,, 2015

Σχετικά έγγραφα
ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ ΛΕΩΝΙΔΑΣ Α. ΣΠΥΡΟΥ Διδακτορικό σε Υπολογιστική Εμβιομηχανική, Τμήμα Μηχανολόγων Μηχανικών, Πανεπιστήμιο Θεσσαλίας.

692.66:

Minion Pro Condensed A B C D E F G H I J K L M N O P Q R S T U

Evolution of Novel Studies on Thermofluid Dynamics with Combustion

К К 31.4 :.. К,,. И ;.., -, - ( ): А.. /..,... :, ,. И К, - -,. К К 31.4 ISBN..,.. 2

Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design


Numerical Methods for Civil Engineers. Lecture 10 Ordinary Differential Equations. Ordinary Differential Equations. d x dx.

3: A convolution-pooling layer in PS-CNN 1: Partially Shared Deep Neural Network 2.2 Partially Shared Convolutional Neural Network 2: A hidden layer o

DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E.

3.8.1 J (7) (1883~1906) (1907~1931) A ~ (10) i J C-1 ~1973 C-2

Chapter 1 Introduction to Observational Studies Part 2 Cross-Sectional Selection Bias Adjustment

Probabilistic Approach to Robust Optimization

Lifting Entry (continued)

Αλληλεπίδραση ακτίνων-χ με την ύλη

ˆ ˆŸ ˆ ˆŸ ˆ ˆŒ ˆˆ Ÿ Œˆ 10 B

High order interpolation function for surface contact problem

P ˆŸ ˆ Œ Œ ˆ Šˆ. Š ˆ œ ˆ -2Œ

Optimization, PSO) DE [1, 2, 3, 4] PSO [5, 6, 7, 8, 9, 10, 11] (P)

(56) т , т, т т т т т т т т,.т..,

P É Ô Ô² 1,2,.. Ò± 1,.. ±μ 1,. ƒ. ±μ μ 1,.Š. ±μ μ 1, ˆ.. Ê Ò 1,.. Ê Ò 1 Œˆ ˆŸ. ² μ Ê ² μ Ì μ ÉÓ. É μ ±, Ì μé μ Ò É μ Ò ² μ Ö

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA)

46 2. Coula Coula Coula [7], Coula. Coula C(u, v) = φ [ ] {φ(u) + φ(v)}, u, v [, ]. (2.) φ( ) (generator), : [, ], ; φ() = ;, φ ( ). φ [ ] ( ) φ( ) []

NPI Unshielded Power Inductors

Adaptive grouping difference variation wolf pack algorithm

CorV CVAC. CorV TU317. 1

Motion analysis and simulation of a stratospheric airship

Design Method of Ball Mill by Discrete Element Method

ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ. Λέκτορας στο Τμήμα Οργάνωσης και Διοίκησης Επιχειρήσεων, Πανεπιστήμιο Πειραιώς, Ιανουάριος 2012-Μάρτιος 2014.

Study of In-vehicle Sound Field Creation by Simultaneous Equation Method

Second Order RLC Filters

IPSJ SIG Technical Report Vol.2014-CE-127 No /12/6 CS Activity 1,a) CS Computer Science Activity Activity Actvity Activity Dining Eight-He

SUPPLEMENTAL INFORMATION. Fully Automated Total Metals and Chromium Speciation Single Platform Introduction System for ICP-MS

MATSEC Intermediate Past Papers Index L. Bonello, A. Vella

Estimation of stability region for a class of switched linear systems with multiple equilibrium points

..,..,.. ! " # $ % #! & %

Ó³ Ÿ , º 2(131).. 105Ä ƒ. ± Ï,.. ÊÉ ±μ,.. Šμ ² ±μ,.. Œ Ì ²μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

ΜΕΤΑΛΛΙΚΑ ΥΠΟΣΤΥΛΩΜΑΤΑ ΥΠΟ ΘΛΙΨΗ ΚΑΙ ΚΑΜΨΗ

Schedulability Analysis Algorithm for Timing Constraint Workflow Models

Vol. 38 No Journal of Jiangxi Normal University Natural Science Nov. 2014

P ƒ. μ μ², Œ.. ˆ μ,.. μ ± Î Š Ÿ ˆ Œ ˆŸ ˆ Ÿ Š ˆ. ² μ Ê ² μ Ò É Ì ± Ô± ³ É.

An Advanced Manipulation for Space Redundant Macro-Micro Manipulator System

Stress Relaxation Test and Constitutive Equation of Saturated Soft Soil

Lifting Entry 2. Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYLAND U N I V E R S I T Y O F

Buried Markov Model Pairwise

NPIS Shielded Power Inductors

Το άτομο του Υδρογόνου

ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ. ΤΗΛΕΦΩΝΟ:

MOTROL. COMMISSION OF MOTORIZATION AND ENERGETICS IN AGRICULTURE 2014, Vol. 16, No. 5,

ME 365: SYSTEMS, MEASUREMENTS, AND CONTROL (SMAC) I

90 [, ] p Panel nested error structure) : Lagrange-multiple LM) Honda [3] LM ; King Wu, Baltagi, Chang Li [4] Moulton Randolph ANOVA) F p Panel,, p Z

* ** *** *** Jun S HIMADA*, Kyoko O HSUMI**, Kazuhiko O HBA*** and Atsushi M ARUYAMA***

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

EM Baum-Welch. Step by Step the Baum-Welch Algorithm and its Application 2. HMM Baum-Welch. Baum-Welch. Baum-Welch Baum-Welch.

2016 IEEE/ACM International Conference on Mobile Software Engineering and Systems

Ι ΑΚΤΟΡΙΚΗ ΙΑΤΡΙΒΗ. Χρήστος Αθ. Χριστοδούλου. Επιβλέπων: Καθηγητής Ιωάννης Αθ. Σταθόπουλος

Graded Refractive-Index

ΠΕΡΙΟΔΙΚΟ ΣΥΣΤΗΜΑ ΤΩΝ ΣΤΟΙΧΕΙΩΝ (1) Ηλία Σκαλτσά ΠΕ ο Γυμνάσιο Αγ. Παρασκευής

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. του φοιτητή του Τμήματος Ηλεκτρολόγων Μηχανικών και. Τεχνολογίας Υπολογιστών της Πολυτεχνικής Σχολής του. Πανεπιστημίου Πατρών

MIA MONTE CARLO ΜΕΛΕΤΗ ΤΩΝ ΕΚΤΙΜΗΤΩΝ RIDGE ΚΑΙ ΕΛΑΧΙΣΤΩΝ ΤΕΤΡΑΓΩΝΩΝ

Ó³ Ÿ , º 2(214).. 171Ä176. Š Œ œ ƒˆˆ ˆ ˆŠ

No. 7 Modular Machine Tool & Automatic Manufacturing Technique. Jul TH166 TG659 A

An experimental and theoretical study of the gas phase kinetics of atomic chlorine reactions with CH 3 NH 2, (CH 3 ) 2 NH, and (CH 3 ) 3 N

THICK FILM LEAD FREE CHIP RESISTORS

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

Optimization Investment of Football Lottery Game Online Combinatorial Optimization

. (1) 2c Bahri- Bahri-Coron u = u 4/(N 2) u


C F E E E F FF E F B F F A EA C AEC

Poroelastic modelling of the coupled mechanical moisture behaviour of wood

= f(0) + f dt. = f. O 2 (x, u) x=(x 1,x 2,,x n ) T, f(x) =(f 1 (x), f 2 (x),, f n (x)) T. f x = A = f

ΠΡΕΣΒΕΙΑ ΤΗΣ ΕΛΛΑΔΟΣ ΣΤO ΚΙEBO

Appendix B Table of Radionuclides Γ Container 1 Posting Level cm per (mci) mci

, Litrrow. Maxwell. Helmholtz Fredholm, . 40 Maystre [4 ], Goray [5 ], Kleemann [6 ] PACC: 4210, 4110H

, Snowdon. . Frahm.

