Accelerator Physics Synchrotron Radiation. A. Bogacz, G. A. Krafft, and T. Zolkin Jefferson Lab Colorado State University Lecture 8

Σχετικά έγγραφα
Accelerator Physics. G. A. Krafft, A. Bogacz, and H. Sayed Jefferson Lab Old Dominion University Lecture 9

Chapter 4 : Linear Wire Antenna

19. ATOMS, MOLECULES AND NUCLEI HOMEWORK SOLUTIONS

Homework #6. A circular cylinder of radius R rotates about the long axis with angular velocity

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines

Oscillating dipole system Suppose we have two small spheres separated by a distance s. The charge on one sphere changes with time and is described by

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

ECE 222b Applied Electromagnetics Notes Set 3a

Section 8.3 Trigonometric Equations

1 String with massive end-points

Laplace s Equation in Spherical Polar Coördinates

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

derivation of the Laplacian from rectangular to spherical coordinates

Physics 401 Final Exam Cheat Sheet, 17 April t = 0 = 1 c 2 ε 0. = 4π 10 7 c = SI (mks) units. = SI (mks) units H + M

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Example 1: THE ELECTRIC DIPOLE

( y) Partial Differential Equations

Areas and Lengths in Polar Coordinates

Second Order RLC Filters

Srednicki Chapter 55

Uniform Convergence of Fourier Series Michael Taylor

Derivation of Optical-Bloch Equations

Forced Pendulum Numerical approach

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Section 7.6 Double and Half Angle Formulas

Tutorial Note - Week 09 - Solution

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

Lifting Entry (continued)

Inverse trigonometric functions & General Solution of Trigonometric Equations

16 Electromagnetic induction

Solutions - Chapter 4

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

ST5224: Advanced Statistical Theory II

Approximation of distance between locations on earth given by latitude and longitude

Lecture 31. Wire Antennas. Generation of radiation by real wire antennas

Assalamu `alaikum wr. wb.

Matrices and Determinants

ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Homework 8 Model Solution Section

CRASH COURSE IN PRECALCULUS

Curvilinear Systems of Coordinates

Second Order Partial Differential Equations

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Κύµατα παρουσία βαρύτητας

2/2/2018. PHY 712 Electrodynamics 9-9:50 AM MWF Olin 105

Finite Field Problems: Solutions

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Analytical Expression for Hessian

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

D Alembert s Solution to the Wave Equation

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Differential equations

2 Composition. Invertible Mappings

Graded Refractive-Index

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

e t e r Cylindrical and Spherical Coordinate Representation of grad, div, curl and 2


Homework 3 Solutions

If we restrict the domain of y = sin x to [ π 2, π 2

Lifting Entry 2. Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYLAND U N I V E R S I T Y O F

EE512: Error Control Coding

Section 8.2 Graphs of Polar Equations

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Theoretical Competition: 12 July 2011 Question 1 Page 1 of 2

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

[1] P Q. Fig. 3.1

Note: Please use the actual date you accessed this material in your citation.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Areas and Lengths in Polar Coordinates

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

2.019 Design of Ocean Systems. Lecture 6. Seakeeping (II) February 21, 2011

Oscillatory Gap Damping

Durbin-Levinson recursive method

CHAPTER (2) Electric Charges, Electric Charge Densities and Electric Field Intensity

(a,b) Let s review the general definitions of trig functions first. (See back cover of your book) sin θ = b/r cos θ = a/r tan θ = b/a, a 0

Chapter 6 BLM Answers

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Answer sheet: Third Midterm for Math 2339

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

STEADY, INVISCID ( potential flow, irrotational) INCOMPRESSIBLE + V Φ + i x. Ψ y = Φ. and. Ψ x

Strain gauge and rosettes

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Relativsitic Quantum Mechanics. 3.1 Dirac Equation Summary and notation 3.1. DIRAC EQUATION SUMMARY AND NOTATION. April 22, 2015 Lecture XXXIII

Chapter 7a. Elements of Elasticity, Thermal Stresses

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

PARTIAL NOTES for 6.1 Trigonometric Identities

Matrix Hartree-Fock Equations for a Closed Shell System

Solutions to Exercise Sheet 5

PFSB* Development and Validation of an MHD Code for Study of Argon plasma Flow Characteristics in the PFSB Thruster

