Analysis of Electrowetting Phenomena Based on Energy and Electromechanics

Σχετικά έγγραφα

6.4 Superposition of Linear Plane Progressive Waves

Graded Refractive-Index

4.4 Superposition of Linear Plane Progressive Waves

Thin Film Precision Chip Resistor-AR Series

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:

SAW FILTER - RF RF SAW FILTER

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

CSR series. Thick Film Chip Resistor Current Sensing Type FEATURE PART NUMBERING SYSTEM ELECTRICAL CHARACTERISTICS

SMD - Resistors. TThin Film Precision Chip Resistor - SMDT Series. Product : Size: 0201/0402/0603/0805/1206/1210/2010/2512. official distributor of

Effects of surface roughness on wettability of solid surfaces

.. 2,.. 3 .,, (, ) [1]. - [2]. [4], [5].., [6, 7] -. [8] [9]. -. [8], - ,,?, - . -, - ( ), ,.,. ,. : ; ; - ; ;. . «..»

Current Sensing Chip Resistor SMDL Series Size: 0201/0402/0603/0805/1206/1010/2010/2512/1225/3720/7520. official distributor of

Technical Report. General Design Data of a Three Phase Induction Machine 90kW Squirrel Cage Rotor

Thermistor (NTC /PTC)

RC series Thick Film Chip Resistor

Thick Film Chip Resistors

Development of Finer Spray Atomization for Fuel Injectors of Gasoline Engines

Hydrologic Process in Wetland

Current Sensing Thick Film Chip Resistor-SMDB Series Size: 0402/0603/0805/1206/1210/2010/2512. official distributor of

NMBTC.COM /

CSK series. Current Sensing Chip Resistor. Features. Applications. Construction FAITHFUL LINK

Microelectronic Circuit Design Third Edition - Part I Solutions to Exercises

Παίζοντας με τις φυσαλίδες: εμβάθυνση σε ένα απλό πείραμα μελέτης της ευθύγραμμης ομαλής κίνησης

MAX-QUALITY ELECTRIC CO; LTD Thin Film Precision Chip Resistors. Data Sheet

COMPOSITE INSULATOR. ANSI Standard Type COMPOSITE LONGE ROD SUSPENSION INSULATOR. PDI 16mm Diameter Rod Deadend Insulators

for fracture orientation and fracture density on physical model data

Oscillatory Gap Damping

Parametrized Surfaces

Anti-Corrosive Thin Film Precision Chip Resistor-SMDR Series. official distributor of

2R2. 2 (L W H) [mm] Wire Wound SMD Power Inductor. Nominal Inductance Packing Tape & Reel. Design Code M ±20%

SMD Transient Voltage Suppressors

Διαμόρφωση υποστρωμάτων στη μικροκαι νανο-κλίμακα για την δημιουργία πρωτεϊνικών μικροσυστοιχιών

Data sheet Thick Film Chip Resistor 5% - RS Series 0201/0402/0603/0805/1206

Coupling of a Jet-Slot Oscillator With the Flow-Supply Duct: Flow-Acoustic Interaction Modeling

Lifting Entry (continued)

0.635mm Pitch Board to Board Docking Connector. Lead-Free Compliance

SMC SERIES Subminiature Coaxial Connectors

A Determination Method of Diffusion-Parameter Values in the Ion-Exchange Optical Waveguides in Soda-Lime glass Made by Diluted AgNO 3 with NaNO 3

SMC SERIES Subminiature Coaxial Connectors

Handbook of Electrochemical Impedance Spectroscopy

RoHS 555 Pb Chip Ferrite Inductor (MFI Series) Engineering Spec.

PRELIMINARY DATA SHEET NPN EPITAXIAL SILICON TRANSISTOR FOR MICROWAVE HIGH-GAIN AMPLIFICATION

Current Sense Metal Strip Resistors (CSMS Series)

NPN Silicon RF Transistor BFQ 74

Chapter 7 Transformations of Stress and Strain

TODA-ISU Corporation. SMD Power Inductor. SPI series. SMD Team

Ceramic PTC Thermistor Overload Protection

Capacitors - Capacitance, Charge and Potential Difference

SMD - Resistors. Thick Film Chip Resistor-SMDC Series Size: 01005/0201/0402/0603/0805/1206/1210/2010/2512/ 1225/0612. official distributor of

