / / 1 " 5 % / 6, 7 # * $ 8 2. / / % 1 9 ; < ; = ; ; >? 8 3 " #

ACTA MATHEMATICAE APPLICATAE SINICA Nov., ( µ ) ( (

STUDY ON CYCLIC OXIDATION RESISTANCE OF HIGH NIOBIUM CONTAINING TiAl BASE ALLOY WITH ERBIUM

RELATIONSHIP BETWEEN MECHANICAL PROPERTIES AND LAMELLAR ORIENTATION OF PST CRYSTALS IN Ti 45Al 8Nb ALLOY

Delta Inconel 718 δ» ¼

M 2. T = 1 + κ 1. p = 1 + κ 1 ] κ. ρ = 1 + κ 1 ] 1. 2 κ + 1

MICROSTRUCTURE EVOLUTION OF HYPEREUTEC- TOID STEELS DURING WARM DEFORMATION II. Cementite Spheroidization and Effects of Al

2011 Đ 3 Ñ ACTA METALLURGICA SINICA Mar pp

EFFECT OF HIGH MAGNETIC FIELD ON THE TRANSI- TION BEHAVIOR OF Cu RICH PARTICLES IN Cu 80%Pb HYPERMONOTECTIC ALLOY

MICROSTRUCTURE STABILITY IN A FULLY LAMELLAR HIGH Nb TiAl ALLOY AFTER LONG TERM THERMAL CYCLING

1-6 Ð Ï Te (mass%) 0% 0.3% 0.5% 0.8% 1.0% 2.0% 2 Î 1 6

CORROSION BEHAVIOR OF X70 PIPELINE STEEL IN SIMULATED KU ERLE SOIL SOLUTION WITH CO 2

Œ.. ² μ,.. Œ ²μ, ƒ.. μ ±μ,. Ô Ô ², Œ.. ƒê Éμ, Œ.. Œ ² μ *

ØSrÚCa Mg 12Zn 4Al 0.3MnÜ

THE MICRO FABRICATING PROCESS AND ELECTRO- MAGNETIC PROPERTIES OF TWO KINDS OF Fe POWDERS WITH DIFFERENT GRAIN SIZES AND INTERNAL STRAINS

CONVECTION EFFECTS AND BANDING STRUCTURE FORMATION MECHANISM DURING DIRECTIONAL SOLIDIFICATION OF PERITECTIC ALLOYS I. Experimental Result

INFLUENCES OF PHASE PRECIPITATIONS OF TERNARY β Ti Mo Zr(Sn) ALLOYS ON YOUNG S MODULUS AND MECHANICAL PROPERTIES

v w = v = pr w v = v cos(v,w) = v w

EFFECT OF HAFNIUM CONTENT ON MORPHOLOGY EVOLUTION OF γ PRECIPITATES IN P/M Ni BASED SUPERALLOY

P Ò±,. Ï ± ˆ ˆŒˆ Š ƒ ˆŸ. Œ ƒ Œ ˆˆ γ-š Œˆ ƒ ƒˆ 23 ŒÔ. ² μ Ê ². Í μ ²Ó Ò Í É Ö ÒÌ ² μ, É μí±, μ²óï

EFFECT OF WELDING PROCESSING PARAMETERS ON POROSITY FORMATION OF MILD STEEL TREATED BY CO 2 LASER DEEP PENETRATION WELDING

p din,j = p tot,j p stat = ρ 2 v2 j,

Q π (/) ^ ^ ^ Η φ. <f) c>o. ^ ο. ö ê ω Q. Ο. o 'c. _o _) o U 03. ,,, ω ^ ^ -g'^ ο 0) f ο. Ε. ιη ο Φ. ο 0) κ. ο 03.,Ο. g 2< οο"" ο φ.

