Poroelastic modelling of the coupled mechanical moisture behaviour of wood
|
|
- Όλυμπος Αλεξάκης
- 6 χρόνια πριν
- Προβολές:
Transcript
1 Ma terias Sci ence & Technoog y Poroeastic modeing of the couped mechanica moisture behaviour of wood M. Dresser, D. Derome, R. Guyer and J. Carmeiet
2 poroeastic modeing of wood - COST meeting October 00. objective Empa,,
3 poroeastic modeing of wood - COST meeting October 00 known effects of water - sweing B ϕ( p ) - moduus of easticity - Poisson s ratio - water sorption - stress dependent u Empa,, /6
4 poroeastic modeing of wood - COST meeting October 00 known effects of water - sweing 0.08 stressed in TT-direction stressed in RR-direction B ϕ( p ) stressed in LL-direction moduus of easticity - Poisson s 0.04 ratio sweing strain water sorption moisture content - mechano sorption moisture content moisture content F.-H. Neuhaus, Eastizitätszahen von Fichtenhoz in Abhängigkeit von der Hozfeuchtigkeit (easticity numbers of spruce as a function of wood moisture content), PhD thesis (in German), Institut für konstruktiven Ingenieurbau Ruhr-Universität Bochum (98) Empa,, /6 4
5 poroeastic modeing of wood - COST meeting October 00 known effects of water - sweing - moduus of easticity - Poisson s ratio u B C u ϕ( p ) - water sorption - stress dependent u Empa,, /6 5
6 poroeastic modeing of wood - COST meeting October 00 known effects of water - sweing moduus of easticity [MPa] moduus of easticity - Poisson s 000 ratio water sorption 00 data from Neuhaus cacuated vaues ue L E R E T B C u 000 ϕ( p ) E TL E LR stress dependent u moisture content E TR moisture content F.-H. Neuhaus, Eastizitätszahen von Fichtenhoz in Abhängigkeit von der Hozfeuchtigkeit (easticity numbers of spruce as a function of wood moisture content), PhD thesis (in German), Institut für konstruktiven Ingenieurbau Ruhr-Universität Bochum (98) Empa,, /6 6
7 poroeastic modeing of wood - COST meeting October 00 known effects of water - sweing Poisson's ratio moduus of easticity - Poisson s ratio ν TL u B C u ϕ( p ) ν TR ν RT ν RL - water sorption ν LT ν LR moisture content - stress dependent u moisture content moisture content F.-H. Neuhaus, Eastizitätszahen von Fichtenhoz in Abhängigkeit von der Hozfeuchtigkeit (easticity numbers of spruce as a function of wood moisture content), PhD thesis (in German), Institut für konstruktiven Ingenieurbau Ruhr-Universität Bochum (98) Empa,, /6 7
8 poroeastic modeing of wood - COST meeting October 00 constitutive equations - sweing - moduus of easticity - Poisson s ratio - water sorption - stress dependent u u u u B M B u ϕ( p C ϕ( p Empa,, /6 8 ) ) d = B( ) dϕ d = C( u) d du = M ( ) dϕ du = B( ϕ) d
9 poroeastic modeing of wood - COST meeting October 00 constitutive equations - sweing - moduus of easticity - Poisson s ratio - water sorption - stress dependent u u u u B M B u ϕ( p C ϕ( p Empa,, /6 9 ) ) d = B( ) dϕ d = C( u) d du = M ( ) dϕ du = B( ϕ) d d = Cd Bdp du = Mdp Bd J. Carmeiet, R. Guyer, D. Derome, 6 th Pant Biomechanics Conference, 009
10 poroeastic modeing of wood - COST meeting October 00. appication Empa,, 0
