γ c = rl = lt R ~ e (g l)t/t R Intensität 0 e γ c t Zeit, ns

Σχετικά έγγραφα
レーザ結晶. Altechna 社. Laser Crystals. Ti:Sapphire crystals. High damage threshold Strong Kerr effect

レーザ結晶. Altechna 社. Laser Crystals. Ti:Sapphire crystals. High damage threshold Strong Kerr effect

6.4 Superposition of Linear Plane Progressive Waves


Research on mode-locked optical fiber laser

4.4 Superposition of Linear Plane Progressive Waves

the total number of electrons passing through the lamp.

Thin Film Chip Resistors

Contents 1. Introduction Theoretical Background Theoretical Analysis of Nonlinear Interactions... 35

NPN SILICON OSCILLATOR AND MIXER TRANSISTOR

First Sensor Quad APD Data Sheet Part Description QA TO Order #

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Bulletin 1489 UL489 Circuit Breakers

IXBH42N170 IXBT42N170

Monolithic Crystal Filters (M.C.F.)

MAX4147ESD PART 14 SO TOP VIEW. Maxim Integrated Products 1 MAX4147 EVALUATION KIT AVAILABLE ; Rev 1; 11/96 V CC V EE OUT+ IN+ R t SENSE IN-

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:

What happens when two or more waves overlap in a certain region of space at the same time?

Tunable Diode Lasers. Turning Laser Diodes into Diode Lasers. Mode selection. Laser diodes

( ) Sine wave travelling to the right side

Surface Mount Multilayer Chip Capacitors for Commodity Solutions

(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3)

65W PWM Output LED Driver. IDLV-65 series. File Name:IDLV-65-SPEC

X-Y COUPLING GENERATION WITH AC/PULSED SKEW QUADRUPOLE AND ITS APPLICATION

Positive dispersion: 2 n. ω > 0, 2 n. Negative dispersion: ω < 0, 2 n

ITU-R BT ITU-R BT ( ) ITU-T J.61 (

Matrices and Determinants

555 TIMER APPLICATIONS AND VOLTAGE REGULATORS

CMOS Technology for Computer Architects

Thin Film Chip Resistors

DAMPING CROSS-REFERENCE

PRELIMINARY DATA SHEET NPN EPITAXIAL SILICON TRANSISTOR FOR MICROWAVE HIGH-GAIN AMPLIFICATION

SUPPLEMENTARY INFORMATION

Applications. 100GΩ or 1000MΩ μf whichever is less. Rated Voltage Rated Voltage Rated Voltage

38 Te(OH) 6 2NH 4 H 2 PO 4 (NH 4 ) 2 HPO 4

Magnetically Coupled Circuits

AT Surface Mount Package SOT-363 (SC-70) I I Y. Pin Connections B 1 C 1 E 1 E 2 C 2 B , 7:56 PM

Electrical Specifications at T AMB =25 C DC VOLTS (V) MAXIMUM POWER (dbm) DYNAMIC RANGE IP3 (dbm) (db) Output (1 db Comp.) at 2 f U. Typ.

SAW FILTER - RF RF SAW FILTER

2. Laser Specifications 2 1 Specifications IK4301R D IK4401R D IK4601R E IK4101R F. Linear Linear Linear Linear

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Gearmotor Data. SERIES GM9000: We have the GM9434H187-R1

Precision Metal Film Fixed Resistor Axial Leaded

3 V, 1500 MHz Si MMIC WIDEBAND AMPLIFIER

65W PWM Output LED Driver. IDPV-65 series. File Name:IDPV-65-SPEC

TRC ELECTRONICS, INC LED Driver Constant Voltage 45W MEAN WELL IDLV-45 Series

IDPV-45 series. 45W PWM Output LED Driver. File Name:IDPV-45-SPEC S&E

Areas and Lengths in Polar Coordinates

Volume of a Cuboid. Volume = length x breadth x height. V = l x b x h. The formula for the volume of a cuboid is

Areas and Lengths in Polar Coordinates

Thin Film Chip Resistors

IDPV-25 series. 25W PWM Output LED Driver. File Name:IDPV-25-SPEC S&E

For a wave characterized by the electric field

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Technical Report. General Design Data of a Three Phase Induction Machine 90kW Squirrel Cage Rotor