SYNTHESIS OF PLASTIC Zr BASED BULK METALLIC GLASS WITH CRYSTAL PHASE BY DIRECTIONAL SOLIDIFICATION

2011 Ð 5 ACTA MATHEMATICAE APPLICATAE SINICA May, ( MR(2000) ß Â 49J20; 47H10; 91A10

ˆ ˆ ˆ ˆˆ γ-ˆ ˆŸ ˆ Š Œ ˆ Œ œ Š ˆˆ

UDC. An Integral Equation Problem With Shift of Several Complex Variables 厦门大学博硕士论文摘要库

48 12 Ö Vol.48 No ACTA METALLURGICA SINICA Dec pp Î µ TG142.1, Á A Ì µ (2012)

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä Œμ Ìμ. ±É- É Ê ± μ Ê É Ò Ê É É, ±É- É Ê, μ Ö

Ανώτερα Μαθηματικά ΙI

Ηυλοποίησ ητηςπαραπάνωκατηγορίαςβρίσ κεταισ τοναλγόριθμο º¾ºΗγραμμή

EFFECTS OF TEMPERING TEMPERATURE ON THE IMPACT TOUGHNESS OF STEEL 42CrMo

ØÖÓÒÓÑ ÈÖ Ø ÙÑ Ù Ò Ö Ò Ë Ð ØÛ ØØ Ö¹ ØÖÓÒÓÑ Íº Ù ÍÒ Ú Ö ØØ Ù ÙÖ ¹ Ò Ö ËÓÒÒ ÒÐ Ù Ñ Î ÖÐ Ù Ò Â Ö Ð ÙÒ ½ Û ÙÒ Ö ËÓÒÒ Ö Ò À ÑÑ Ð ÞÙ Ï ÒØ Ö Ò Ò Ö Ð Ò Ò Ò ÙÒ

P ƒ Ê Î 1, 2,.. ƒê μ 1, 3,. ÉÓ±μ 2, O.M.ˆ μ 1,.. Œ É μë μ 1,.. μ μ 1,. ƒ. Ê±μ ± 1,.. ³ 1,.. ±Ê Éμ 1. ˆ ˆ ˆ ˆ Š ˆ Si- ˆ SiC- Š Š ˆ

MICROSTRUCTURE AND MECHANICAL PROPERTIES OF 1500 MPa GRADE ULTRA HIGH STRENGTH LOW ALLOY STEEL

P Ë ³μ,.. μ μ³μ²μ,.. ŠμÎ μ,.. μ μ,.. Š μ. ˆ œ ˆ Š Œˆ ŠˆŒ ƒ Œ Ÿ ˆŸ Š ˆ ˆ -ˆ ˆŠ

PHOTOCATALYTIC PROPERTIES OF TiO 2 THIN FILMS PREPARED BY MICROARC OXIDATION AND DOPING ELECTROLYTES

P É Ô Ô² 1,2,.. Ò± 1,.. ±μ 1,. ƒ. ±μ μ 1,.Š. ±μ μ 1, ˆ.. Ê Ò 1,.. Ê Ò 1 Œˆ ˆŸ. ² μ Ê ² μ Ì μ ÉÓ. É μ ±, Ì μé μ Ò É μ Ò ² μ Ö

P Œ ²μ, Œ.. ƒê Éμ,. ƒ. ²μ,.. μ. ˆ ˆŸ Œˆ ˆŸ ˆ Š Œ ˆŸ Ÿ - ˆ ˆ ŠˆŒˆ Œ Œˆ ˆ œ ˆ Œ ˆ ŒˆŠ Œ -25

.. ƒ²μ É, Œ. Œ Ï,. Š. μé ±μ,..,.. ³ μ μ, ƒ.. ÒÌ

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä616 Š ˆŒ CMS LHC

EFFECTS OF TEMPERATURE GRADIENT ON LAMEL- LAR ORIENTATIONS OF DIRECTIONAL SOLIDIFIED TiAl BASED ALLOY

Š Ÿ Š Ÿ Ÿ ˆ Œ ˆŠ -280

NUMERICAL SIMULATION OF KEYHOLE SHAPE AND TRANSFORMATION FROM PARTIAL TO OPEN STATES IN PLASMA ARC WELDING

( ) , ) , ; kg 1) 80 % kg. Vol. 28,No. 1 Jan.,2006 RESOURCES SCIENCE : (2006) ,2 ,,,, ; ;

WAFER LEVEL ELECTRODEPOSION OF Fe Ni NOVEL UBM FILMS

FRACTURE TOUGHNESS OF WELDED JOINTS OF X100 HIGH STRENGTH PIPELINE STEEL

P ² ± μ. œ Š ƒ Š Ÿƒ ˆŸ Œ œ Œ ƒˆ. μ²μ μ Œ Ê μ μ ±μ Ë Í μ É Í ±μ ³μ²μ (RUSGRAV-13), Œμ ±, Õ Ó 2008.