Topic 4. Linear Wire and Small Circular Loop Antennas. Tamer Abuelfadl

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

ISO Sample Report

THICK FILM LEAD FREE CHIP RESISTORS

Thick Film Chip Resistors

Thin Film Precision Chip Resistor (AR Series)

Applications. 100GΩ or 1000MΩ μf whichever is less. Rated Voltage Rated Voltage Rated Voltage

10.0 C N = = = electrons C/electron C/electron. ( N m 2 /C 2 )( C) 2 (0.050 m) 2.

CL-SB SLIDE SWITCHES CL - SB B T FEATURES PART NUMBER DESIGNATION. RoHS compliant

MMCX SERIES Microminiature Coaxial Connectors

HIS series. Signal Inductor Multilayer Ceramic Type FEATURE PART NUMBERING SYSTEM DIMENSIONS HIS R12 (1) (2) (3) (4)

Dong Liu State Key Laboratory of Particle Detection and Electronics University of Science and Technology of China

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

ΕΛΕΓΧΟΣ ΤΩΝ ΠΑΡΑΜΟΡΦΩΣΕΩΝ ΧΑΛΥΒ ΙΝΩΝ ΦΟΡΕΩΝ ΜΕΓΑΛΟΥ ΑΝΟΙΓΜΑΤΟΣ ΤΥΠΟΥ MBSN ΜΕ ΤΗ ΧΡΗΣΗ ΚΑΛΩ ΙΩΝ: ΠΡΟΤΑΣΗ ΕΦΑΡΜΟΓΗΣ ΣΕ ΑΝΟΙΚΤΟ ΣΤΕΓΑΣΤΡΟ

Μιχάλης ΚΛΟΥΒΑΣ 1, Χρήστος ΖΕΡΗΣ 2

MathCity.org Merging man and maths

Modelling & Simulation of Magnetic Fields in the Radial Magnetic Bearing

Fourier Analysis of Waves

Shunts & Multiple Shunts. Stamped Contact DIP IC Sockets. PLCC Sockets. Jumpers. DDR DIMM Sockets SOCKETS. System CS - Technical Specifications

5.0 DESIGN CALCULATIONS

P ƒ. μ μ², Œ.. ˆ μ,.. μ ± Î Š Ÿ ˆ Œ ˆŸ ˆ Ÿ Š ˆ. ² μ Ê ² μ Ò É Ì ± Ô± ³ É.

Anti-Corrosive Thin Film Precision Chip Resistor (PR Series)

DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E.

Using the Jacobian- free Newton- Krylov method to solve the sea- ice momentum equa<on

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

Thin Film Precision Chip Resistor (AR Series)

1 Alumina Substrate 4 Edge Electrode (NiCr) 7 Resistor Layer (NiCr) 2 Bottom Electrode (Ag) 5 Barrier Layer (Ni) 8 Overcoat (Epoxy)

Chapter 9 Ginzburg-Landau theory

A facile and general route to 3-((trifluoromethyl)thio)benzofurans and 3-((trifluoromethyl)thio)benzothiophenes

ΠΣΤΥΙΑΚΗ ΔΡΓΑΙΑ. Μειέηε Υξόλνπ Απνζηείξσζεο Κνλζέξβαο κε Τπνινγηζηηθή Ρεπζηνδπλακηθή. Αζαλαζηάδνπ Βαξβάξα

Metal Oxide Varistors (MOV) Data Sheet

3 V, 900 MHz LOW NOISE SI MMIC AMPLIFIER

B37631 K K 0 60

Thin Film Chip Inductor

Thick Film Chip Resistor-SMDC Series Size: 01005/0201/0402/0603/0805/1206/1210/2010/2512. official distributor of

Table of contents. 1. Introduction... 4

Multilayer Chip Inductor

Thin Film Chip Resistors

FT-63 SINGLE TURN CERMET TRIMMERS. F T E T V 5 k Ω ( ) FEATURES PART NUMBER DESIGNATION

THICK FILM CHIP RESISTOR" CAL-CHIP ELECTRONICS INC."

MnZn. MnZn Ferrites with Low Loss and High Flux Density for Power Supply Transformer. Abstract:

Soil Temperature Change and Heat of Wetting during Infiltration into Dry soils

4. Construction. 5. Dimensions Unit mm

Differential equations

Thick Film Array Chip Resistor

Differentiation exercise show differential equation

APPLICATION NOTE. Silicon RF Power Semiconductors. Drain Bias. Drain Bias. Gate Bias (RD04HMS2) GND (RD70HUF2) (RD70HUF2) RF IN.