11 poroeastic modeing of wood - COST meeting October 00 resuts 4000 data from Neuhaus cacuated vaues 000 moduus of easticity [MPa] E L E R E TL E LR 00 E T moisture content moisture content E TR F.-H. Neuhaus, Eastizitätszahen von Fichtenhoz in Abhängigkeit von der Hozfeuchtigkeit (easticity numbers of spruce as a function of wood moisture content), PhD thesis (in German), Institut für konstruktiven Ingenieurbau Ruhr-Universität Bochum (98) Empa,, 5/6
12 poroeastic modeing of wood - COST meeting October 00 resuts....0 ν TL.0.0 Poisson's ratio ν TR ν RT ν RL ν LT ν LR moisture content moisture content moisture content F.-H. Neuhaus, Eastizitätszahen von Fichtenhoz in Abhängigkeit von der Hozfeuchtigkeit (easticity numbers of spruce as a function of wood moisture content), PhD thesis (in German), Institut für konstruktiven Ingenieurbau Ruhr-Universität Bochum (98) Empa,, 6/6
13 poroeastic modeing of wood - COST meeting October 00 resuts stressed in TT-direction stressed in RR-direction stressed in LL-direction UNstressed stressed data from Neuhaus sweing strain p kg -0.0 compressive stress 0, 0 MPa compressive stress 0, 0 MPa compressive stress 0, 0 MPa moisture content moisture content moisture content F.-H. Neuhaus, Eastizitätszahen von Fichtenhoz in Abhängigkeit von der Hozfeuchtigkeit (easticity numbers of spruce as a function of wood moisture content), PhD thesis (in German), Institut für konstruktiven Ingenieurbau Ruhr-Universität Bochum (98) Empa,, 7/6
14 poroeastic modeing of wood - COST meeting October 00 resuts stressed in RR-direction 0.0 stressed in LL-direction moisture content reative humidity reative humidity compressive stress 0, 0, 0 MPa p kg u reative humidity Empa,, 8/6 4
15 poroeastic modeing of wood - COST meeting October 00 resuts stressed in TT-direction stressed in RR-direction stressed in LL-direction p expeed moisture u(t=0) 5, 0 % u(t=0) 5, 0 % kg u 0.0 u(t=0) 5, 0 % compressive stress [MPa] compressive stress [MPa] compressive stress [MPa] Empa,, 9/6 5
16 poroeastic modeing of wood - COST meeting October 00 resuts 0 restrained in TT-direction restrained in RR-direction restrained in LL-direction p, start sweing stress [MPa] u(t=0) 0, 7.5, 5 % u(t=0) 0, 7.5, 5 % u(t=0) 0, 7.5, 5 % p moisture content moisture content moisture content Empa,, 0/6 6
17 poroeastic modeing of wood - COST meeting October 00 resuts 0.4 restrained in TT-direction RR-strain LL-strain 0.4 restrained in RR-direction TT-strain LL-strain 0.4 restrained in LL-direction TT-strain RR-strain p, start sweing strain u(t=0) 0, 7.5, 5 % u(t=0) 0, 7.5, 5 % u(t=0) 0, 7.5, 5 % p moisture content moisture content moisture content Empa,, /6 7
18 poroeastic modeing of wood - COST meeting October 00. physica background Empa,, 8
19 poroeastic modeing of wood - COST meeting October 00 couped moisture and mechanica behavior. tota differentia dω(, u) Ω Ω dω(, u) = d du u interna energy Ω(, u) Nm / m dω d d dω dt dt dω du du Empa,, /6 9
20 poroeastic modeing of wood - COST meeting October 00 couped moisture and mechanica behavior. tota differentia dω(, u) Ω Ω dω(, u) = d du u interna energy Ω(, u) Nm / m dω d d dω dt dt dω du du mode is isotherma Empa,, /6 0
21 poroeastic modeing of wood - COST meeting October 00 couped moisture and mechanica behavior. tota differentia dω(, u) Ω dω(, u) = d Ω Ω u Ω du u. Legendre transformation w(, p ) = Ω(, u) p u p Ω Ω p u Empa,, /6