3 V, 900 MHz Si MMIC AMPLIFIER

Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Data sheet Thick Film Chip Resistor 5% - RS Series 0201/0402/0603/0805/1206

Multilayer Ceramic Chip Capacitors

2.5 GHz SILICON MMIC WIDE-BAND AMPLIFIER

Capacitors - Capacitance, Charge and Potential Difference

SMD Transient Voltage Suppressors

RECIPROCATING COMPRESSOR CALCULATION SHEET

DC-DC Constant Current Step-Down LED driver LDD-300L LDD-350L LDD-500L LDD-600L LDD-700L CURRENT RANGE

CT Correlation (2B) Young Won Lim 8/15/14

Supporting Information

3 V, 900 MHz LOW NOISE SI MMIC AMPLIFIER

Derivation of Optical-Bloch Equations

PPA Metallized polypropylene film capacitor MKP - Snubber/pulse - High current

B37631 K K 0 60

NTC thermistors for temperature measurement

Multilayer Ceramic Chip Capacitors

Characterization Report

Rating to Unit ma ma mw W C C. Unit Forward voltage Zener voltage. Condition

FDL - FXDL FBDL SERIES

RSDW08 & RDDW08 series

Transient Voltage Suppressor

ΙΕΥΘΥΝΤΗΣ: Καθηγητής Γ. ΧΡΥΣΟΛΟΥΡΗΣ Ι ΑΚΤΟΡΙΚΗ ΙΑΤΡΙΒΗ

LIGHT UNFLAVORED MESONS (S = C = B = 0)


Section 8.3 Trigonometric Equations

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

NPN Silicon RF Transistor BFQ 74

Probability and Random Processes (Part II)

Math221: HW# 1 solutions

1000 VDC 1250 VDC 125 VAC 250 VAC J K 125 VAC, 250 VAC

GenX3 TM 300V IGBT IXGA42N30C3 IXGH42N30C3 IXGP42N30C3 V CES = 300V I C110. = 42A V CE(sat) 1.85V t fi typ. = 65ns

Metal Oxide Varistors (MOV) Data Sheet

IXBK64N250 IXBX64N250

Calculating the propagation delay of coaxial cable

C4C-C4H-C4G-C4M MKP Series AXIAL CAPACITORS PCB APPLICATIONS

[1] P Q. Fig. 3.1

NKT NTC Thermistor. Negative Temperature Coefficient Thermistor FEATURES


Advanced operation schemes: two-color, split & delay

ΗΛΕΚΤΡΟ-ΟΠΤΙΚΗ & ΕΦΑΡΜΟΓΕΣ

Three coupled amplitudes for the πη, K K and πη channels without data

TUBO LED T8 LLUMOR PROLED 18W 120CM

SOFT FERRITE CORE FOR EMI/EMC SUPPRESSION. AVERTEC Co., Ltd.

Transcript:

There is however one main difference in this chapter compared to many other chapters. All loss and gain coefficients are given for the intensity and not the amplitude and are therefore a factor of 2 larger! l q q t o tal nonsaturable intensity loss coefficient per resonator round-trip (i.e. without the saturable absorber, but includes output coupler loss and any additional parasitic loss also the nonsaturable losses of the saturable absorber s a turable intensity loss coefficient of the saturable absorber per cavity round-trip u n bleached intensity loss coefficient of the saturable absorber per cavity roundtrip (i.e. maximum q at low intensity) g s a turated intensity gain coefficient per resonator round-trip (please note here we use intensity gain and not amplitude gain) g intensity small signal gain coefficient per resonator round-trip (often also simply called small signal gain). For a homogenous gain material applies in steady-state (factor 2 for a linear standing-wave resonator): g g = 1+ 2I I sat

g = rl γ c = lt R Intensität e γ c t ~ e (g l)t/t R ~ 4 8 12 16 2 Zeit, ns

laser crystal A/O Q-switch output coupler diode laser focussing optics coating: HR - laser λ HT - diode λ acoustic transducer partially reflective coating

dn dt = KNn γ cn dn dt = R p γ L N KnN R p = P abs hν pump

dn dt = KNn γ c n dn dt = R p γ L N KnN dn dt 3τ L R p γ L N = R p N τ L () N t nt (), N max = R p τ L R p = const. N t ()= R p τ L 1 exp( t τ L ) ( ) = N max 1 exp t τ L τ L 2τ L t