Instruction Execution Times

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΧΑΟΤΙΚΕΣ ΚΙΝΗΣΕΙΣ ΓΥΡΩ ΑΠΟ ΜΑΥΡΕΣ ΤΡΥΠΕΣ

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Section 9.2 Polar Equations and Graphs

SPECIAL FUNCTIONS and POLYNOMIALS

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Transcript:

Acclato Physics Synchoton Radiation A. Bogacz, G. A. Kafft, and T. Zolkin Jffson Lab Coloado Stat Univsity Lctu 8 USPAS Acclato Physics Jun 13

Synchoton Radiation Acclatd paticls mit lctomagntic adiation. Emission fom vy high ngy paticls has uniqu poptis fo a adiation souc. As such adiation was fist obsvd at on of th alist lcton synchotons, adiation fom high ngy paticls (mainly lctons is known gnically as synchoton adiation by th acclato and HENP communitis. Th adiation is highly collimatd in th bam diction Fom lativity ct ' γ ct γβ z x' x y' y z' γβct + γ z USPAS Acclato Physics Jun 13

Lontz invaianc of wav phas implis k µ (ω/c,k x,k y,k z is a Lontz 4-vcto ω γω γβ kc z k x kx k k y y k γβω / c+ γ k z kx + ky k x + k y k z sin θ sin θ cosθ ω / c ω / c ω / c ω / c γω / c+ γβk γ 1+ β cos θ ω / c z z ( ( ( ( ω / c γω / c γβk γ 1 β cos θ ω / c z USPAS Acclato Physics Jun 13

θ sinθ sinθ γ β θ ( 1+ cos Thfo all adiation with θ' < π /, which is oughly ½ of th photon mission fo dipol mission fom a tansvs acclation in th bam fam, is Lontz tansfomd into an angl lss than 1/γ. Bcaus of th stong Doppl shift of th photon ngy, high fo θ, most of th ngy in th photons is within a con of angula xtnt 1/γ aound th bam diction. USPAS Acclato Physics Jun 13

Lamo s Fomula Fo a paticl xcuting non-lativistic motion, th total pow mittd in lctomagntic adiation is (Lamo, vifid lat 1 q 1 P ( t a p & 6πε c 6πε m c 3 3 Linad s lativistic gnalization: Not both de and dt a th fouth componnt of lativistic 4-vctos whn on is daling with photon mission. Thfo, thi atio must b an Lontz invaiant. Th invaiant that ducs to Lamo s fomula in th non-lativistic limit is µ du duµ P 6πε c dτ dτ USPAS Acclato Physics Jun 13

( P t 6 c γ & πε β β & β 6 Fo acclation along a lin, scond tm is zo and fist tm fo th adiation action is small compad to th acclation as long as gadint lss than 1 14 MV/m. Tchnically impossibl. & β c Fo tansvs bnd acclation β ˆ ρ ( P t c 6πε ρ β γ 4 4 USPAS Acclato Physics Jun 13

Factional Engy Loss δ E Θβ γ 6πε ρ 3 4 Fo on tun with isomagntic bnding filds δ E E bam 4π 3ρ β γ 3 3 is th classical lcton adius:.8 1-13 cm USPAS Acclato Physics Jun 13

Radiation Pow Distibution Consulting you favoit Classical E&M txt (Jackson, Schwing, Landau and Lifshitz Classical Thoy of Filds dp d 3 ω γ 8 ω π ε ρ ωc ω / ω c K 5/3 ( xdx USPAS Acclato Physics Jun 13

Citical Fquncy Citical (angula fquncy is 3 3 c ωc γ ρ Engy scaling of citical fquncy is undstood fom 1/γ mission con and fact that 1 β ~1/( γ t A ρ γβ c A B ρ ρ ρ t t B γ γ γ 3 3 c c c t B ρ ρ ρ + γβ γ γ 3 c c c 1/γ USPAS Acclato Physics Jun 13