22 poroeastic modeing of wood - COST meeting October 00 couped moisture and mechanica behavior. tota differentia dω(, u) Ω dω(, u) = d Ω Ω u. Legendre transformation w(, p ) = Ω(, u) p u dp p d u d. tota differentia d, du d = Ω du u p du = u p dp Empa,, /6
23 poroeastic modeing of wood - COST meeting October 00 couped moisture and mechanica behavior. tota differentia dω(, u) Ω dω(, u) = d Ω Ω u. Legendre transformation w(, p ) = Ω(, u) p u dp p d u d. tota differentia d, du d = Ω du u p du = u p dp strain capacity w C : = moisture capacity w M : = p couping coefficient w B : = p d = Bdp Cd du = Mdp Bd Empa,, /6
24 poroeastic modeing of wood - COST meeting October 00 couped moisture and mechanica behavior. tota differentia dω(, u) Ω dω(, u) = d Ω Ω u. Legendre transformation w(, p ) = Ω(, u) p u dp p d u d. tota differentia d, du d = Ω du u p du = u p dp strain capacity w Cijk = ij k moisture capacity M = w p couping coefficient B ij w = p ij d = C d B ij ijk k ij dp du = Mdp B ij d ij Empa,, /6 4
25 poroeastic modeing of wood - COST meeting October 00 energy function (D approach) w = w w stress water w couping Empa,, 4/6 5
26 Empa,, 6 energy function (D approach) 4/6 couping water stress w w w w = w stress = w stress poroeastic modeing of wood - COST meeting October 00
27 poroeastic modeing of wood - COST meeting October 00 energy function (D approach) w = w w stress water w couping w stress w stress = exampe: nd order approach wstress = water = 0 w C = = = const. w B = p = 0 w = 0 w couping w = d = Bdp Cd d = Cd = C Empa,, 4/6 7
28 poroeastic modeing of wood - COST meeting October 00 energy function (D approach) w = w w stress water w couping w stress w stress w water = u 0 u 0 = u0, FSP p v p g ρr TA ϕ / n w 0( ) water = u p dp u 0,FSP w = Ω(, u) p u dw = udp ϕ Empa,, 4/6 8
29 poroeastic modeing of wood - COST meeting October 00 energy function (D approach) w = w w stress water w couping w stress w stress = w water w water / nϕ p = u p dp u FSP p ρrvta 0 ( ) = 0, ( ϕ ) ρrvta ϕ n ϕ n ϕ Empa,, 4/6 9
30 Empa,, 0 energy function (D approach) 4/6 couping water stress w w w w = w stress w water w couping ( ) n FSP A u p u / 0, 0 / n ) ( = ϕ ϕ = R T p p Exp v g ρ ϕ = [0] [0] [0] 4 [0] [0] [0] 0 ) ( γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ couping p u w ϕ ϕ ϕ ϕ ϕ ρ ρ n n R TA p R TA p u dp p u w n v v FSP water = = ) ( ) ( / 0, 0 poroeastic modeing of wood - COST meeting October 00 = w stress
31 poroeastic modeing of wood - COST meeting October 00 concusion Thermodynamic approach yieds set of two constitutive equations inking mechanica and moisture behavior d = Bdp Cd du = Mdp Bd Important effects of the couped moisture and mechanica behavior of wood are covered. Orthotropy of wood is taken into account. Empa,, 5/6
32 poroeastic modeing of wood - COST meeting October 00 Thank you Empa,, 6/6
Alterazioni del sistema cardiovascolare nel volo spaziale
POLITECNICO DI TORINO Corso di Laurea in Ingegneria Aerospaziale Alterazioni del sistema cardiovascolare nel volo spaziale Relatore Ing. Stefania Scarsoglio Studente Marco Enea Anno accademico 2015 2016
Διαβάστε περισσότεραDr. D. Dinev, Department of Structural Mechanics, UACEG
Lecture 4 Material behavior: Constitutive equations Field of the game Print version Lecture on Theory of lasticity and Plasticity of Dr. D. Dinev, Department of Structural Mechanics, UACG 4.1 Contents