3τ L nt (), R p = const. dn dt R p γ L N = R p N τ L () N t N max = R p τ L N t ()= R p τ L 1 exp( t τ L ) ( ) = N max 1 exp t τ L τ L 2τ L t E p = const. T rep > 3τ L, or f rep = 1 T rep < 1 3τ L 1 = 3τ L

dn dt = KNn γ c n dn dt = R p γ L N KnN N( t = )= N i nt= ( )= n i 1 dn dt K ( N i N th )n = KN th ( r 1)n = r 1 n τ c () n i exp r 1 nt τ c t τ c =T R l, g =rl = n i exp g l ( ) t T R N() t N i const. r = N i N th = γ c N th K

g = rl γ c = lt R Intensität e γ c t ~ e (g l)t/t R ~ 4 8 12 16 2 Zeit, ns

n max dn dt = KNn γ c n N th = γ c K dn dt = R p γ L N KnN dn dn K ( N N th )n = N N th KnN N dn dt = K ( N N th )n dn KnN dt dn N th N N dn N( t = )= N i = rn th, n( t = )= n i 1 nt () n i dn Nt () N i =rn th N th N N dn nt () N i N() t N i r ln N i N t (), with N i = rn th nt ()= n max for g = l N()= t N th

n max n max N i nt ()= n max for g = l N()= t N th n max r 1 lnr r N i, with N i = rn th P p,out = n maxhν τ c E p,out E p ( N i N f )hν

n max η Q - switched pulse energy stored energy ( = N i N f )hν = N i N f N i hν N i nt ()= n max for g = l N()= t N th n max r 1 lnr r N i, with N i = rn th P p,out = n maxhν τ c E p,out E p ( N i N f )hν E p,out = E p η( r)n i hν

n max τ p E p,out P p,out η( r)n i n max τ c rη ( r) r 1 ln r τ c τ p η( r) P p,out = n maxhν τ c τ c E p,out = E p η( r)n i hν

n max nt ()= n max exp( t τ c ) τ p η( r) P p,out = n maxhν τ c τ c E p,out = E p η( r)n i hν

dr di I > T R τ stim r T R τ L

Nd:LSB microchip laser (25% doped) A-FPSA Copper heat sink 1 % Output coupler 22 μm Cavity length Output @ 162 nm Pump laser @ 88 nm Waist radius: 4 μm Dichroic beamsplitter HT @ 88 nm HR @ 162 nm LT GaAs/InGaAs MQW absorber Sampling Oscilloscope 18 ps -5 5 Time [ps] GaAs Substrate GaAs/AlAs mirror Dielectric top mirror R t I in I out d

MISER: Monolithic Nd:YAG Laser Applying a magnetic field causes unidirectional lasing D C Evanescent wave coupled nonlinear semiconductor mirror Interface B (see Fig. 1a) Inside MISER (Nd:YAG, n =1.82) Air Inside nonlinear semiconductor mirror Saturable Absorber or Modulator section B z Mirror section A α > α Τ Pump-Laser: cw Ti:Sapphire laser @ 89 nm Output: Without nonlinear mirror -> cw output, single mode due to unidirectional ring laser With nonlinear mirror-> single mode Q-switched Airgap: Coupling through evanescent waves: Frustrated total internal reflection (FTIR)

μj-pulses with 1 khz repetition rates 1 mw average powers

Microchip crystal SESAM Output coupler Laser output Diode pump laser Copper heat sink Cavity length Dichroic beamsplitter HT @ pump wavelength HR @ laser wavelength

absorber: InGaAs/GaAs quantum wells 1. substrate GaAs Refractive Index index 4 3 2 1 Pump probe signal Bragg mirror AlAs/GaAs 1 8.1 6 4 2 8 6 5 1 z (μm) 1 top reflector HfO2/SiO2 τ A = 12 ps 2 15 Time delay pump-probe (ps) 4 3 2 1 incoming light Field intensity (rel. units) Field Intensity (Rel. Units) Reflectivity.96.92.88 ΔR = 1.3% 2 4 6 2 4 6 1 F sat 1 1 Fluence on absorber (μj/cm ) SESAM #1: R = 1.3% F sat = 36 μj/cm 2 Reflectivity 1..98.96.94.92.9 2 4 ΔR = 7.3% 2 4 1 F sat 1 1 Fluence on absorber (μj/cm ) SESAM #2: R = 7.3% F sat = 47 μj/cm 2