3 V, 1500 MHz Si MMIC WIDEBAND AMPLIFIER

High Voltage Thick Film Chip Resistor

Transcript:

() (4) (3) () Analysis of Electrowetting Phenomena Based on Energy and Electromechanics γ Fluid γ γ 3 3 S Droplet S 3 Insulator Electrode S 3 κy 3 3.4. 0 7.3 6. 4.6 - -3 - - 0 3 7. 9.8 6..4 βϕ.8.5. 0.9 0.6 () Analytical Solution(4.) () Linear FVMSolution (3) FEM Solution (4) FVM Solution 0 40 60 80 α (deg.) F t -5.0E-09 -.0E-08 -.5E-08 -.0E-08 0 40 60 80 α (deg.) f ex 0.8 0.6 0.4 0. 0 Fluid Droplet 0.5.5 ε / ε 3

Introduction

Micro Total Analysis System µtotal Analysis System (µtas) Bio-Chip DNA-Chip Lab-On On-a-Chip

µ TAS Electrowetting Injection Transportation Mixing Cultivation Caliper Tech. Corp. Separation Detection

Merits of Electrowetting Low power consumption Low voltage operation c.f. Electrophoresis: ~ kv Reversible operation Droplet based operation

Previous Investigation Lippmann (875) Electrocapiliary. Berge et al. (994) Lippmann Young. Kim et al. (998) Electrowetting Prins et al. (00) Electrocapiliary Science

Principle of Electrowetting

Nomenclature Nonwetting Dewetting Wetting Droplet Wetting

Principle of Electrowetting Lippmann equation: γ = σ V mm Lippmann Young equation: cos α ( V ) = cos α (0) + ε 0ε γ d V d γ + ++ + + + + + + + + + + + + + + ++ + + α + Electrolyte + + + + + ε + +++ + + +++ + + ++ + + +++ + + ++ + +++ + + + + + + + --- - - - - - -- - --- - - - - - -- - - - - - - -- - - -- - - - - - -- ----- Electrode Insulator V

Application (I) Insulator : 700nm Parylene C Hydrophobic material : 00nm Teflon AF Drop size : 0.7 ~.0ml of 00 mm KCl Interval btw. electrodes :.5mm Initiating voltage : 30 ~ 40 V Fast movement above 55 V Average velocity : 3 cm/s

Application (I) Flow of a droplet on a -D array Dispensing of droplets

Application (I) Rotation Mixing

Application (II) M. W. J. Prins et. al., Science, 00.

Application (III) Na SO 4 sol. -bromodecane ~ Hydrophilic region Hydrophobic insulator (teflon/saran TM ) mm B. Berge et. al., Eur. Phys. J. E, 000.

Application (IV) T. D. Blake et.al., Langmuir, 000.

Research Motivation

Saturation and Instability 0-4 M KNO 3 solution (5 µl) 75 µm thickness Teflon tape coated Lippmann Young equation cos α ( V ) = cos α (0) + ε 0ε γ d V

Motivation Conventional Lippmann Young Equation - EDL effect is not considered - Line Tension is not considered electrolyte air + + + + + + + + + + + + + + + ++ + Droplet + electrode insulator ------------------------ - - - - - - cos α ( V ) cos (0) + ε ε γ d 0 = α + EDL + Line Tension V TCL effect

Motivation Detailed Analysis on electrostatic interaction near TCL is necessary Deionized water on silanized glass (d = 80 µm); applied voltage: kv F. Mugele et al., Appl. Phys. Lett., 00

Motivation M. Vallet, M. Vallade, and B. Berge Limiting phenomena for the spreading of water on polymer films by electrowetting, Eur. Phys. J. B, 999.

Objectives EDL (Electrical Double Layer), Line Tension Lippmann Young. TCL EDL. Wetting Tension..