EFFECTS OF Al Al 4 C 3 REFINER AND ULTRASONIC FIELD ON MICROSTRUCTURES OF PURE Mg

FRICTION AND WEAR PROPERTIES OF SURFACE PLASMA Cr W ALLOYING LAYER OF γ TiAl ALLOY

, Litrrow. Maxwell. Helmholtz Fredholm, . 40 Maystre [4 ], Goray [5 ], Kleemann [6 ] PACC: 4210, 4110H

½ Τετραγωνίζω=κατασκευάζωκάτιίσουεμβαδούμεδοθέντετράγωνο. Δείτεκαιτην υποσημείωσηστηνπρότασηβ 14. ¾

49 Ö 6 Đ Vol.49 No ACTA METALLURGICA SINICA Jun pp

Effects of Retained Austenite Characteristics on Delayed Fracture Properties of Ultra High-Strength TBF Steels

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä1350 ˆ ˆ Š -3

AN INVESTIGATION ON THE CREEP BEHAVIOR OF PURE Mg

P ƒ. μ μ², Œ.. ˆ μ,.. μ ± Î Š Ÿ ˆ Œ ˆŸ ˆ Ÿ Š ˆ. ² μ Ê ² μ Ò É Ì ± Ô± ³ É.

Θεωρία Συνόλων. Ενότητα: Διατακτικοί αριθμοί. Γιάννης Μοσχοβάκης. Τμήμα Μαθηματικών

P ƒ. Œ. ʳ Ö,. É ±, ˆ.. Š Öαμ,. ˆ. ÕÉÕ ±μ,.. ² μ. Š -ŒˆŠ Š : Œ ˆ, œ,

Quick algorithm f or computing core attribute

P ² Ì μ Š ˆ Œˆ Š Œ Œˆ. ² μ Ê ² Nuclear Instruments and Methods in Physics Research.

Correction of chromatic aberration for human eyes with diffractive-refractive hybrid elements

ΑΡΧΕΙΑ ΚΑΙ ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ

P Œ ²μ, ƒ.. μ ±μ,. ˆ. ˆ μ, Œ.. ƒê Éμ,. ƒ. ²μ,.. ³ É. ˆŒ ˆ Š ƒ Œ ˆ Ÿ ˆŸ 238 Uˆ 237 U, Œ ƒ Ÿ Š ˆˆ 238 U(γ,n) 237 U.

Ó³ Ÿ , º 2(131).. 105Ä ƒ. ± Ï,.. ÊÉ ±μ,.. Šμ ² ±μ,.. Œ Ì ²μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

Σανπρώτοπαράδειγμαχρήσ εωςτης ÉÈ ÒØ Öπαρουσ ιάζεταιέναπαράδειγμασ χεδιασ μούκύκλωνμέσ ασ εένακεντρικόπαράθυροº

P ,.. ³,. Š. ³. ˆ ˆŸ Œˆ ˆŸ ˆ ˆ ˆ Š ˆ 9 3 ˆ Œ NiÄNb. ² μ Ê ² μ Ì μ ÉÓ. É μ ±, Ì μé μ Ò É μ Ò ² μ Ö. Õ³ Ó, μ Ö

Ó³ Ÿ , º 5(147).. 777Ä786. Œ ˆŠ ˆ ˆ Š ƒ Š ˆŒ. ˆ.. Š Öαμ,. ˆ. ÕÉÕ ±μ,.. ²Ö. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

ƒ Š ˆ Šˆ Š Œˆ Šˆ Š ˆŒ PAMELA ˆ AMS-02

Ó³ Ÿ , º 7(156).. 62Ä69. Š Œ œ ƒˆˆ ˆ ˆŠ. .. ŠÊ²Ö μ 1,. ƒ. ²ÓÖ μ 2. μ ± Ê É É Ê Ò μ μ, Œμ ±

Š ˆ œ Ÿ ˆ œ Œ Œ ƒ ˆ Œ Œ LEPTA

DISCONTINUOUS YIELDING BEHAVIOR OF β PHASE CONTAINING TiAl ALLOY DURING HIGH TEMPERATURE DEFORMATION PROCESS

AN RFID INDOOR LOCATION ALGORITHM BASED ON FUZZY NEURAL NETWORK MODEL. J. Sys. Sci. & Math. Scis. 34(12) (2014, 12),

ER-Tree (Extended R*-Tree)