Photon Numb dp 3 c c 5/3 ( dω 8π ε ρ 6πε ξ ρ P dω ωγ ξ K x dxdξ γ dn& 1 dp dω hω dω 4 hω dn& hω d ω dω dn& d ω dω 8 15 3 hω c n& 5α c 5α 1 γ δn γ α 3 ρ 3 Θ 4πε hc 137 USPAS Acclato Physics Jun 13

Instion Dvics (ID Oftn piodic magntic fild magnts a placd in bam path of high ngy stoag ings. Th adiation gnatd by lctons passing though such instion dvics has uniqu poptis. Fild of th instion dvic magnt B x y z B z y B z B z ( ( ˆ ( ( π λ,, cos / ID Vcto potntial fo magnt (1 dimnsional appoximation B λ A x y z A z x A z z π ( ( ( ID,, ˆ sin ( π / λ ID USPAS Acclato Physics Jun 13

Elcton Obit Unifomity in x-diction mans that canonical momntum in th x-diction is consvd ( A z K vx ( z csin z/ γm γ ( π λ ID v 1 K λ x z dz z v β γ π x ID ( cos( π / λ Fild Stngth Paamt z z ID K B λ ID π mc USPAS Acclato Physics Jun 13

Avag Vlocity Engy consvation givs that γ is a constant of th motion 1 βz β x βz βx γ ( z 1 ( z ( z Avag longitudinal vlocity in th instion dvic is β Avag st fam has β z 1 1 γ K γ γ 1 1 β γ 1+ K / USPAS Acclato Physics Jun 13

Rlativistic Kinmatics In avag st fam th instion dvic is Lontz contactd, and so its wavlngth is λ λ ID / β γ Th sinusoidal wiggling motion mits with angula fquncy ω πc / λ Lontz tansfomation fomulas fo th wav vcto of th mittd adiation k k k k x y z γ k k k x y γ k ( 1 β cosθ k sinθ cosϕ k sinθ sinϕ ( cosθ β USPAS Acclato Physics Jun 13

ID (o FEL Rsonanc Condition Angl tansfoms as ( cosθ β ( 1 β cosθ k cos θ z k Wav vcto in lab fam has k γ k πβ c ( 1 β cosθ λ ( 1 β cosθ ID In th fowad diction cos θ 1 λid λid λ 1 / γ γ + ( K USPAS Acclato Physics Jun 13

Pow Emittd Lab Fam Lamo/Linad calculation in th lab fam yilds P 4 K π γ βzc πε γ λid 1 6 Total ngy adiatd aft on passag of th instion dvic δe π γ β z NK 6πε λid β USPAS Acclato Physics Jun 13

Pow Emittd Bam Fam Lamo/Linad calculation in th bam fam yilds P π 1 ck 6πε λ Total ngy of ach photon is ħπc/λ, thfo th total numb of photons adiatd aft on passag of th instion dvic N π γ αnk 3 USPAS Acclato Physics Jun 13

Spctal Distibution in Bam Fam Bgin with pow distibution in bam fam: dipol adiation pattn (singl hamonic only whn K<<1; plac γ by γ, β by β dp dω c Kk sin Θ 3πε Numb distibution in tms of wav numb Solid angl tansfomation dnγ α k + k dω 4 k d y z NK Ω dω ( γ 1 βcosθ USPAS Acclato Physics Jun 13

Numb distibution in bam fam dn dω Engy is simply E ( θ + ( 4 ( γ α sin θ sin ϕ γ cosθ β NK 4 4 γ 1 βcosθ πβc h Eˆ ( θ 1 λ 1 βcosθ 1 βcosθ ID ( ( Numb distibution as a function of nomalizd lab-fam ngy dn ˆ γ απ E NK 1 β ˆ 3 + de 4γ β γ USPAS Acclato Physics Jun 13

Limits of intgation Avag Engy ˆ 1 ˆ 1 cosθ 1 E cosθ 1 E 1 β 1+ β Avag ngy is also analytically calculabl E dnγ ˆ E de deˆ γ h πβc/ λ dn de ˆ deˆ max ID γ E USPAS Acclato Physics Jun 13