Approaches Analytical Energy approach Electro-Mechanical approach Numerical Line tension Wetting tension Experimental Vertical stress Droplet profile (AFM) Saturation, Instability

Analytical Approaches Energy Approach Electro-Mechanical Approach Numerical Approach Experimental Approach

Total System Fluid γ Zooming γ γ 3 3 S Droplet S 3 S 3 Insulator Electrode

System of Interest y S Fluid () γ Droplet () S 3 γ 3 α γ 3 S 3 x d z Insulator (3) S c

Energy Approach : Method of Analysis Minimum energy principle of thermodynamics Method of variational calculus

Energy Approach y S Free energy of system G tot = G = γ mech + G el S + γ 3S3 + γ 3S3 Ω ε i ϕ + Π( ϕ) tot Fluid () S 3 γ 3 d z γ α γ 3 Insulator (3) Mechanical part Electrostatic part Droplet () S 3 S c x dω c.f. G el = U el TS U el = ε σϕds + dω S ρϕ Ωtot Ω [ Π( ] εϕ ϕ ϕ TS = ) tot dω Ω tot ϕ dω + U

Excess Free Energy Excess free energy and line tension G tot ( c) el ( b) el = πr ( γ cosα + γ γ + g + g ) + πrf Excess free energy? 3 3 Excess free energy t electrolyte air + + + + + + + + + + + + + + + ++ + + λ D electrode insulator ------------------------ - - - - - -

Modified Lippmann Young Equation Introduce variational method G tot ( c) el ( b) el = πr ( γ cosα + γ γ + g + g ) + πrf 3 3 t δg tot = πrδr ( γ cosα + γ 3 γ 3 + g el + gel + Ft / R) = ( c) ( b) 0 Modified Lippmann Young equation cosα cosα ε ( V ϕ 4ε κ βϕ cosh 3 i i = 0 + γ d γ β ) Ft Rγ

Modified Lippmann Young Equation cosα cosα ε ( V ϕ 4ε κ βϕ cosh 3 i i = 0 + γ d γ β ) Effect of EDL Line tension Ft Rγ y Fluid γ Fluid () γ Droplet () F t S Droplet d γ 3 z α Insulator (3) γ 3 ϕ x γ γ 3 3 F t S 3 Insulator S 3 / κ = 3nm, β =υe /(kt)

Analytical Approaches Energy Approach Electro-Mechanical Approach Numerical Approach Experimental Approach

Electro-Mechanical Approach Wetting tension F e = S ( l ) + S T nds ( f ) = S ( l ) { ( Π + ) + } ε ie I ε iee + S ( f ) nds For a perfectly conducting droplet (Kang 00) F e = ε d 3 V cosecα Fluid F e S Droplet

Analytical Approaches Energy Approach Electro-Mechanical Approach Numerical Approach Experimental Approach

Numerical Approach ϕ n = 0 ϕ n = 0 ( l) ( f ) s ϕs ϕ = ( l) n ε ϕ = ε ϕ ( f ) n ϕ = 0 Fluid () ϕ = sinh( βϕ) Droplet () ϕ n = 0 ϕ n = 0 ( f ) ( s) S ϕs ( f ) ( s) n ε3ϕ n ϕ = ε ϕ = ϕ = 0 ( l) ( s) S ϕs ϕ = ( l) n ε ϕ = ε ϕ ( s) n Insulator (3) 3 ϕ n = 0 ϕ =V Dimensionless parameters : ~ x = κx ~ y = κy,, ~ ϕ = υe ϕ /( kt) = βϕ ~ σ = βσ /( εκ),

Electrical Potential Distributions α=0 3 3 α=40 κy κy 0 0 α=70 κy - -3 - - 0 3 3 κx κy - -3 - - 0 3 3 κx 7.06 3.4 9.75 6.09.44 0.00 α=90 0 0 - -3 - - 0 3 κx - -3 - - 0 3 κx V=0.5 Voltage( βϕ = ~ ϕ = 9.5), d = 3nm ( κ d =)

Validation Check(I) Analytical solution Electrical potential at TCL ϕ = sinhϕ ϕ = sinhϕ.8 () () (3) () Analytical Solution(4.) () Linear FVM S olution (3) FEM S olution (4) FVM S olution Fluid () σ m Fluid ().5 (4) βϕ. σ σ TCL 0.9 ϕ( α) [( ε σ + σ / ε ) α / π ] + σ m 0.6 0 40 60 80 α (deg.) σ =, σ =, σ m =, κ = κ, ε / ε = 4 T. Chou, Phys. Rev. Lett., 00.