Δυναμική διαχείριση μνήμης

MICROSTRUCTURES AND PROPERTIES OF PULSED MIG ARC BRAZED FUSION WELDED JOINT OF Al ALLOY AND GALVANIZED STEEL

MICROSEGREGATION OF SOLUTE ELEMENTS IN SOLIDIFYING MUSHY ZONE OF STEEL AND ITS EFFECT ON LONGITUDINAL SURFACE CRACKS OF CONTINUOUS CASTING STRAND

P μ,. Œμ α 1,. ²μ ± 1,.. ϱ Î, Ÿ. Ê Í± 2 Œˆ ˆ Œ Š Ÿ Š Ÿ ˆ ˆŒ ˆˆ. ² μ Ê ² μ Ò É Ì ± Ô± ³ É

P Î,.. Š ²³Ò±μ, Œ.. Œ ϱ,.. ʳ ˆ ˆ ˆ ˆŸ ˆŠ Š Š ˆ Ÿ -200

Supporting Information. Enhanced energy storage density and high efficiency of lead-free

Εφαρμοσμένα Μαθηματικά

2 SFI

BEHAVIOR OF MARTENSITE REVERSE TRANSFORMA- TION IN 18Mn TRIP STEEL DURING WARM DEFORMATION

Ó³ Ÿ º 3[120] Particles and Nuclei, Letters No. 3[120]

Ó³ Ÿ , º 7(163).. 798Ä802 ˆ ˆŠ ˆ ˆŠ Š ˆ. .. Ëμ μ. Î ± É ÉÊÉ ³..., Œμ ±

S i L L I OUT. i IN =i S. i C. i D + V V OUT

Š Šˆ ATLAS: ˆ ˆŸ ˆ Šˆ, Œ ˆ Œ ˆ.. ƒê ±μ,. ƒ ² Ï ², ƒ.. Š ± ²,. Œ. Ò,.. ŒÖ²±μ ±,.. Ï Ìμ μ,.. Ê ±μ Î,.. ±μ,. Œ. μ

Acta Phys. Sin. Vol. 61, No. 9 (2012) ) 1) 1) 2) 1) 1) (,, ) 2) (, ) ( ; )

ˆ Œ ˆŸ Š ˆˆ ƒ Šˆ ƒ ƒ ˆ Šˆ ˆ ˆ Œ ˆ

Προσομοίωση Δημιουργία τυχαίων αριθμών

Ó³ Ÿ , º 3(194).. 673Ä677. Š Œ œ ƒˆˆ ˆ ˆŠ. ˆ.. ³ Ì μ, ƒ.. Š ³ÒÏ,ˆ..Š Ö, Ÿ. ʲ ±μ ±

ˆŒ œ ƒ ƒ ˆ ˆŸ ˆ Š ˆ 137 Cs Š ˆ Œ.

Œ ˆ Œ Ÿ Œˆ Ÿ ˆŸŒˆ Œˆ Ÿ ˆ œ, Ä ÞŒ Å Š ˆ ˆ Œ Œ ˆˆ

Ó³ Ÿ , º 7(205) Ä1486 ˆ ˆŠ ˆ ˆŠ Š ˆ. . ³ μ 1, ƒ. μ μë,. μ,. ŠÊ² ±μ,. Œ ² μ ± Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

2?nom. Bacc. 2 nom. acc. S <u. >nom. 7acc. acc >nom < <

Editorís Talk. Advisor. Editorial team. Thank

P ˆŸ ˆ Œ Œ ˆ Šˆ. Š ˆ œ ˆ -2Œ

ΕΙΣΑΓΩΓΗ ΣΤΑ ΟΠΤΙΚΑ ΣΥΣΤΑΤΙΚΑ

Transcript:

Ð 45 Ð 2 Vol.45 No.2 2009 Ï 2 Ï Ð 167 172 º ACTA METALLURGICA SINICA Feb. 2009 pp.167 172 B ³ Fe Ni ¾ ÊÅ ¼ Í (Ð ÍÖ ÄÍ Đ ², µ 110016) ¹ ÆÁÔ ³½» Í Ô Íº B Ð Fe Ni Æ Õ Ô Í. º Ä: B ÅÀ Þ ¼ ßÒ η(ni 3 Ti) Ý, ßÒ ÚÝ Ê Û, ÇĐ Ï Ô Í. Þ ³½, ÐÃÚ B, ÅØ ¼ À ¼, à η, ± Âß ± ßÞ Å ; ßÔ, H η/γ Ò ÉÅ, ʱ ±ßÞ, Đ¾ B ßÔ Đ ÂßÞ. ¹ Fe Ni Æ, B, η, ÔÜ Á û TG135 ÈË A È» 0412 1961(2009)02 0167 06 EFFECTS OF B ON THE MICRORUCTURE AND HYDROGEN RESIANCE PERFORMANCE OF Fe Ni BASE ALLOY ZHAO Mingjiu, RONG Lijian Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 Correspondent: RONG Lijian, professor, Tel: (024)23971979, E-mail: ljrong@imr.ac.cn Supported by National Natural Science Foundation of China and Chinese Academy of Engineering Physics (No.10476030) Manuscript received 2008 08 21, in revised form 2008 10 15 ABRACT Effects of B on the microstructure and hydrogen resistance performance in an Fe Ni base alloy were investigated by means of optical microscopy, scanning electron microscopy, thermal hydrogen charging experiments and tensile tests. The results show that abundant η(ni 3 Ti) phases precipitate at grain boundaries (GBs) in the alloy without boron (FN) after aging treatment, while only a few carbides precipitate at GBs in the alloy with boron (FNB). Tensile tests indicate that the FNB exhibites not only higher ductility but also lower hydrogen induced ductility loss than those for FN alloy. Fracture observations show that the brittle intergranular fracture is the main feature of peak aging and over aging FN alloy and quite a few secondary cracks can be observed on fracture surface of the hydrogen charged samples due to the precipitation of η phase at GBs. However, the intragranular fracture is dominant feature for the FNB alloy whether hydrogen charging or not. KEY WORDS Fe Ni base alloy, B, η phase, hydrogen induced ductility loss ÖÑ Fe Ni Ç Ø Ø Ç ², A286 JBK75, ½³ Đ Ô² Ø, Äß Ø È Í» [1,2]. Þ ², ÀÆÕÎÌ ², ³ Õ À ², Î ÎÐ Ù. ÖÑ Fe Ni Ç Ø Û ¼ Î, Ò Á Õ Î, ¾ [3,4]. * ¹ Ý Æ ËÂÆ ¹ Û Î½ Æ Å È 10476030 : 2008 08 21, : 2008 10 15 Ô : Ä, Ê, 1973,, ³ Ø ÑÛÌÄ ØĐ Ni 3 (Al, Ti) (Î γ ) Ñ, γ ½ ĐÞ, ÇÇ Á ². γ, ³ ØĐÁ ÄÞ ÇÇ Ë Ü Ø Ü, M 23 C 6 Ni 3 Ti (η ) [1,3 5]. Ñ½Ê Õ Å [6,7], H ÃÜ«γ ÇÇ Ó ÓÀ, Ü«Ç ÓĐ. É ÕÌ [8], Þ ÇÇ Ó ÓÀ Ñ H, H à ÅÁ«Ì, Ø ÕÂ. Fe Ni Ç ØĐ η, ² ÓÞ η ØÕݲ ß Ê [3,4]. B Ô ØĐ É, B Î Ø Ô¼ Î, ÑÛ [9 13]. ²Ä B