longitudinal section L g crosssection mode area A SESAM Gain R, F sat,a material Output coupler T out L, F sat,l Parasitic losses L p Total losses L tot = T out + L p out = L out /(L out + L p ) F sat,a << F sat,l = hν L 2σ L A > p

g q P - P + P + = - P = P T out n = P hν T R g = L g N L V σ L T R =2 Lc = 2L chν P V =A L L g = N L A L σ L q = N A A A σ A τ, E L L A L τ A, EA A A W stim = K L n = I hν σ L = P A L hν σ L K L = σ L A L T R dn dt = K L N L K A N A 1 τ c n dp () t T R dt = gt () l () t qt () P() t dn L dt = N L τ L K L nn L + R p dg() t dt = gt () g τ L gt ()P() t E L dn A dt = N A N A τ A K A nn A dq() t dt = qt () q τ A qt ()P() t E A

l +ΔR l l -ΔR Phase 1 Phase 2 Phase 3 Phase 4 Gain g(t) Loss q(t)+l -6-4 -2 2 4 6 E stored = E L g tot Time (ps) Intracavity power P(t) Δg T out + L p ΔR E released = E L Δg l l p q ΔR R): Δg 2ΔR

l +ΔR l l -ΔR Peak power (kw) 1 8 6 4 2 Phase 1 Phase 2 Phase 3 Phase 4 Gain g(t) Loss q(t)+l Intracavity power P(t) Δg -6-4 -2 2 4 6 Time (ps) Unsaturated loss Gain g(t) r=3 Power P(t) 1 2 Time (μs) l + ΔR Gain g(t) r=2 No pulse for r=2 3 2 15 1 5 4 Gain, Loss (%)

E p hν L σ L E p A τ p 3.52T R ΔR A ΔR η out f rep g (L tot + ΔR) 2ΔRτ L L L + abs L

E stored = AL g N 2 hν L g = 2σ L N 2 L g E stored = hν L 2σ L Ag = E L g E released = E L Δg η out = Δg 2ΔR L out L out + L p E p hν L σ L AΔRη out

E p /E L (%) 2 15 1 5 γ = L p = γδr γ =.2 γ =.4 L tot + ΔR = 2% γ =.6 L tot + ΔR =1% Gain reduction Δg (%) 3 25 2 15 1 5 ΔR =15% ΔR =1% ΔR = 5% 5 1 15 2 Total nonsaturable losses L tot (%) 25 5 1 15 2 Total nonsaturable losses L tot (%) 25 R R L tot g 2 R

E p hν L σ L AΔRη out L L abs

l +ΔR l l -ΔR Phase 1 Phase 2 Phase 3 Phase 4 Gain g(t) Loss q(t)+l tot Intracavity power P(t) Δg τ p 3.52 T R q l q l < q -6-4 -2 2 4 6 Time (ps) g i l q q g f l q = q Δg q q / T R

τ p 3.52T R ΔR 1.5 1. 37 ps.5. -1 1 Time (ps) 2

L, R L, R P p ( ΔR) 2 P peak E p τ p L hν σ L AΔRη out 3.52T R ΔR ( ΔR)2 A η out T R σ L

P av = η s (P P P P,th ) f rep = P av E p = η s(p P P P,th ) E p r 1 P p P p,th E p r g l + q P P = P P,th = hν P A 2σ L τ L η P g hν P A ( l + q ) 2σ L τ L η P f rep = g (l + q ) Δgτ L g (l + q ) 2q τ L q ΔR