Ó Ú Ô ÏÏÈÎÎ, Ph.D. ƒ π ª À ƒ À. Προλογίζει: Νίκος Χατζηαργυρίου Καθηγητής ΕΜΠ και Αντιπρόεδρος ΕΗ

Magnetically Coupled Circuits

CDMA. Performance Analysis of Chaotic Spread Spectrum CDMA Systems. LI Xiao - chao, GUO Dong - hui, ZENG Quan, WU Bo - xi RESEARCH & DEVELOPMENT

ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ

Ferrite Chip Beads For Automotive Use

Module 5. February 14, h 0min

College of Life Science, Dalian Nationalities University, Dalian , PR China.

Creative TEchnology Provider

1 (forward modeling) 2 (data-driven modeling) e- Quest EnergyPlus DeST 1.1. {X t } ARMA. S.Sp. Pappas [4]

C M. V n: n =, (D): V 0,M : V M P = ρ ρ V V. = ρ

P ²ÒÏ 1,,.Š. μ μ 1, 2, 1, 3, ,. ʳÌÊÊ. Œ œ ˆ ŒˆŠˆ ˆŒ œ ƒ Š ˆ -2Œ ˆ Š Œ ˆ ˆ Œ ˆŸ Œ ˆ. ² μ Ê ² Annals of Nuclear Energy

I. Μητρώο Εξωτερικών Μελών της ημεδαπής για το γνωστικό αντικείμενο «Μη Γραμμικές Ελλειπτικές Διαφορικές Εξισώσεις»

ΜΕΘΟΔΟΙ ΥΠΟΛΟΓΙΣΜΟΥ ΤΗΣ ΖΕΝΙΘΕΙΑΣ ΤΡΟΠΟΣΦΑΙΡΙΚΗΣ ΥΣΤΕΡΗΣΗΣ ΣΕ ΜΟΝΙΜΟΥΣ ΣΤΑΘΜΟΥΣ GNSS

Τοποθέτηση τοπωνυµίων και άλλων στοιχείων ονοµατολογίας στους χάρτες

[2] T.S.G. Peiris and R.O. Thattil, An Alternative Model to Estimate Solar Radiation

Reading Order Detection for Text Layout Excluded by Image

Quick algorithm f or computing core attribute

Consolidated Drained

Research on Economics and Management

Comparison of ENDF/B-VIII.0 and ENDF/B-VII.1 libraries with MCS code

Vol. 34 ( 2014 ) No. 4. J. of Math. (PRC) : A : (2014) XJ130246).

EXPERIMENT RESEARCH OF INFLUENCE OF DYNAMIC LOADING ON PROCESS OF CRACK FORMATION AT BOOTY OF LITHOIDAL BLOCKS T.

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΕΡΙΒΑΛΛΟΝΤΟΣ

MAX4147ESD PART 14 SO TOP VIEW. Maxim Integrated Products 1 MAX4147 EVALUATION KIT AVAILABLE ; Rev 1; 11/96 V CC V EE OUT+ IN+ R t SENSE IN-

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Transcript:

621.039.516.4-1000 05.14.14,, 2015

2.... 6..... 7 1. -1000...... 14 1.1. -1000 -... 14 1.2. - 15 1.2.1. 16 1.2.2. 17 1.2.3. -... 18 1.2.4. -. 20 1.3. -1000 -......... 23 1.4. - -1000... 26 1.5. - -1000..... 28 1.5.1.. 29 1.5.2... 35 1.6. -... 36 1.7. -.... 38 1.8. -1000.. 40

3 1.9... 41 1.10... 42 2... 44 2.1.,... 44 2.1.1. 46 2.1.2.... 47 2.1.3. 49 2.2. -.... 52 2.3.. 53 2.3.1. 53 2.3.2. -. 56 2.4.. 58 2.5. -1000 60 2.6... 60 2.7. -. 61 2.8. 61 2.9. 63 3. - -1000...... 64 3.1... 64 3.2. - 65 3.3. - -1000.... 69

4 3.4. - - -1000... 71 3.4.1. -1000... 71 3.4.2. -1000 73 3.4.3. -1000.. 75 3.4.4. -1000 76 3.5.... 78 4. - -1000. 81 4.1.... 81 4.2.. 83 4.3. 85 4.4... 91 4.4.1.. 91 4.4.2.. 92 4.4.3. 93 4.4.4.. 95 4.4.5... 98 4.4.6. -.. 100 4.5. - 103 4.6. 105

5 4.7.,... 106 4.8. ё γ-... 107 4.9... 111. 114... 115. 127

6 Щ ; ; ; ; ; ; ; ; ; ; ; - ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;

7 А. 50 %. -, ( ) - ( ) - 2050. - ( ) [1]. 15 13-1000. -1000,.. - 100 %. -1000, - [2]., 50 % -,, - [3]., -1000 -,,., - ( ).

8, -1000 ( -320), 10000 30 100 % [4]., - -1000 ( ) - ( ). ω( ) - -1000 - [5]., ω( ),,,,.. -, - ω( ). -1000 ( ), -., -,, ( ) [6]. -1000, -1000 -. -

9, -. ( ) - -1000 -, -. я. - 645-47 -1000 - ( 0109U002620), 649-135 - -1000 110 % - ( 0109U008453). Ц я. -1000 -,. : -1000; ω( ) - B U ( ), - -1000; ω( ) B U ( ) -1000;

10 γ- - ; - -1000. я: -1000 -. я: - -1000. я:, - ω( ), ω( ) - - ω( ) B U ( ) -1000;, - - γ- -, - -1000. я : -1000, -,, - ω( ),, - ω( ) B U ( )

11, - -1000. - - ω( ) B U ( ), ω( ) B U ( ), ω( ) B U ( ) -1000;,,, - -, -, ; -1000, -, ω( ) B U ( ),,, - -1000. я. - ω( ) B U ( ) -, -1000,

12 ω( ) B U ( ). - -1000 - - ω( ) B U ( ), - -. - ( ) - ω( ). 1. -,, -. я. [7]. - : [8] - - ; [9, 15, 16] - ; Д11Ж - - ; [12] ; [10, 13 14], ω( ) B U ( ); [17] - - -1000. А я. :,, 2010, ; The 3rd International Conference Current Problems in Nuclear Physics and Atomic Energy, 2010, Kyiv, Ukraine;

13 2010., 2011, ; 7-,, 2011,, ; XXI., -,, 2011,,.. 12, 8, (2 SCOPUS), 1.. c,, 49, 9,,, 99. 114.

14 1-1000 1.1. -1000-1000 163 -, (. 1.1). 1.1-1000, 235 U,, -, - [18, 19]. -1000, -,, -, - ( ), - [20, 21]. -1000

15, -,, -. -1000 - :, - ( ) ( ), [22]., ( ) ( ) - ( ) - ( )., -,,, -. - - -1000, - [9, 15, 19]. 1.2. ( ) -1000 I-131, Cs-134, Cs-137, - U-235,,.

16 I-131, Cs-134, Cs-137 -, ( ). - -, ( I-131 28, Cs-134 Cs-137 28. 1.2.1. 20. 0,1 - (. 1.2). 1.2 : 1 ; 2

17 : 1) 5. 0,4 0,5 ; 2), -, 4., 0,1. - [23]. - x -1000 -, -. 1.2.2. -,, -. - (. 1.3).,, -, -. [24].

18 1.3 : 1 ; 2 ; 3 ; 4 ; 5 - -., - -1000, -,,. 1.2.3. - -. -,, - - -.