168 Õ Ð 45 Ô ØĐ Èß, É ½Ý Ò B «Ä Ó, Ó Ò, È ÓÐ ¼, Ó Î¼ [13,14]. ¹Á [15], «Ä Ó B Ã Ò Ù ØÑÛ. B ½ ØĐ É [16,17], ²Ä ³ Ø Đ, Á Å [16], ÔÛ ½ Đ, B à M 2 B Ü ³ ÓÞ Ñ Ó. ÖÑ Fe Ni Ç ØĐ Ú Á 0.001 0.01B ( ) [1 4], ²Ä É ØĐ, Ñ. Õ, ÖÑ Fe Ni Ç ØĐ «B, Á ß Ó η Þ, Ø ½Ô, Ø Õ Î. Õ ÖÑ Fe Ni Ç Ø, ½ ØĐ B, Í Á, B ³ ØĐ ; ½ Õ, ÍØ ÂÕ (SEM), B Ø Ö Õ Î ß. 1 µ Ø ¾, Đ½ Ø ( FNB Ø) 0.001B ( ), ½ Ø ( FN Ø) B. B, Ø Æ (, ) 30Ni 15Cr 1.3Mo 2.4Ti 0.3Al 0.25Si Fe(Å ) ½Ý. 1160 /12 h Á, Ä 1120 Ý ß 14 mm Æ. Á ßÛ : ± (), 980 /1 h, Í; «Ù (), +740 /8 h, ; ½ (), +800 /8 h,. Á 5 mm, Æ 25 mm. ½³ Ü Õ, : 300, 10 ÄÕ ( 99.9999) 240 h. Zwick Z050 È Ü, 1.3 10 3 s 1, лۻ л Ù. Ø Õ Î ÕÝ Â (ψ L ) Ü, ³ ψ L = (ψ ψ H )/ψ ( Đ, ψ ψ H Ñ Õ Õ ÀÃÙ). Ø È Ç, 40, 10 ¼ĐÜ ÕÑ ; Olympus GX51 Ø Ü Ø ¾; Ö ¾ ß Þ HatachiS 3400N SEM Ü. ³ ß ² «, Ç ÕÑ, SEM ¾ß Þ Ö. 2 º  2.1 B ÌÉ ÏƱ Î Á, ØÚ Ö, Á º, Î Þ Å, º TiC, TiN Ti(C, N), ±½ Đ [4,18], Ó Ti(C, N), 1 ŵ. FN FNB Ø Á Ö. 2 Á FN Ø Ö,, Á, ÓÞ η, 2a b η ØĐ. Á, Ø Đ η, 2c ŵ. η ½ Ç Fe Ni Ç ØĐ ¾, ³ Ø Ú Á Ti Al [19,20]. ½ ², η Á ØĐ ¾, Cicco [1] A286 Ø, ½ 730 /217 h Á ØĐ ¾ η ; Brook [4] ½ 720 /450 h Á A286 ØĐ ¾ η. Đ, Û ½ 740 /8 h Á, Ñ B FN ØĐ Þ η. Ç FN Ø, FNB Ø Á Ñ ¾ Á η ÓÞ, 3a ŵ; Ú Ó Á º Þ, Î Þ µ º M 23 C 6 Ë Ü. β 800 /8 h ½ Á, ¹ ÛÁË ÐÆ η ÓÁ ¾, 3b ŵ. ²Ä FN FNB Ø ½ Đ Þ, B ß η Ҳѹ. Å [1], Ø Ü Þ γ ½ Ø, Æ Ä Ô ½ ĐÃ«η «. η ½ ĐÃ Đ ½ Î ÓÁ γ Ò, «ºË [20], η γ, à γ Ú [21]. B Ti Ú Ä«Ó «É, B ØĐ Ó «Ö«Ñ. B Ó ««[22], Ƶ Ê Ì Ï ÅÑ [23,24], Ò «B Ã Ó 1 1.5 nm Û B Ú [24]. ½ Đ, «B à Ti Ê «Ó, È ß η, FNB Ø Á Á ¾ Ó η Ê. Ä Ô Û, Î ÓÁ Ti Ê ß, Ã˲ η Ä 1 È ³ Õ (FN, ) Fig.1 Microstructure of Fe Ni base alloy without B (FN) after (the Fe Ni base alloy with B (FNB) has the same structure as FN)