Numb Spctum θ π θ sin θ 1/ γ dn/de γ E und h π c/ λ ID βγ E und (1+ββγ E und E γ USPAS Acclato Physics Jun 13

Convntions on Foui Tansfoms Fo th tim dimnsions i t f% ω f t dt ( ω ( 1 iω t f ( t f% ( ω dω π Rsults on Diac dlta functions ( ( % δ ω δ δ 1 iω t t dω π ( iω t t dt 1 USPAS Acclato Physics Jun 13

Fo th th spatial dimnsions δ ik x 3 f% k f x d x ( ( f ( x 1 ( + ik x 3 f% k d k 3 ( π x x d k 3 1 + ik x 3 ( δ ( 3 ( π USPAS Acclato Physics Jun 13

Gn Function fo Wav Equation Solution to inhomognous wav quation 1 + + x y z c t G( x, t; x, t 4πδ ( x x δ ( t t Will pick out th solution with causal bounday conditions, i.. G x, t; x, t t < t ( This choic lads automatically to th so-calld Rtadd Gn Function USPAS Acclato Physics Jun 13

In gnal G( x, t; x, t t < t G( x, t; x, t ( i( k x ωt ( i( k x+ ωt 3 A k + B k d k t > t bcaus th a two possibl signs of th fquncy fo ach valu of th wav vcto. To solv th homognous wav quation it is ncssay that ω k k c ( i.., th is no dispsion in f spac. USPAS Acclato Physics Jun 13

Continuity of G implis ω A k B k Intgat th inhomognous quation btwn and t t ε 1 G( x, t; x, t 4πδ ( x x c t ( ( i t iω t ( π t + ε ( i( k x ωt ( i( k x+ ωt 3 iω A k + iωb k d k 4πc δ x x ( c A k iω ik x iω t t t + ε ( USPAS Acclato Physics Jun 13

G ( x, t; x, t c ( π i ik x x c iω ( t t c dk π x x π δ ( x x / c t + t + x x 1 i( k ( x x ω( t t i( k ( x x + ω( t t 3 d k ω t > t x ik x x x ( > + iω t t dk t t Calld tadd bcaus th influnc at tim t is du to th souc valuatd at th tadd tim t t x x / c USPAS Acclato Physics Jun 13

Rtadd Solutions fo Filds 1 ρ + + x y z c t φ ε 1 + + A µ J x y z c t 1 3 ρ ( x, t φ ( x, t d x dt δ x x / c t + t 4πε x x µ 3 J ( x, t A ( x, t d x dt δ ( x x / c t + t 4π x x ( Tip: Lav th dlta function in it s intgal fom to do divations. Don t hav to mmb complicatd dlta-function uls USPAS Acclato Physics Jun 13

φ Dlta Function Rpsntation (, 3 x t d x dt dω 8π ε x x (, 1 µ 3 A x t d x dt dω 8π ρ J ( x, t iω x x / c ( t t ( x, t iω x x / c ( t t Evaluation can b xpditd by noting and using th symmty of th Gn function and using lations such as x x x f t t f t t t t f x x f x x x ( ( ( ( USPAS Acclato Physics Jun 13

Radiation Fom Rlativistic Elctons φ (, 1 3 x t d x dt dω 8π ε x x ( ( ( x, t iω x x / c ( t t µ 3 J ( x, t iω x x / c ( t t A( x, t d x dt dω 8π x x ρ δ δ ( ( ( ( ( 3 3 x, t q x t J x, t qv t x t q 1 φ( x, t dt dω 8π ε x qµ v A( x, t dt dω 8π x ρ ( t ( t ( t iω x t c t t ( / ( iω x t c t t ( / ( USPAS Acclato Physics Jun 13

Linad-Wicht Potntials φ ( x, t A x t φ (, ( x, t A x t (, q 4πε qµ 4π δ dt dt ( / ( x ( t ( x t c t t v / ( t δ x ( t c ( t t x ( t q 1 4πε x t nˆ t qµ 4π x t nˆ t ( ( 1 β ( ( v ( t ( 1 β ( ( t t USPAS Acclato Physics Jun 13