Validation Check Analytical solution Line tension at TCL 60 l σ 0 50 Analytical Solution(4.3) Numerical Solution 40 α (κβ /ε)f t 30 l 0 σ 0 0 ~ ( e) ( e) εκ Gel = G el = [ tanh( πx) / tanh( αx) ]dx 0 σ 0 0 0 0 40 60 80 α (deg.) σ = σ = σ 0 =

ϕ n = 0 ϕ n = 0 Analytical Solution Numerical Solution Fluid () () ϕ n () ϕ n Fluid () 0.8 ϕ n = 0 d ϕ = sinhϕ dx y d ϕ = sinhϕ dx ϕ n = 0 βϕ 0.6 () n () n ε ϕ ε ϕ = σ ϕ n = 0 m x ϕ n = 0 0.4 0. e βϕ / i = e e βϕ / I βϕ / I + + + ( βϕ ) I / κi x e e ( βϕ ) I / κi x e e 0-8 -4 0 4 8 κx σ m =

(flux) 5 y n S Interface 4 Analytical S olution(4.4) Numerical Solution d Fluid () F e S 3 F ex Fey z α Solid (3) Fs F x n n 3 n Droplet () S 3 Substrate S c x ϕ n (f) (d / V) 3 ϕ ( f ) n σ 0 = ε π u u' = e, s e d 0 u ( ) α α du' 0 0 3 4 5 s/d o ~ α = 60, βϕ = ϕ =9. 5

Computed Line Tension -5.0E-09 -.0E-08 F t F t [N] -.5E-08 -.0E-08 0 40 60 80 α (deg.) cosα cosα Vε 3= 0. 5voltage, 4d ε= iκ3 nm βϕ ( V ϕ ) cosh γ d γ β i = 0 + Ft Rγ

Validity of Perfect-Conductor Assumption For a perfectly conducting droplet Fe = T nds = S ( l ) + S ( f ) ε 3 V d cosecα Horizontal component : Vertical component : Main assumptions F ex = F ey = ε 3 d V ε d 3 V cotα F e S

Effect of EDL α (deg.) f ex 0 40 60 80.000.00.00.003 / 3 = ε ε V 5voltage 0. = nm 3 =, α (deg.) f ey 0 40 60 80 0 3 4 5 cot α Numerical Solution ex f ex V d F ε 3 = ey ey f V d F ε 3 = d, α ϕ ϕ ε ε α ϕ ϕ ε ε sin ~ ~ ~ ~ ~ ~ sin ~ ~ ~ ~ ~ ) ( ) ( 3 3 + Π + = l f S S ex S d s n ds s n f

Electrical Permittivity Fluid 0.8 S ε F e 0.6 f ex ε 3 0.4 0. Droplet 0 0.5.5 ε / ε 3 f ex versus ε / ε 3 for V = 0. 5voltage, d = 3nm

Effect of Shape y Interface Fluid () Droplet () F e (0,.5) (-.95,0.5) (-,0) Solid (3) Substrate x V = 0. 5voltage, d = 3nm, ε / ε 3 =

Validity of Perfect-Conductor Assumption Fluid F e S Droplet Insulator σ V

Analytical Approaches Energy Approach Electro-Mechanical Approach Numerical Approach Experimental Approach

Microscopic Droplet Profile Air α o =3. Bean oil Silicon wafer

Microscopic Droplet Profile Coarse Postioning System Prove Tip Droplet Insulator

Microscopic Droplet Profile α 6.87 o α.95 o α α

Concluding Remarks Derivation of modified Lippmann-Young equation. cosα cosα ε ( V 4ε κ βϕ cosh 3 i i = 0 + γ d γ β Development of microscopic numerical method for solving electrical potential at TCL. - specific adsorption effect. Validation of electromechanical theory. ϕ Measurement of microscopic contact angle. ) Ft Rγ

Gabriel Lippmann (Aug.6, 845 ~ July 3, 9) The Nobel Prize for Physics in 908 Marie Curie Pierre Curie

Application Top Plate (glass) Filler Fluid (silicon oil) droplet Bottom Plate (glass) Ground Electrode (ITO) Hydrophobic Insulation Counter Electrode (chrome)

Free energy = d = 3nm V 0. 5voltage * G ) el : The free energy per unit depth ** EDL : The effect of electrical double layer to the free energy,

Free energy G G ( e) ( b) ( c) el = Gel Gel Gel el = U el TS = Ω tot ε ϕ + Π( ϕ) dω G ( b) el = S3 + S3 y 0 ( b) ( b) + Π = ε i ϕ ( ϕ ) dyds G ( c) 3 ( ϕ ) el = S c ε V d ds [ cosh( υβϕ) ] Π( ϕ) = n kt (b) ϕ : electrical potential of bulk