l2e dk g : B Fe Ni M:r d p7 o Td? L 169 ;s~e 2 FN η Fig.2 η phases in FN alloy after aging treatment (a) optical micrograph, as (b) SEM micrograph, as (c) SEM micrograph, as l p3*e/ U 1 Table 1 Tensile properties of the uncharged hydrogen samples Alloy Heat treatment σ σ0.2 δ ψ FN 619 1123 972 608 1076 967 235 725 584 230 711 582 52.4 25.8 26.9 51.0 29.4 29.8 81.6 43.5 40.0 83.5 60.6 59.0 FNB Note: σ ultmate strength, σ0.2 0.2 yield strength, δ total elougation, ψ area reduction { p3*e/ U8pxC I` 2 Table 2 Tensile properties and hydrogen induced ductility loss of the charged hydrogen samples L ;s~erew 3 FNB Fig.3 Carbides in FNB alloy after aging treatment (a) optical micrograph, as (b) SEM micrograph, as L IzE, a 3b M). C QA\ /Z<t I9 B `+f\ o_ r [14,24], g,\<t [ B V( 2a SFx \ oz Ef R=. GL FN <t EI[[ B, n Ih f Ti Al, = Ti R > 8" a ovp, i η f 6 6ZX #f n=, y& FN <tw~ I+VzE7Z5f η, a 2a M). 2.2 B(η T) (38HOIY1:DYB V 1 i FN 9 FNB <tf1p0 V, G b, w~ I +B, FN 9 FNB <t f m w O D ^, Vf5 B f [ ~ Q<t f m w 9D E IA. G <t f q y D Ja (b 2) b, Q3 < tfqyd Jav 4i, g,=i\ f Fe Ni O Alloy Heat treatment σ σ0.2 δ ψh ψl FN 622 1114 957 600 1071 966 251 729 602 242 727 608 52.0 21.2 20.8 52.0 24.8 27.2 81.0 22.3 24.3 81.8 36.0 38.8 0.7 48.7 39.3 2.0 40.6 34.2 FNB Note: ψh area reduction of hydrogen charged, ψl hydrogen induced ductility loss /Z I>4f q V. G 1 9 2 b, O Q<t # `, ~" I + (! 9 ) B, FNB <t I FN <t f 1p$ D 9 ifqyd Ja, hr=o3 <t " 1< ze f#`i&. 6, GL FN <t#3 B, h \ " 1 < z E 7 Z 5 f o η, $ 1 < <rk E \ η O OZ o f oh I F! " a, 9 <t1p$ D f f i ; FNB <t G L B f[, 7{7 η fze, 5 osfx (w I+B\ o zes f η ) [o, =M, h1p$ D h FN <ti. h N, GL η O OZ o f! oh (η/γ),mf H, H S8\ ohi T, K \ $ f 1 < [ <r f F O " a, [3,4] [7,8]

q 9 9<tqyD Jaf_[, g, FN <t FNB < t I q y D Ja f R=. +$, GL B f [ 7{ 7 η f z E, ~1 I +, ~ L FN <t, FNB <t f q y D Jaf i 7 13.0 (G 39.3 f ia 7 34.2), ψ 9 ψ h FN <t 9 X 7 47.5 (G 40 X a 59) 9 59.7 (G 24.3 X 170 H a 38.8). B 1 H (38<E&>WN V a 4a 9 b, FN 9 FNB <tf1p$ {. Ga b, I+B, 3 <tf$ { v: E K {<Vj,, FN <tf}u>wh FNB <ti l, g,g FN <t\$ ", <r\ η OOZ ohf O"aM_y. ~1 I+B, FN <t f η 6Z ( wi.x ' η b ), 9<t\$ 1< 3 Z5f& {<, E ' T { Vj, a 4c M); FNB <t vis f}æ η \' o ze, <t$ { f}u> WGh Qil, zi} {, a 4d M). GL\<t [ B, 7{7 η fze, FNB < t\ AqBf$ { : E} K {<Vj, V &\ I+B, <t{ (2aZ5}u, a 5a M). FN <t GLV\Z5f η, V&w~ I+, AqBf$ { 5T & {<i, a 5b M). ^ <t V \ Z 5 f η ", H K \ h O OZ 2.3 [3,4] l 45 o foh T, [ <r\mif 6O"a [8]; <t ~ I+B, η QF6Z, $ ", \R L η/γ If H O> 0gC D ~, F f <rk & Æ η/γ oh!b"a, _y<t T & {<. GL η f `0 l", = \{ 3 7Z5f Oj D+, a 5c M); f Z >~ f Oj D, a 5d M). a 6a, I+B FN <tmaq4+$ { zff( r. Ga b, { zv\ 5f<r, g <r, V \L η/γ oh I (Zv n L o 1 -), g x 1 m $7 η/γ oh,<r 8L F o I, η, 9<t1p$ D fifr=. AqB FN <t$ 4+{ z(2a7z5f<r, a 6b 9 c M), g>4k M7\a 5c f{ (2aZ5 N<rf R=. a 6c s{k )7$ 1< F f<r& η/γ oh f " a t, ~ m A q4 +, A qb<t4 +{ z 97)K <r, gk,\r L η/γ oh If H [ 7<r"afl/. ~L FN <t, FNB <t wi 5f<r (2a (a 6d), 1 H, gov & I+B<t -S I η zei&;?1 H, I(n ~ m- : GL B H 8LOhu>f R l<, P r Le H [?\ oo. =M, FNB <t \ o_ f B K H R of_, P fi H ~<tm 9fJ. L ;s0o# z [25] 4 Fig.4 Fractographs of the FN and FNB alloys (a) FN, as (b) FNB, as (c) FN, as (d) FNB, as