EM Fild Radiatd q 1 iω x ( t / c ( t t φ( x, t dt dω 8π ε x ( t qµ v ( t iω x ( t / c ( t t A( x, t dt dω 8π x ( t A E φ B A t & ˆ nˆ q n β q E + ( 3 4πε γ 1 nˆ β R 4πε c ( 1 nˆ 3 β R t B nˆ E / c Vlocity Fild Acclation Fild {( nˆ β β} t USPAS Acclato Physics Jun 13

1 nˆ x ( t nˆ x ( t x ( t d 1 nˆ β c dnˆ d / dt + nˆ n d / dt dt x t dt x t ( x ( t ( q nˆ 1 iω x ( t / c φ ( x, t dt dω 8π ε x ( t qµ v iω x ( t / c ( t t A( x, t dt dω t 8π x ( t iω ( t d ω ( ( i ω 1 β t n ˆ t dt ( ( ( ( ˆ ( i x t / c t t iω x ( t / c ( t t iω x t c t t L ( / ( USPAS Acclato Physics Jun 13

q iω ( / ( ˆ x t c t t n E( x, t dt dω + 8π ε x ( t intgat by pats to gt final sult i x t c t t ( / ( ω q E( x, t dt dω vl 8π ε ˆ ( 1 β n x ( t ( 1 β nˆ + β nˆ + β nˆ β nˆ + β nˆ β nˆ nˆ ( β + β nˆ ( ( ( β 1 β nˆ + β nˆ β nˆ β + β nˆ ( ( iω cx t ( β nˆ ( USPAS Acclato Physics Jun 13

( ˆ & n β nˆ & β ( 1 β nˆ β ( & β nˆ ( / ( ( 1 β ( ( / ( iω x t c t t q E( x, t dt dω acc 8π ε c nˆ x t iω x t c t t q dt dω nˆ & n β β 8π ε c nˆ x t ( 1 β ( {( ˆ } USPAS Acclato Physics Jun 13

Lamo s Fomula Vifid Fo small vlocitis can nglct tadation q E( x, t ˆ { n nˆ & β } / R acc 4πε c dp dω P q nˆ 16π ε µ c 3 v sin Θ 3 16π ε c q 6πε c q 3 v & & & { nˆ β } Θ Angl btwn acclation and popagation dictions Classical Dipol Radiation Pattn USPAS Acclato Physics Jun 13

max ( ( Rlativistic Paking In fa fild aft shot acclation ( ( ˆ ˆ & dp t n n β q 5 dω 16π ε c nˆ dp t θ dω 1 γ { β} ( 1 β q & β sin θ π ε β θ ( 16 c 1 cos Fo cicula motions dp t q & β sin θ cos ϕ 1 dω 16π ε c 1 β cosθ γ 1 β cosθ 5 ( ( 3 USPAS Acclato Physics Jun 13

Spctum Radiatd by Motion de dp 1 ( dt E H nr ˆ dt E E R dt dω dω cµ {( } {( } ˆ ˆ & ˆ ˆ 1 q n n β β & n n β β ( t ( t ( ( cµ 8π ε c 1 nˆ β 1 nˆ β ( ( ( iω R 1 nˆ t / R nˆ t / R / c t t iω + + R 1 nˆ ( t / R+ ( nˆ ( t / R / c t+ t claing th unpimd tim intgal and omga pim dt dωdt dω dt intgal with dlta psntation {( } ˆ ˆ & ˆ ˆ π q n n β β n n β β ( t ( cµ 8π ε c 1 nˆ β ( 1 nˆ β iω nˆ ( t / c+ t iω nˆ ( t / c+ t dt dt dω {( &} ( t USPAS Acclato Physics Jun 13

ˆ d E q n 3 dωdω 3π ε c nˆ β {( nˆ β β} ( 1 & iω nˆ ( t / c t+ t dt d E ω Ω q ω ( iω t nˆ ( t / c nˆ nˆ β dt 3π ε 3 d d c Facto of two diffnc fom Jackson bcaus h combins positiv fquncy and ngativ fquncy contibutions in on positiv fquncy intgal. I don't lik bcaus Pasval's fomula, tc. don't wok! W'll pfom this calculation in nw intnsity gims of pulsd lass. USPAS Acclato Physics Jun 13