f rep g (L tot + ΔR) 2ΔRτ L g 2ΔRτ L L g f rep σ L g f rep

τ p 3.5T R ΔR 185 μm Nd:YVO 4 1.5 1..5. -1 1 Time (ps) 37 ps 2 f rep = 16 khz E p = 53 nj R 13 % p =37ps E p hν L σ L A ΔR η out 2 μm Yb:YAG* =1.3μm f rep = 12 khz E p = 1.1 μj p = 53 ps.5 mm Er:Yb:glass** = 1.535 μm f rep = 1.4 khz E p = 11.2 μj p = 84 ps f rep g Different crystals and SESAMs Varying pump power 2ΔRτ L f rep = 32 Hz - 7.8 MHz

l + ΔR l l - ΔR Phase 1 Phase 2 Phase 3 Phase 4 Gain Loss -6-4 -2 2 4 6 Time (ps) Intracavity power E p hν L σ L 2F sat,l A ΔR η out τ p 3.5T R ΔR f rep g 2ΔRτ L g

Rep. rate (khz) Pulse width (ps) Fluence (mj/cm 2 ) R R 3 ΔR 7.3% 2 ΔR 1.3% 1 ΔR 7.3% 4 ΔR 1.3% 2 6 ΔR 1.3% 4 2 ΔR 7.3% 1 2 3 4 Pump power (mw) Rep. rate (khz) Pulse width (ps) Fluence (mj/cm 2 ) 25 T out = 4.8 % 2 15 T out = 9 % 1 5 5 4 T out = 9 % 3 2 1 T out = 4.8 % 6 T out = 9 % 4 2 T out = 4.8 % 1 2 3 4 Pump power (mw)

R Pulse width (ps) Fluence (mj/cm ) 2 Pulse energy (nj) 3 2 1 4 3 2 1 12 8 4 Experiment Theory Theory Experiment linear fit without additive constant 36 4 44 48 A (μm 2 )

Pulse width (ps) 3 2 1 ΔR = 7.3% ΔR = 1.3% τ p 3.5T R ΔR Rep. rate (khz) 4 2 ΔR = 7.3% ΔR = 1.3% f rep g 2ΔRτ L Fluence (mj/cm 2 ) 6 4 2 ΔR = 1.3% ΔR = 7.3% 1 2 3 4 Pump power (mw) E p A hν L σ L ΔR η out

Pulse width (ns) 8 6 4 2 SESAM Crystal Variable cavity length Output Coupler Output beam τ p 3.5T R ΔR R R 2 4 6 8 1 12 14 Cavity length (mm)

Cross-section (x 1-2 cm 2 ) 2.5 2. 1.5 1..5 pumping emission absorption. 85 9 95 1 Wavelength (nm) 15 11

Pulse energy # : E p hν L σ L AΔRη out Pulse duration *# : τ 3.52T R p ΔR

2% Yb:YAG SEmiconductor Saturable Absorber Mirror SESAM 2 μm copper heat sink 4.8% output coupler output @ 13 nm pump @ 968 nm HT @ 968 nm HR @ 13 nm Pump: 3 μm single emitter P pump,max =.7 W @ 968 nm w px = 56 μm; w py = 27 μm substrate GaAs Refractive Index index 4 3 2 1 absorber: 9 InGaAs/GaAs quantum wells Bragg mirror AlAs/GaAs 5 1 z (μm) z (μm) top reflector HfO2/SiO2 small penetration depth (a few μm) short pulses adjustable device parameters 15 incoming light 4 3 2 1 Field Intensity intensity (Rel. Units) (rel. u.)

2. P pump = 485 mw Power (kw) 1.5 1..5. -2-1 1 2 Time (ps) 53 ps R 1.6% (R top = 75%) R ( R top ) R E p R top = % 3 mj/cm 2 R top = 75% 2 mj/cm 2 E p = 1.1 μj F p 1 mj/cm 2 p = 53 ps P peak = 2.1 kw P avg = 13.2 mw f rep = 12 khz

absorption length absorption bandwidth gain bandwidth Nd(3%):YVO 4 9 μm 1.5 nm 1 nm Nd(1.1%):YAG 12 μm.8 nm.5 nm Yb(2%):YAG 435 μm 2 nm 8.5 nm gain cross-section 25 1-2 cm 2 25 1-2 cm 2 2.5 1-2 cm 2 typical pulse energies * typical pulse durations * 7 nj <1 ps 1 nj < 1 ns 1 μj < 1 ns good for single mode operation and short pulse generation good for large pulse energies