Διαβάστε περισσότεραProperties of Nikon i-line Glass Series
786.7098.750 86.77 86.6 Wavelength [µm] Refractive Index Partial Dispersion Fluorescence [Class] * - 2.252.5786 F - C 0.0056 Solarization [%] 2.5 λ [nm] τ (0 mm) - 2.05809.6052 F' - C' 0.005505 *: JOGIS
Διαβάστε περισσότεραΠ Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α
Α Ρ Χ Α Ι Α Ι Σ Τ Ο Ρ Ι Α Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Σ η µ ε ί ω σ η : σ υ ν ά δ ε λ φ ο ι, ν α µ ο υ σ υ γ χ ω ρ ή σ ε τ ε τ ο γ ρ ή γ ο ρ ο κ α ι α τ η µ έ λ η τ ο ύ
Διαβάστε περισσότεραGeodesic Equations for the Wormhole Metric
Geodesic Equations for the Wormhole Metric Dr R Herman Physics & Physical Oceanography, UNCW February 14, 2018 The Wormhole Metric Morris and Thorne wormhole metric: [M S Morris, K S Thorne, Wormholes
Διαβάστε περισσότεραTeor imov r. ta matem. statist. Vip. 94, 2016, stor
eor imov r. ta matem. statist. Vip. 94, 6, stor. 93 5 Abstract. e article is devoted to models of financial markets wit stocastic volatility, wic is defined by a functional of Ornstein-Ulenbeck process
Διαβάστε περισσότεραComputing Gradient. Hung-yi Lee 李宏毅
Computing Gradient Hung-yi Lee 李宏毅 Introduction Backpropagation: an efficient way to compute the gradient Prerequisite Backpropagation for feedforward net: http://speech.ee.ntu.edu.tw/~tkagk/courses/mlds_05_/lecture/
Διαβάστε περισσότεραLifting Entry (continued)
ifting Entry (continued) Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion Planar state equations MARYAN 1 01 avid. Akin - All rights reserved http://spacecraft.ssl.umd.edu
Διαβάστε περισσότεραLocal Approximation with Kernels
Local Approximation with Kernels Thomas Hangelbroek University of Hawaii at Manoa 5th International Conference Approximation Theory, 26 work supported by: NSF DMS-43726 A cubic spline example Consider
Διαβάστε περισσότερα1ος Θερμοδυναμικός Νόμος
ος Θερμοδυναμικός Νόμος Έργο-Έργο ογκομεταβολής Αδιαβατικό Έργο Εσωτερική ενέργεια, U Πρώτος Θερμοδυναμικός Νόμος Θερμότητα Ολική Ενέργεια Ενθαλπία Θερμοχωρητικότητα Διεργασίες Ιδανικών Αερίων ΕΡΓΟ Κεφάλαιο3,
Διαβάστε περισσότεραwave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:
3.0 Marine Hydrodynamics, Fall 004 Lecture 0 Copyriht c 004 MIT - Department of Ocean Enineerin, All rihts reserved. 3.0 - Marine Hydrodynamics Lecture 0 Free-surface waves: wave enery linear superposition,
Διαβάστε περισσότεραm i N 1 F i = j i F ij + F x
N m i i = 1,..., N m i Fi x N 1 F ij, j = 1, 2,... i 1, i + 1,..., N m i F i = j i F ij + F x i mi Fi j Fj i mj O P i = F i = j i F ij + F x i, i = 1,..., N P = i F i = N F ij + i j i N i F x i, i = 1,...,
Διαβάστε περισσότεραAR.Drone, ( ), [1]. [2-4], - [5-8] [9, 10] - . :, [6], - [9], [7], [11, 12]
56 ARDRONE 639 oto@idissiaenssu : +7 (383) 333-6-5 : ARDrone Abstract In this paper we discuss a trajector tracing probem of quadrocopter where the trajector is defined as impicit function of coordinates
Διαβάστε περισσότεραr t t r t t à ré ér t é r t st é é t r s s2stè s t rs ts t s
r t r r é té tr q tr t q t t q t r t t rrêté stér ût Prés té r ré ér ès r é r r st P t ré r t érô t 2r ré ré s r t r tr q t s s r t t s t r tr q tr t q t t q t r t t r t t r t t à ré ér t é r t st é é
Διαβάστε περισσότεραDETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E.
DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM by Zoran VARGA, Ms.C.E. Euro-Apex B.V. 1990-2012 All Rights Reserved. The 2 DOF System Symbols m 1 =3m [kg] m 2 =8m m=10 [kg] l=2 [m] E=210000
Διαβάστε περισσότεραLifting Entry 2. Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYLAND U N I V E R S I T Y O F
ifting Entry Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYAN 1 010 avid. Akin - All rights reserved http://spacecraft.ssl.umd.edu ifting Atmospheric
Διαβάστε περισσότεραVariational Wavefunction for the Helium Atom
Technische Universität Graz Institut für Festkörperphysik Student project Variational Wavefunction for the Helium Atom Molecular and Solid State Physics 53. submitted on: 3. November 9 by: Markus Krammer
Διαβάστε περισσότεραΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΕΡΙΒΑΛΛΟΝΤΟΣ
ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Τομέας Περιβαλλοντικής Υδραυλικής και Γεωπεριβαλλοντικής Μηχανικής (III) Εργαστήριο Γεωπεριβαλλοντικής Μηχανικής TECHNICAL UNIVERSITY OF CRETE SCHOOL of
Διαβάστε περισσότεραγ 1 6 M = 0.05 F M = 0.05 F M = 0.2 F M = 0.2 F M = 0.05 F M = 0.05 F M = 0.05 F M = 0.2 F M = 0.05 F 2 2 λ τ M = 6000 M = 10000 M = 15000 M = 6000 M = 10000 M = 15000 1 6 τ = 36 1 6 τ = 102 1 6 M = 5000
Διαβάστε περισσότεραTRIAXIAL TEST, CORPS OF ENGINEERS FORMAT
TRIAXIAL TEST, CORPS OF ENGINEERS FORMAT .5 C, φ, deg Tan(φ) Total.7 2.2 Effective.98 8.33 Shear,.5.5.5 2 2.5 3 Total Normal, Effective Normal, Deviator,.5.25.75.5.25 2.5 5 7.5 Axial Strain, % Type of
Διαβάστε περισσότεραΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ (ΣΔΟ) ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ (ΣΔΟ) ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ «ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ ΛΟΓΙΣΤΙΚΩΝ ΚΑΤΑΣΤΑΣΕΩΝ ΤΩΝ ΕΤΑΙΡΕΙΩΝ ΚΡΕΤΑ ΦΑΡΜ Α.Β.Ε.Ε. &
Διαβάστε περισσότεραPhysique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté
Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté Alexis Nuttin To cite this version: Alexis Nuttin. Physique des réacteurs
Διαβάστε περισσότεραΖΕΡΔΑΛΗΣ ΣΩΤΗΡΙΟΣ ΤΟ ΟΥΤΙ ΣΤΗ ΒΕΡΟΙΑ (1922-ΣΗΜΕΡΑ) ΘΕΣΣΑΛΟΝΙΚΗ 2005 1
(1922- ) 2005 1 2 .1.2 1.1.2-3 1.2.3-4 1.3.4-5 1.4.5-6 1.5.6-10.11 2.1 2.2 2.3 2.4.11-12.12-13.13.14 2.5 (CD).15-20.21.22 3 4 20.,,.,,.,.,,.,.. 1922., (= )., (25/10/2004), (16/5/2005), (26/1/2005) (7/2/2005),,,,.,..