19 ( ) Kr-85 Xe-133, -., -, (. 1.4). 1.4 - : 1 ; 2 ; 3 ; 4 ; 5,,. -, KЫ-85 Xe-133. -, - Kr-85 БО-133. - - - -. -. -, -,.

20, - - -1000, - -, ( )., -1000. 1.2.4. - γ- - (. 1.5). 1.5 γ-

21-331, (312) (19). -. γ-, 360 - - [8]., n, - γ-, -. -, -, ( γ- ). -, - γ-, - [25, 26]. - (. 1.6). 1.6 - : 1 ; 2 ; 3

22 -. 1.7 [25]. 1.7. 1.8 [9]. 1.8

23 -, -. -, - -1000,.,, -1000, : ; ;. - -1000 [8, 11, 24 26]. 1.3. -1000 - -1000, -., -1000, [5, 7, 16, 24, 27].

( ), : N, AO N N 24, (1.1) N N N -,,., -1000,. 1.1. 1.1 H Q ( t = const ) ( t Q = const ) H H ( - ) H ( ) Q Q H H -, - / t 0 -, - / t 0 ( t = const Q = const) ( t = const ) ( t = const ) ( Q) G G C H 3 BO 3 C H 3 BO 3

25-1000 ( ), N (. 1.9). 1.9 : 1 ; 2, 1-,, -. [12, 27 29]. -1000 -, - -., - -1000 -, - -1000

26,, - [30]. 1.4. -1000 c -1000, [31, 32]. -,,, - - [0 38]., -1000,,, - -082-07 ( ) [5] - -88/97 ( ) [39]. [5]., - - 0,2 %, 0,02 %.

27, 1 %, 0,1 %., [5]: 1200 C; -, ; 1 % ;.,, -. ω( ) -1000, ω( ), - ( - ), ω( ). -,. -, -, - [40]., -1000 -

28 ω( ),, [6]., -1000. ( ),,. -,, -. -,, -, [40]., -1000 -, - -1000. 1.5. -1000, - -,, -.

29 - - -1000. EPRI ( ), - PWR 1996-2005., PWR [41]: - ; ; (20 %). [40], - 20 %., -1000 -, - -1000, - [42]. 1.5.1. - -1000 - - (100 %), - ( ),,

30, - ( ) [43 45]. -1000, -,, - [46, 47]., 20, -1000 - ( ) «-.,,». -1000 -., -, 10 % [21]., - - -. - 25 40 %,,, -.,, -.

31 [21] : «,»., -1000 -. : -,,,. -1000 - - [30, 37, 48]. -1000,, -, 1,5-2, - [22, 30]. -1000, -1000 - [49 55]. -1000, -, -1000., ( ), -, [40].,, -

32-1000, - [56, 57].,, ( ), - -1000 [13, 22, 40, 51, 58]. -, -1000 [49, 50, 59].,, -, -,,.. [19, 60].,,, [30, 34 36, 38, 46]., - - (,, ) [61, 62]. [47] -, -1000 : 1) ; 2), ; 3).

33, -,,,,,,. 50 % -,,,, -,. -1000 - ( - ), - ( ) ( -1) [47, 51]., - -1000 - [47]. [47], -1000,, -, -1000,. - -1000, -. [6, 22, 40, 56, 57, 63, 64] -

34, -1000,. ( ) -, «- - - ω( ) - -» [40]. - - ω( ) -1000, - ω( ) [6, 22].,, - ( ), -. Eff -, -, - -, - Eff. -, [40]. - -1000 ω( ) [64]. -, : 1) - -1000,,

35,, -. 2) -1000. 3) -1000, -,, -. 4) -1000 ω( ), -1000,. 5) - - ω( ), -1000 ω( ). 6) - - -1000. 1.5.2. -, -1000,,,, etc. -. -,,

36-1000. - -1000,, [18, 19, 27, 67, 68]. -1000 -,. - [52]., -1000., -1000. - - ( ) :, - [33, 49, 51]., -1000., -, - -1000 19, 26, 30, 37, 54, 69. 1.6. - - -1000. 1.10.

37. 1.10. - -1000 - -1000 : 1). 2) ё. 3), /. 4),,. 5). 6). - -1000 - ω( ),,.

38 - -1000 - -1000. -1000, -,, -. ω( ), -, - -1000. 1.7. - -1000. -1000,, -.,...., -1000 [70]. -. -

, -1000 -. [40] : «-,,, -,». - -1000, [66] - N: m i 1 39 min ( t t ), (1.2) i N ( N); m N - N. (1.2) -, -. ( ) -1000 N, 100 80 % N t const, 2- p II = [5,8 6] [22]. 2- ( -2), e ( - ) -1000, -

(1.2),, 40 t const [66]. [66] [71]. -1000 t const 1,5, t const ( ), - I - q l, [13, 14, 40]. 1.8. -1000-1000 1- [19, 33]. -1000, - [5]. щ -1000 :. -1000 :,, -1000 [22];,, - [6, 9, 15, 56, 57, 73].

41 C -1000-1-, - [72]. щ -1000 c : [74]. -1000 c : ; [75]., -, -1000, - -, [16, 17, 22, 28, 57, 66]. 1.9. - -1000, -. - : 1. - -1000. 2. ω( ) -

42 B U ( ) -1000. 3. - ω( ) B U ( ) - -1000. 4. γ- -. 5. - -1000. 1.10. 1. -1000,, -,,. 2., - -1000 - ω( ),., - -1000. 3. -1000 -,

43 - t const, -. 4. -1000 ω( ), «-»., - - -.

44 2-1000 - ( -, -,, -, ) ( ), ( ) -1000 [40]., -, - ( ), - [76]. 2.1., - -1000, - [22, 51, 70, 77, 78]:,,, - 10-, -..

45 -, -1000, 9- [51].,,,. 2.1 2.2 [9, 15]. 2.1 : 1 - ; 2, - - ; 3, ; 4 2.2 (1/6 ): 1 - ; 2

46 2.1.1. - ω( ) -1000, [40]. [6, 22, 40, 63, 64], -,. 2.3. 2.3 : ( ) ; ( ) 1, 2, 3 4-,, : ( 82) - ; 1, 2, 3-7, 4-6 [40].

47 : «5-30-10-43» -, 1-5, 2-30, 3-10, 4-43., 7 : ( 3) - Eff - [40], ( 18) 5- - 23. 2.1 [79]. 2.1 3 18 9-19-21-8 5-30-10-43 5-41-68-43 9-11-20-1 55-22-10 3-22-54-29 13-11-20-6 13-19-21-42 3-30-54-1 2-31-18 4-32-18-42 55-41-12-6 2-31-12-29 4-32-68-8 2.1.2. -1000 - [55, 70]. : ; -1000;

48 ;, -. -1000, 10- - 90 % Д99]. : -,., m= 8 ( ). i- ( ) j (i, j). :, i j (i, j) q l,, i, j kv, i j ql, (2.1) q l, k v i, j, (i, j); < q l > ( / ), < q l > = 168,5 134,8 / N = 100 80 %,. [60],, i j q l, (i, j) :, (2.2) q l, i, j ql, j,max ki, j e q l, j, max j- ; k, (i, j). i j k v i, j, -, - ( ), - - -1000 [55].