l2e dk g : B Fe Ni M:r d p7 o Td? L ;s{ pae# z 5 Fig.5 Fractographs of the FN and FNB alloys charged with hydrogen (a) FNB, as (b) FN, as (c) FN, as (d) higher magnification of Fig.5c, FN, as L 0! P;s# z Æye' q 6 Fig.6 Microstructures near the fracture of the FN and FNB alloys after treatment (a) FN, uncharged H (b) FN, charged H (c) FN, charged H (d) FNB charged H 171

172 Õ Ð 45 3 (1) ÖÑ Fe Ni Ç ØĐ B, ß Ø ½ Đ η Þ, ²Ë Ü Ø Ó Þ. (2) ØĐ B, ½ ĐÄ ÓÞ η, Ø ½Ô ; Ä η/γ ÓÀ Ñ H, H à ÓÀÁ«Ì, ØÕ Ý Â. (3) Ä B Ø, Ä η Þ, «Ù ½ Á ½ Đ, à ² ß «; Õ, Ä H Î, Î²Û ½«Ù Á, ß ¹ ² ß, Ì ß Î. B Ø Õ Ã ß, Ð ß Î. ÈË [1] Cicco H D, Luppo M I, Gribaudo L M, Garcia J O. Mater Charact, 2004; 52: 85 [2] Ma L M, Liang G J, Fan C G, Li Y Y. Acta Metall Sin, 1997; 10: 206 [3] Thompson A W, Brooks J A. Metall Trans, 1975; 6A: 1431 [4] Brooks J A, Thompson A W. Metall Trans, 1993; 24A: 1983 [5] Rho B S, Hong H U, Nam S W. Scr Mater, 2000; 43: 167 [6] Li X Y, Zhang J, Rong L J, Li Y Y. J Mater Sci Eng, 2005; 23: 483 ( ³,, ¹, ¾¾. µ Æ, 2005; 23: 483) [7] Zhang J, Li X Y, Rong L J, Zheng Y N, Zhu S Y. Acta Metall Sin, 2006; 42: 469 (, ³, ¹, Ð Ê,., 2006; 42: 469) [8] Li X Y, Li Y Y. Hydrogen Damaged of Austenitic Alloy. Beijing: Science Press, 2003: 1 ( ³, ¾¾. ź ÔÁ. Ð:, 2003: 1) [9] Fujwara M, Uchida H, Ohta S. J Mater Sci Lett, 1994; 13: 557 [10] Kennedy R L, Cao W D, Thomas W M. Adv Mater Pro, 1996; 149: 33 [11] Sellamuthu R, Giamei A F. Metall Trans, 1986; 17A: 419 [12] Wills V A, Mccartney D G. Mater Sci Eng, 1991; A145: 223 [13] Franzoni U, Marchetti F, Sturless S. Scr Metall, 1985; 19: 511 [14] Shulga A V. J Alloys Compd, 2007; 486: 155 [15] Horton J A, Mckamey C G, Miller M K, Cao W D, Kennedy R L. Superalloys 718, 625, 706 and Various Derivatives, Warrendale, : TMS AIME, 1997: 401 [16] Yao X X. Mater Sci Eng, 1999; A271: 353 [17] Sourmail T, Okuda T, Taylor J E. Scr Mater, 2004; 50: 1271 [18] Ducki K J, Hermanczyk M H, Kuc D. Mater Chem Phy, 2003; 81: 490 [19] Rho B S, Nam S W. Mater Sci Eng, 2000; A291: 54 [20] Li X Y, Zhang J, Rong L J, Li Y Y. Mater Sci Eng, 2008; A488: 547 [21] Zhao S Q, Xie X S, Smith G D, Patel S J. Mater Sci Eng, 2003; A355: 96 [22] He X L, Chu Y Y, Ke J. Acta Metall Sin, 1982; 18: 1 ( ±, Â,., 1982; 18: 1) [23] Kurban M, Erb U, Aust K T. Scr Mater, 2006; 54: 1053 [24] Seto K, Larson D J, Warren P J, Smith G D W. Scr Mater, 1999; 40: 1029 [25] Wu Y X, Li X Y, Wang Y M. Acta Mater, 2007; 55: 4845