2.1.3. 49 B ( ) (i, j) : i, j Q, ( ) d i j B, ( ) i j, (2.3) m 0 i, j Q ( ) (i, j), ; i, j m, (i, j), ; i j, -1000, j-,. 2.2. 2.2 ё,, 287 1-, 16 ё,. 6 ё, 365, 1460, 9,1, 7,73, 0,69, 7,57, 0,24, 0,08

2.2 ё,, 10,6, 1,385, 11,8, 12,75, % 100, 0,1, 20 -, 25, 2, / 3 10,4-4 SR 8, 44,25, 10 U-235, % 4,4, 3 0,21, 3 0, 3 / 84 10 3 N = N, -1-2 1 1014,, / 5,64-1000, : 50 - t const

2.2 ё N = 100 80 % II Г я : N N 1 =100 % N 2 =90 % 0,5 ( ) N N 2 =90 / ) % N 3 =80 % 2,5 ( ) N 3 =80 % 4 ( ) N N 3 =80 % N 1 =100 % 2 ( ) 51 p II = 58 60 10- dn 1-2 /Н = 2 %/6 dn 2-3 /Н = 0,4 %/6 N 3 =80 % dn 3-1 /Н = 1,0 %/6 Г я я УЗ: N = 100 80 % max H =4 % я У [16]: N = N - 15 N N 90 % N 0,5 N 80 % 2,5 ё N = 80 % 4 N N 2. А З: 5- -2 :, 1/6 ( ), 1/6, N; 1, 2 3-7, 4-6 ; 82 ( ) -. Q ( ) (i, j) i, j (2.3) B ( ) i, j 4-, - (. 2.1), -,, -1000 (. 2.2) [80].

52 2.2. - -1000 - ( ). -. 50 /, - - ( ), - - -, [60]. «Femaxi», -1000 [81]. - :,, ;, ;, - [7, 15 17, 22].

2.3. 53 ω( ) -1000, -, -, ( ) -1000, ω( ) [16]. - -1000. 2.3.1., - -1000 [82]: ; ; - SC4, ω( ) - : [83, 84]: ( ) i NC i d 1 lim, lim (2.4) N Ci 0

N C i lim N C i i-, ;, ; lim -. K SC4 10, 6 8 - ( 2.) [40, 82 84]: 54 2.3 K SC1 SC2 SC3 SC4 SC5 - - - - - - - - - - lim, lim 250 max e 1,2 < ( T, ) 0 lim P P 1, ( ) - (2.4) lim, 1,5 10 lim 0,5 % 1,2, SC1 SC5 - [83]: SC1

, ( ) ; SC2 max e ( T, ), - 0 «-»; SC3 - P, - ; SC5 - -,,, -., SC4 SC1 SC3, SC5 ω( ), -1000,, SC4, SC4 [40]. -1000, - SC4, [84]., 6 8 SC4 [83]. SC4-1000, -, ω( ) SC4 - : 55

, 56 lim N C i lim ω( ), - -1000 ( - ) [40]; SC4, ω( ),,, - щ - -1000 ν << 1 [61, 85]., SC4,, SC4, - -1000. 2.3.2. - -1000 ω( ) - [10, 12, 16]. - : ;,,

,, [40]; A 3 [5]; ω( ), -1000 [22, 40, 56]. ω( ) SC4, K = 10, 57 -, SC4-1000. -, щ [22, 87]: ω( ); ω( ) ν << 1, - -1000 [61, 62, 85]; 5 K - [40]: K SC4 [28, 29, 60]. - ( ) e p e d / A0 1 ; 0 A0 : lim( da/ d ) 1 0 0, (2.5) ( ) ; A 0 A( ) - 0, / 3 ; e ( ), p ( e ) ( ) - ( -1 ),.

-, A 0. -4 A 0 = 55 / 3 [40]. - A 0 = 30 / 3 5 ( ). A 0 -, - -1000 [7, 10, 12, 17, 22, 56, 57]. 58 2.4. ( ) - p e -110, - MATPRτ-A, -4, : -1000; - -1000;, -110 [13]. ); p e ( -1 ) t ( ) [86]: C e 1/ 2 p e K ( e B e )exp( 10000/ R T) t, (2.6) K = 5,129 10 29 ; B = 7,252 10 2 ; C = 4,967 10 8 (,,

(E > 1 ), 1/ 2 ; e, a; R ; T, K;, [60]:,, e 59 e 2 2 2 0,5[( z) z ], (2.7) z, - d ( P P ) d P ]/( d d ), (2.8) [ ci co 2 2 2 2 [ d ( P P ) d P ]/( d d ), (2.9) z ci d ci, ; P co ; P, a; d co, ; P, a.,, : co co ci ci P 2 Ec uc ( rco rci )/ rci, (2.10) r ci, r co, ; u c, ; E c, ; u, (2.11) c u f u f, ; o, o,.

2.5. -1000 60 - ω( ) B U -1000 [6 8, 10 14, 22, 29, 60, 63 66, 81]: ; ; 1. ; 2. ; 3. ; 4. - 5. ; 6. - 7. ; 8.. 2.6., -1000 [60]: q > ; < l, i, j ; -1000;.

61-1000:, [40]. 2.7. - FEMAБI, - - -1000, - NEA Data Bank [60]., 50 / -U, -1000, [81]. 2.8. - ω( ) B U, -1000,,. 2.4. ω( ) B ( ) 4- -1000. U

62 2.4 ё ω( ) B ( ) U

2.9. 63 1. ω( ) B U -1000,, ω( ) B U -1000. 2. - -1000 ω( ), - -,, - - - ω( ), ω( ), -1000, A 0 -. 3. - ω( ) B ( ) U ω( ) B ( ), U ω( ) B ( ), - U - - - -1000.

64 3-1000 3.1. [6, 22, 63], -1000 - ( )., -1000 - ω( ) B ( ) [40]. U : 1) ω( ), ω( ) ; 2) B ( ), - U (1- B Lj max{ Effj 1- }, lim L max,* 2 Lj (1- j ) (1 - lim lim,* 2 L (1- ) (1- * j ) 2 lim,* (1 - B ) 2 min,* j ω( ). : -1000 (.. 2.1). -, -1000,. 2.2. [87]: ) 2 lim,* ; ) 2 (3.1) lim, lim ω( ) lim B B ( ) : opt max lim j ; opt lim j ; lim min opt B Bj B. (3.2)

: 65 lim,* max,* j lim,* 1; j 1; B B 1, (3.3) * lim,* min,* j max lim lim,* 1-1- max,* j ; ; opt j opt 1-1- lim lim,* 1-1- * j ; ; opt j opt 1-1- min,* min lim,* lim opt B B / B ; Bj Bj / B. (3.4) [87], : opt min{ max }; min{ j }; B opt max{ B min }. (3.5) j opt [87]: opt lim,* lim,* lim,* B. (3.6) j, lim, lim lim B : lim opt lim (1- )(1- ) lim (1- ) B 1- ; B. (3.7) opt opt 1-1- lim opt 3.2. - FEMAБI, MATPRO-A [60], - A 0 = 30 M / 3, (1460 ) B(1460 ) -1000 - Д16, 22, 88Ж: 1) - ; 2) ; 3) N = 100 80 %; 4) -. 2.2. ( ) B( ) j = 3 18 = 365 М (I), 730 (II), 1095 М (III), 1460 М (IV). 3.1, 3.2.

3.1 - j 3-9-19-21-8 5-41-68-43 55-22-10 13-11-20-6 3-30-54-1 4-32-18-42 2-31-12-29 3 66 ( ) A/ A0, B, % M / I II III IV I II III IV 7 1,125 2,976 5,771 6,099 16,28 33,70 48,66 55,76 6 1,169 3,941 7,186 7,512 18,55 37,95 54,66 62,49 5 1,173 3,398 5,991 6,232 19,62 39,86 57,13 65,29 4 1,120 1,923 4,200 4,383 20,10 40,54 57,85 66,05 3 1,036 1,118 1,617 1,710 19,97 40,01 56,86 64,86 7 1,244 1,569 2,720 3,979 11,95 29,20 42,34 54,74 6 1,397 1,931 3,237 4,636 13,72 32,79 46,80 60,47 5 1,404 1,516 2,149 3,212 14,60 34,23 48,43 62,39 4 1,357 1,375 1,441 1,657 14,95 34,62 48,56 62,37 3 0,564 0,636 0,797 0,895 14,84 33,98 47,37 60,76 7 1,144 3,306 6,112 17,29 34,79 49,32 6 1,167 4,115 7,222 18,98 38,44 54,67 5 1,169 3,355 5,839 19,59 39,86 56,91 4 1,090 1,700 3,936 19,51 39,96 57,26 3 0,706 0,995 1,452 19,03 39,06 56,07 7 1,137 1,577 3,630 3,722 16,22 31,50 46,10 50,42 6 1,186 2,116 4,644 4,738 18,42 35,70 51,97 56,80 5 1,179 1,608 4,050 4,139 19,52 37,76 54,65 59,75 4 0,922 1,126 2,395 2,467 19,96 38,53 55,48 60,61 3 0,841 0,916 0,921 0,943 19,77 38,01 54,53 59,56 7 1,220 2,140 3,646 3,739 13,63 31,06 44,66 49,25 6 1,328 2,795 4,525 4,624 15,75 35,16 49,87 55,04 5 1,315 2,066 3,657 3,746 16,72 36,77 51,81 57,20 4 1,059 1,262 1,856 1,899 17,24 37,34 52,26 57,68 3 0,715 0,759 0,815 0,828 17,20 36,82 51,18 56,48 7 1,220 2,168 3,328 4,674 13,54 31,04 43,53 55,92 6 1,333 2,844 4,283 5,740 15,68 35,18 49,09 62,69 5 1,324 2,164 3,599 4,937 16,70 36,89 51,48 65,49 4 1,065 1,275 1,812 2,614 17,17 37,34 52,07 65,96 3 0,735 0,767 0,835 0,983 17,06 36,68 51,05 64,44 7 1,233 1,779 3,671 5,128 12,02 29,28 43,75 56,55 6 1,389 2,646 5,036 6,585 13,85 33,70 49,91 63,88 5 1,394 2,045 4,462 5,908 14,74 35,35 52,27 66,70 4 1,075 1,352 2,632 3,794 15,15 35,81 52,91 67,28 3 1,020 1,191 1,261 1,482 15,06 35,23 51,96 65,90

j 18 3.2 18 ( ) A/ A, - 0 B, % M / I II III IV I II III IV 7 1,243 1,726 3,699 5,033 11,95 29,37 43,90 56,31 6 1,396 2,238 4,696 6,128 13,72 33,14 49,37 63,04 5-30-10-43 5 1,402 1,565 4,021 5,313 14,60 34,66 51,70 65,66 4 1,026 1,356 2,311 3,236 14,95 35,05 52,36 66,17 3 0,952 1,223 1,263 1,308 14,84 34,47 51,47 64,85 7 1,126 1,603 3,657 3,760 16,28 31,55 46,16 50,75 6 1,170 2,183 4,707 4,810 18,55 35,83 52,10 57,26 9-11-20-1 5 1,174 1,657 4,110 4,207 19,62 37,86 54,76 60,14 4 0,932 1,122 2,447 2,527 20,10 38,67 55,62 61,04 3 0,807 0,901 0,941 0,973 19,97 38,21 54,73 60,04 7 1,219 2,222 3,733 5,143 13,63 31,13 44,73 57,54 6 1,328 2,879 4,613 6,143 15,75 35,20 49,91 63,89 3-22-54-29 5 1,315 2,312 3,932 5,382 16,72 36,99 52,03 66,46 4 1,185 1,269 2,107 3,108 17,24 37,69 52,60 66,97 3 0,834 0,941 1,011 1,158 17,20 37,23 51,58 65,52 7 1,137 2,942 5,718 7,405 16,22 33,64 48,60 61,00 6 1,186 3,871 7,075 8,840 18,42 37,82 54,53 68,13 13-19-21-42 5 1,179 3,353 5,946 7,246 19,52 39,76 57,03 71,04 4 1,126 1,860 4,128 5,187 19,96 40,41 57,71 71,61 3 0,722 1,041 1,572 2,162 19,77 39,81 56,65 70,05 7 1,233 1,779 2,881 12,02 29,28 41,76 6 1,389 2,646 4,031 13,85 33,70 47,61 2-31-18 5 1,394 2,045 3,405 14,74 35,35 49,94 4 1,070 1,351 1,710 15,15 35,81 50,54 3 0,734 0,857 0,960 15,06 35,23 49,61 7 1,144 2,979 5,516 5,660 17,29 34,54 49,01 53,33 6 1,167 3,632 6,386 6,516 18,98 38,05 54,26 59,10 55-41-12-6 5 1,169 2,679 5,099 5,190 19,59 39,22 56,14 61,24 4 1,090 1,219 3,121 3,199 19,51 39,18 56,28 61,41 3 0,808 0,995 1,088 1,117 19,03 38,17 54,90 59,93 7 1,220 2,168 3,481 3,718 13,54 31,04 44,18 51,28 6 1,333 2,844 4,313 4,559 15,68 35,18 49,19 57,02 4-32-68-8 5 1,324 2,164 3,402 3,606 16,70 36,89 51,09 59,26 4 1,065 1,275 1,661 1,751 17,17 37,34 51,29 59,48 3 0,689 0,767 0,813 0,862 17,06 36,68 50,08 58,08 67

ω( ) B ( ) - U 68 - -1000, -,, : ω( ) B ( ) - U ω( ), B ( ) ; 3 -, ω( ), : 3( ) = [0,828 %; 7,512 %], 3 ( ) 3,93 % 1,944 %; 18 -, ω( ), : 18( ) = [0,862 %; 8,84 %], 18 ( ) 3,95 % 2,066 %; 3 -, ω( ), : B ) = [49,25 / -U; 67,28 / -U], - U ( 3 B ) 59,63 / -U U3 ( 3 5,028 / -U; 18, ω( ), : B ) = [41,76 / -U; 71,61 / -U], - U ( 18 B ) 59,63 / -U U18 ( 18 7,062 / -U; 3 18 ω( ) 6- ; U

3 18 B ( ) 13 14 - U 69 4-, 4-5-. 3.3. - -1000 [6, 22, 87], - ω( ) B ( ), ω( ) - U, - -1000 - B ( ) U,. : 1) ω( ) - ; 2) B ( ), ω( ) -. lim 13 %, (3.1), 3 18 - Eff. (3.5): opt 7,512 %; opt 3,93 %; B opt 49,25 / -U. (3.8) (3.7): lim (1-0,13)(1-0,0393) 1-0,096; (3.9) 1-0,07512

70 lim (1-0,13) 49,25 B 46,33( / -U) (3.10) 1-0,07512 (3.2): 0,07512 max j 0,13 (3.11) 0,0393 j 0,096 (3.12) min j 46,33 B 49,25 (3.13) (3.11) (3.13), (3.3), (3.4): lim lim,* 1-1 0,13 0,941 opt (3.14) 1-1- 0,07512 lim,* 1-1- lim opt 1 0,096 0,941 1-0,0393 (3.15) lim,* lim opt B B / B 46,33/ 49,25 0,941 (3.16) : max,* * min,* j 0,941 j 1; 0,941 j 1; 0,941 B 1, (3.17) max max,* 1-3 1 0,07512 max,* 1-18 1 0,0884 3 1; 0,986; opt 18 opt 1-1- 0,07512 1-1- 0,07512 * 1-3 1 0,0393 * 1-18 1 0,0395 3 1; 1; opt 18 opt 1-1 0,0393 1-1 0,0393 min,* min opt 3 3 B B / B 49,25/ 49,25 1; B B / B 41,76/ 49,25 0,848; max min,* min opt 18 18 (3.1),. L lim 0,102 ; L 3 0 ; L 18 0,153; L3 0 L18 0,153 Eff 3 1-1- 1; Eff 1-1- 0, 5 lim 18 (. 3.3). lim L 0,102 L 0,102 j T 3.3 min, % j, % B, M / Eff j max j 3 7,512 3,93 49,25 1 18 8,840 3,95 41,76-0,5 j

, - ω( ) 71 B U, -1000, -, 3 18., Eff 18 0,, min 18 B 41,76 M /,.. - B lim 46, 33 M /. min 3, B 49, 25 M /, B. lim 3.4. - -1000 3.4.1. -1000-1000 - N=100 % ё - [19]. -1000 ё - [54]. ω( ) B ( ) -1000. 3.1 (,, 290 ). -1000, ω( ) - 3 6-, B ( ) 4- (. 3.2). U U

72 3.1 ω( ) B U ( ) -1000: 1, 2, 3, 4 1-, 2-, 3-4-, 3.2-1000 - - 1000,, ω( ) B ( ) - -1000. U

3.4.2. -1000 73-1000, N 100 80 % ( 3.). 3.3-1000 -1000 N [7, 10, 12 17]: N 100 90 % 0,5, ; N 90 80 % 2,5, - ( 3.). 3.4-1000

74 4 80 %; «-», [51, 55, 71]. -1000, ω( ) 3 6-, 4- (. 3.5, 3.6). 3.5 ω( ) -1000: 1, 2, 3, 4 1-, 2-, 3-4-, B U ( ) 3.6 ω( ) -1000 B U ( )

3.4.3. -1000 75-1000 N [7, 10, 12 17]: N= N 5 ; 5 N 50 %; N = 50 % 40 ; N 50 100 % 3 ( 3.7). 3.7-1000 - 10-,, 10-86 %, 9-, (. 3.8). 3.8-1000

76 - -1000, ω( ) - 3 6-, 4- (. 3.9, 3.10). 3.9 ω( ) B U ( ) -1000: 1, 2, 3, 4 1-, 2-, 3-4-, 3.10 ω( ) -1000 B U ( ) 3.4.4. -1000-1000, -

4, N 50 % - 3.1 [7, 10, 12 17]. 77 3.11-1000 - - -1000. 3.12. 3.12-1000 - -1000, ω( ) 3 6-, - 4- (. 3.13, 3.14).

78 3.13 ω( ) B U ( ) -1000: 1, 2, 3, 4 1-, 2-, 3-4-, 3.14 ω( ) B U ( ) -1000 3.5. 1. ω( ) B ( ) U, -1000,, ( 3)

79 ( 18) ω( ) - ω( ) : 3: ( ) = [0,828 %; 7,512 %], - 3 3 ( ) 3,93 % 1,944 %. 18: ( ) = [0,862 %; 8,84 %], - 18 18 ( ) 3,95 % 2,066%. 2. - B ( ) ω( ), : ( ) U,3 B = [49,25 / -U; 67,28 / -U], - U B ) 59,63 / -U - U,3 ( 3 5,028 / -U; B ( ) = [41,76 / -U; 71,61 / -U], - U,18 B ) 59,63 / -U - U,18 ( 18 7,062 / -U. 3. Eff -1000, - ω( ), ω( ) B ( ) U ω( ). 4. ω( ) 6- -,. 5. B ( ) - U 4-13 - 14, 4-5-.

80 6. ω( ) B ( ) 3, U ω( ) 6-, B ( ) 4- U -1000: ; ; ;. 7. ω( ) B ( ), -1000 -, - -, -, -, (~0,44 ). 8. - - -.,. U

81 4-1000 4.1. - -1000. [19, 33, 40]: (Δρ). ; - -. ( ) - ( ), - -. [19, 33]: ( 235 U 239 P) (, ). - ;

82, ;.,.. - 2-3-. B ( ) ( ) U ω( ) ( ). - (. 4.1). 4.1 -, (t). u(t), ё f(t). -, B ( ) ω( ). U

83, - -., - [89, 90]. 4.2. - -. - [33, 70, 77]:. Ш. N XE t, (4.1) ρ ; ρ, - 1- ; ρ, ; ρ, ; ρ N, ; ρ XE, - ( ) ; ρ t, -.,, ; ; 1- ;

84., ( ).,, -,, -, -.,,,,,, - ( ), -1000 [18, 91]. - N. - N N= const. - (. 4.2). 4.2

85, (ρ,0 ) (ρ,1 ), (t). u(t), ( 5 +5%) ρ. u(t) / -, ρ N, ρ. ρ,1 ( 290..), -, u(t) -, (ρ, ρ XE ) ρ.. const, : ρ t =0., f(t) ρ=ρ,0. 4.3. - [92].. 5 [79]. - - -1000. 4.3.

86 4.3 : 1, 2, 3 4 0, 80, 160 285. c, - - [77]., [79]: ai ( h h0), (4.2) i i,,..;. 4.1. a і,

4.1, -1 1 1 0,0000164 2 2 0,000033 3 3 0,00003 4 4 0,0000027 5 5 0,00002405 6 6 0,0000198 7 7 0,0000184 8 8 0,0000226 9 9 0,00001414 10 10 0,000009 87, -, i-, -1000. / ρ (C ), C 0 C [78, 93, 94]: C ( C ) dc, (4.3) 0 f ( C ) C.. 4.4 [79]: 5-1,58 %, (4.4) / ( ). (. 4.5).

88 4.4 : 1, 2, 3, 4 N = 1500, 2100, 2700, 3000, - Д95 98]: 1) : dc T4 C k4 G,, (4.5) d

89 ) 4.5 2) : ) ( ) ( ) dc T5 C k5 GH O, (4.5) 2 d C, ; k 4, k 5, / ;

T 4, T 5, ; G, ; 90 G H2 O,., G 40 /, G H 2 O 40 /. : 3 3 k 4 40 ; k 16 ; 5 T 22,3 10 ; 47,7 10. 4 T5, / - / k 4, k 5 2,5, T 4, T 5 2.,,. - :W W p k G TsC C s, (4.6) C бор, / ; k, ; G ( ) ( ), / ; T,., - ( r, ) q v. - ( r, ), - q v

91,. - ( ), ( ) -. -1000 -,. -. 4.4. 4.4.1.. 4.6-1000 [33, 77, 78, 88 92, 95 97]. 4.6 щ : h ; C.

: Q ; t i і- ; ; t 1. щ : t 1. 92 4.4.2. ( ).. 4.7-4.7 : : (N) ; : B( ) ω( ). :.

93, -. - ( ), -. 4.8. 4.8 -, - ( N ),,.. B( ) ω( ). 4.4.3. ( ) -1000, - (. 4.9).

94 4.9 - : (H ); (C ); (T =const); (P j ). : -1000 (Q); ; γ, -. 1-., -, ( ) B( ) ω( ),.., / (. 4.10). : γ-. : B( ) ω( ).

95 4.10-1000. 4.4.4. - ( ) -, -1000,. 4.11 [5, 39, 99]., -, :,, ; ; ;

4.11

, ( 0,25 /, -,, 0,0016 / );, - ; -,, - 16 /.. 4.12., -, -. ( ) -,,. ( ). ( ) -,. - щ ( ).,,. - -1000.

98 4.12 4.4.5. -1000 (. 4.13).

99 4.13 -. : ;,, - ;, - - ;, -. :, ;

100,, -, [24, 83]. -,,.,, -,,. ( ) -., -.,, - щ.,,. щ, -. - -1000. 4.4.6. - - - :

101 ; ; ;. ( ) - ω( ) B( ).. ( ), -. 4.14 - -, (290 ). 1- :. 2- : - ( ),.. ω( ) B( ). 3- : ω( ) B( ) -. 4- :. -, -,. -.

4.14 - -

103 4.5. -. 4.15-1000, D. 4.15 ( 166) D,. - φ max 180º. - 360 720. -, - γ- D,. -

104,, -,.,.. [24, 26]. XOY. 331 360, 331, 360 - ( 4.2). 4.2 -. 1/ UO 2 H 2 O Zr Cs 134 (1365 ) 0.6278 0.0604 0.3175 Cs 134 (1167 ) 0.7062 0.0654 0.3444 Cs 134 (1038 ) 0.7842 0.0694 0.3670 Cs 134 (802 ) 1.0183 0.0785 0.4232 Cs 134 (795 ) 1.0279 0.0788 0.4253 Cs 134 (604 ) 1.4388 0.0891 0.4982 Cs 134 (569 ) 1.5631 0.0915 0.5166 Cs 134 (563 ) 1.5873 0.0920 0.5199 Cs 137 (661 ) 1.3596 0.0856 0.4723 Ru 106 (1050 ) 0.7761 0.0689 0.3581 Ru 106 (622 ) 1.3849 0.0880 0.4895 Ru 106 (511 ) 1.8271 0.0957 0.5528 Eu 154 (996 ) 0.8154 0.1655 0.3755 Eu 154 (1004 ) 0.8088 0.0705 0.3739 Eu 154 (1274 ) 0.6589 0.0626 0.3288

105., - 331 720. 720-331 720. 2-720, 331 1440. : 331 ; 22.5 ; 1º;, (φ ). - γ-. - γ-,. 4.6. n- γ- m- (x m, y m ) D (x 0n, y 0n ) : AD, - (x 0n, y 0n ) m- ; CD, - (x 0n, y 0n ) (x, y ). AD :, (4.7)

: ; 106 ; (4.8) CD : :. ; ;, (4.9) (4.10) 4.7.,, m- -, φ ( 4.) AD CD. φ :, (4.11) i- (x i, y i ), γ-, d i. : ; ; (4.12). :, (4.13) m- i- :

107 -, - φ, : A m ( 5.84 10 ( 1.2 10 3 y 2 m 4 x 2 m 6.1 10 3.9 10 3 y m 3 x m 1.14) 1.15), (4.14) :, (4.15) -,, -,, γ- - ; : 2 2 2 2 ( xi x0 n) ( yi y0 n) ( xm x0 n) ( ym y0 n), (4.16) 4.8. ё γ- m-, γ-, i-, γ-. 4.16 (4.17). 4.16 γ-

108, (4.17) R, ; d i,. i- γ-,., γ- UO 2. γ- m- - UO 2 :, (4.18) γ- :, (4.19) γ- m- : G 2 2 2 2 2 2 ( xm x0 n) ( ym y0 n), (4.20) γ- (, ):, (4.21) γ- :, (4.22) γ- m- - :, (4.23), (4.24) ( - ) A m, m=1,..., 312, -

109 n- :, (4.25), Θ ΔΘ=1.,, :,. 4.17 4.21. 4.17 -,, N E =2 4.18 -, N E =3

110 4.19 - -, N E =2-70 180º 4.20 - -, N E =3 4.21 - -, N E =3-70 180º

111.,, -., - 70º. 4.9. 1. -1000, -,. 2. -, -,,, -1000. 3. -.

112-1000,., - : 1. -1000, -,, - ω( ), -, ω( ) B ( ), - U ( ) - -1000. 2. ω( ) B ( ) - U -1000, 3 -, -, ω( ) B ( ) 6- - U ( ), 2,21 2,65, 4-, 1,33 1,77, -.

113 3., - B ( ) - U ω( ): 3 B ( ) ω( ) B ) = [49,25 / -U; 67,28 / -UЖ, - U ( 3 U B ) 59,63 / -U U3 ( 3 5,028 / -U, 18 B ) = [41,76 / -U; 71,61 / -UЖ, - U ( 18 B ) 59,63 / -U U18 ( 18 7,062 / -U. 4. ( ), -,,,,. - ω( ). 5. -1000, -, ω(τ) B U (τ),

114,, - -1000. 6. - -1000 - - - ω(τ) B U (τ), -.

115 1. - / Д..,..,...Ж //. XX.. -. : -, 10-15. 2012.. 7 8. 2.,. - /.,. //. 2008. 3.. 42 45. 3. :,, /[..,..,..,..]..:, 1990. 365. 4. : 5,6 ( 6000 )...: -,1985. 214. ( / - - ;.. 3.7 (. 1)). 5. -082-07 ( -1-024-90, -89)..:,, 2008. 21. 6. Pelykh, S.N. A method for minimization of cladding failure parameter accumulation probability in VVER fuel elements / S.N. Pelykh, M.V. Maksimov, M.V. Nikolsky // Problems of Atomic Science and Technology. Ser. Physics of Radiation Effect and Radiation Materials Science. 2014. Iss. 4. P. 108 116. 7.,.. -1000 /.. //... -. 2012.. 2(39).. 108 112.

116 8.,.. - /..,..,.. //. 2010.. 6(128).. 72 73. 9. Pelykh, S. N. Estimation of local linear heat rate jump values in the variable loading mode / S. N. Pelykh, R. L. Gontar, T.. Tsiselskaya // Proc. of the 3-rd ТЧЭ. МШЧП. CЮЫЫОЧЭ ЩЫШЛХОЦЬ ШП ЧЮМХОКЫ ЩСвЬТМЬ КЧН КЭШЦТМ ОЧОЫРв. K.: Institute for Nuclear Research, 2010. P. 505 508. 10.,.. / M.. MК,..,.. -,.. //.... -. 2010.. 4 (36).. 50 58. 11.,.. - - /..,..,.. //... -. 2011.. 1(35).. 49 53. 12. MК, M.. - / MК M..,..,.. //.... - -. 2011.. 4 (40).. 34 42. 13.,.. - -1000 /.., M.. MК,..,.. // C. 7-. -.. -. :, 2011.. 59. 14. - / C..,..,..,.. // C....-.., 50-. «-».. - 6 8. 2011. ББI.,.. 1. :.. -..., 2011.. 54 57.

117 15. Pelykh, S. N. Estimation of local linear heat rate jump values in the variable loading mode / S. N. Pelykh, R. L. Gontar, T. V. Tsiselskaya // Nuclear Physics and Atomic Energy. 2011. VШХ. 12, 3. P. 242 245. 16.,.. - -1000 /..,..,.. //. 2012.. 112,. 4.. 199 206. 17.,.. -1000 /.. //... -. 2012.. 2(39).. 108 112. 18.,. /.,...:, 1974. 489. 19.,.. /....: -, 1994. 379. 20.,.. /..,..,..,.. //.. 2000..22, 5 6.. 82 88. 21.,.. - -1000 /..,..,... //. 2000.. 3.,. 3.. 32 40. 22. Pelykh, S. N. Grounds of VVER-1000 fuel cladding life control / S.N. Pelykh, M.V. Maksimov, V.E. Baskakov // Annals of Nuclear Energy. 2013. Iss. 58. P. 188 197. 23. 28506-90.. -.. : -, 1990.. 2 3. 24.,.. /..,..,..,..,.. // :,,. 2002. 4.. 26 32.

118 25.. 65872, G01σ 29/46. - /..,..,..;..,..,.. - Ю201111987;. 12.10.2011;. 12.12.2011,. 23/2011. 26.,.. - - /..,..,..,.. //. 2-..-.. " -, "., 22-23, 2001.. 308. 27.,.. -1000:...:, 2008. 358. 28. Pelykh, S.N. Theory of fuel life control methods at Nuclear Power Plants (NPP) with Water-Water Energetic Reactor (WWER) / S.N. Pelykh, M.V. Maksimov // Nuclear Reactors / A.Z. Mesquita. Rijeka, 2012. Chapter 10. P. 197 230. 29. Model of cladding failure estimation for a cycling nuclear unit / M.V. Maksimov, S.N. Pelykh, O.V. Maslov, V.E. Baskakov // Nuclear Engineering and Design. 2009. VШХ. 239, 12. P. 3021 3026. 30. - / M.. MК,..,..,.. //... 2008.. 4.. 128 139. 31. - -1000 ( -320): -1000-3..: 1988. 350. 32. : ( 7 008 89):. 90-01-01 /...... :, 1990. 168.

119 33.,.. - - //..,....: -, 1988. 359. 34.,.. /..,..,.. // Щ... -., 2001.. 4 (16).. 42 45. 35.,.. -1000 /..,..,.. // Щ.. -. -., 2002.. 1 (17).. 70 75. 36. - -1000 5- : /.. 32/1-64-498.., 1998. 90. 37. - /..,..,.. // Щ... -. 2007.. 2 (28).. 56 59. 38. -. /.. 32/1-32-200.., 2000. 97. 39.. - 88/97-001-97 ( -01-011-97) /..,..,..,....: ( ), 1998. 24. 40.,.. /... SККЫЛЫüМФОЧ: PКХЦКЫТЮЦ AМКНОЦТМ PЮЛХТЬСТЧР, 2013. 168. 41. Fuel R&D to Improve Fuel Reliability / R. Yang, B. Cheng, J. Deshon et al. // Journal of Nuclear Science and Technology. 2006. Vol. 43. No. 9.. 951 959.

120 42.,.. - /..,..,... // C. 6-. -.. -. :, 2009.. 19 20. 43. /..,..,.. //. 2002.. 3. 88 94. 44. /..,..,.. //. 2002.. 3. 95 103. 45. - -1000: /.. 313 29/93.., 1993. 78. 46.,.. /..,..,.. // Щ... -., 2001.. 2 (14).. 86 89. 47.,.. - -1000 /..,.. // І. 2002. 2(8).. 85 88. 48.,.. /..,....:, 1984. 736. 49.,.. -1000 /.. //.. -. 2006.. 15.. 13 30.

121 50.,.. -1000 /.. //... 2006.. 15.. 31 44. 51.,.. -1000 /..,..,... //. 2005.. 98,. 6.. 414 421. 52.,... /..,..,....:, 1990. 518. 53.,. - /.,.,.,. //. 2000. 2.. 42 49. 54.,.. - -1000 - //.....:. 2000.. 299 304. 55.,.. - -1000 /..,.. -,.. //. 1998.. 84, 6.. 560 563. 56.,.. /..,..,.. //. 2014.. 15, 1. 50 58. 57.,.. - /..,..,.. //... -. 2014.. 2 (44).. 82 87. 58.. 100070, G 21 C 7/00.

122 /..,.., -.,..;.., -..,.Є,.. 201102326;. 28.02.2011;. 12.11.2012,. 21/2012. 59.,.. -1000 /..,..,... //. 1988..64.. 4.. 258 266. 60.,. /...... :, 2010. 218. 61.,.. /..,..,... : -, 1986. 95. 62.,.. /..,..,.. //.... :.., 2006.. 54 59. 63. Pelykh, S. N. Theory of VVER-1000 fuel rearrangement optimization taking into account both fuel cladding durability and burnup / S.N. Pelykh, M.V. Maksimov // Problems of Atomic Science and Technology. Ser. Physics of Radiation Effect and Radiation Materials Science. 2013. Iss. 2(84). P. 50 54. 64.,.. - /.., M.. MК //.. -. 2013.. 5(87).. 84 90. 65. Pelykh, S.N. Model of cladding failure estimation under multiple cyclic reactor power changes / S.N. Pelykh, M.V. Maksimov, V.E. Baskakov // Proc. of

123 the 2-nd int. conf. CЮЫЫОЧЭ ЩЫШЛХОЦЬ ШП ЧЮМХОКЫ ЩСвЬТМЬ КЧН КЭШЦТМ ОЧОЫРв. K.: Institute for Nuclear Research, 2008. P. 638 641. 66. Pelykh, S.N. Cladding rupture life control methods for a power-cycling WWER-1000 nuclear unit / S.N. Pelykh, M.V. Maksimov // Nuclear Engineering and Design. 2011. VШХ. 241, 8. P. 2956 2963. 67.,.. /.. //. :, 1978. 118. 68.,.. /..,..,.... :, 1990. 346. 69.,.. - - /..,.. - //..:, 1980.. 123 127. 70. /..,..,..,....: -, 1986. 512. 71.,.. - 1000 /.. -,.. // C. 2-. -.. -,. 1..: -, 2001.. 271 276. 72. 24693-81....: -, 1981. 5 c. 73. - -1000 / M.. Ma,..,..,.. //... 2011. 2.. 162 170. 74.,. :.. /. //. :, 1967. 494.

124 75.,.. -1000 /.. / ( -14) //.. 14-.... 6,. 10. - :.... -. 2001.. 64 65. 76.,.... /....:., 2004. 454. 77.,.. /..,..,....:, 1981. 280. 78.,....:, 1986. 272. 79.,.. A Ш О ЩШ Ш- ОМ б бкщк ОЩ М К Ш Ш ЩОК ШЩК ОЩ Ш Ш К 5 A C, К К 20-23 /... :, 2008-2011. 323. 80.,.. /..,..,....:, 2004. 220. 81. Suzuki, M. Light water reactor fuel analysis code FEMAXI-V (Ver.1). JAERI-Data/Code 2000-030. Tokai: Japan atomic energy research institute, 2000. 285 p. 82. -..: -,, 2015. 18. 83.,.. :.... :. 05.14.03 -,, - /...., 2008. 31.

125 84...: -. -.. / Д..,..,...Ж. :, 2005. 22. 85. Deformation behavior of Zircaloy-4 cladding under cyclic pressurization / J. H. Kim, M. H. Lee, B. K. Choi, Y. H. Jeong // Journal of Nuclear Science and Technology. 2007. Vol. 44.. 1275 1280. 86. Hohorst, J.K. MATPRO-A, a library of materials properties for light-waterreactor accident analysis. NUREG/CR-5273-Vol.4. Idaho Falls: Idaho National Engineering Lab., 1990. 1098 p. 87. Pelykh, S. N. A method for VVER-1000 fuel rearrangement optimization taking into account both fuel cladding durability and burnup / S.N. Pelykh, M.V. Maksimov, G. T. Parks // Nuclear Engineering and Design. 2013. VШХ. 257, 4. P. 53 60. 88.,.. -1000 /..,..,.. //... -. 2011.. 2 (36).. 109 114. 89.,.. - /..,... : -, 1983. 295. 90.,.. /..,... :, 1971. 743. 91.,.. /..,... :, 1983. 232. 92.,.., /..,..,.. // 1-... «-94».. : I. 1994.. I.. 172.

126 93. Christiansen, J. Algorithm 77. Solving a system of simultaneous ordinary differential equations of the first order using a method for automatic step change. / J. Christiansen // The Computer Journal. 1973. Vol. 16, N. 2. P. 187 188. 94.,.. :. /..,.... :, 1986. 64. 95.,.. - -1000 /..,.. //..... -. 2012.. 4 (44).. 33 40. 96.,.. -1000 /.., M.. Ma,.. //.. 19-.. -. 2012, 26 28. 2012.., 2012.. 287 288. 97.,.. -1000 /.., M.. Ma,.. // - 2011. :.. 7-..-.., 28-30. 2011., 2011.. 47 51. 98.,.. /..,... :, 1979. 272. 99. - -1000 ( -320) : -1000-3..:1988. 350.

127

128

129