Διαβάστε περισσότεραDark matter from Dark Energy-Baryonic Matter Couplings
Dark matter from Dark Energy-Baryonic Matter Coulings Alejandro Avilés 1,2 1 Instituto de Ciencias Nucleares, UNAM, México 2 Instituto Nacional de Investigaciones Nucleares (ININ) México January 10, 2010
Διαβάστε περισσότεραDuPont Suva. DuPont. Thermodynamic Properties of. Refrigerant (R-410A) Technical Information. refrigerants T-410A ENG
Technical Information T-410A ENG DuPont Suva refrigerants Thermodynamic Properties of DuPont Suva 410A Refrigerant (R-410A) The DuPont Oval Logo, The miracles of science, and Suva, are trademarks or registered
Διαβάστε περισσότερα1 String with massive end-points
1 String with massive end-points Πρόβλημα 5.11:Θεωρείστε μια χορδή μήκους, τάσης T, με δύο σημειακά σωματίδια στα άκρα της, το ένα μάζας m, και το άλλο μάζας m. α) Μελετώντας την κίνηση των άκρων βρείτε
Διαβάστε περισσότεραP P Ó P. r r t r r r s 1. r r ó t t ó rr r rr r rí st s t s. Pr s t P r s rr. r t r s s s é 3 ñ
P P Ó P r r t r r r s 1 r r ó t t ó rr r rr r rí st s t s Pr s t P r s rr r t r s s s é 3 ñ í sé 3 ñ 3 é1 r P P Ó P str r r r t é t r r r s 1 t r P r s rr 1 1 s t r r ó s r s st rr t s r t s rr s r q s
Διαβάστε περισσότεραStrain gauge and rosettes
Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified
Διαβάστε περισσότερα6.4 Superposition of Linear Plane Progressive Waves
.0 - Marine Hydrodynamics, Spring 005 Lecture.0 - Marine Hydrodynamics Lecture 6.4 Superposition of Linear Plane Progressive Waves. Oblique Plane Waves z v k k k z v k = ( k, k z ) θ (Looking up the y-ais
Διαβάστε περισσότεραr r t r r t t r t P s r t r P s r s r r rs tr t r r t s ss r P s s t r t t tr r r t t r t r r t t s r t rr t Ü rs t 3 r r r 3 rträ 3 röÿ r t
r t t r t ts r3 s r r t r r t t r t P s r t r P s r s r P s r 1 s r rs tr t r r t s ss r P s s t r t t tr r 2s s r t t r t r r t t s r t rr t Ü rs t 3 r t r 3 s3 Ü rs t 3 r r r 3 rträ 3 röÿ r t r r r rs
Διαβάστε περισσότεραibemo Kazakhstan Republic of Kazakhstan, West Kazakhstan Oblast, Aksai, Pramzone, BKKS office complex Phone: ; Fax:
Διαβάστε περισσότερα
ect of Modified Wheat Starches on the Textural Properties of Baked Products, such as Cookies
224 Nippon Shokuhin Kagaku Kogaku Kaishi Vol. // No. /. - (**2) 22 * * E# ect of Modified Wheat Starches on the Textural Properties of Baked Products such as Cookies Atsuko Higo and Yoshiko Wada* Bunkyo
Διαβάστε περισσότερα= 0.927rad, t = 1.16ms
P 9. [a] ω = 2πf = 800rad/s, f = ω 2π = 27.32Hz [b] T = /f = 7.85ms [c] I m = 25mA [d] i(0) = 25cos(36.87 ) = 00mA [e] φ = 36.87 ; φ = 36.87 (2π) = 0.6435 rad 360 [f] i = 0 when 800t + 36.87 = 90. Now
Διαβάστε περισσότεραΑ Ρ Ι Θ Μ Ο Σ : 6.913
Α Ρ Ι Θ Μ Ο Σ : 6.913 ΠΡΑΞΗ ΚΑΤΑΘΕΣΗΣ ΟΡΩΝ ΔΙΑΓΩΝΙΣΜΟΥ Σ τ η ν Π ά τ ρ α σ ή μ ε ρ α σ τ ι ς δ ε κ α τ έ σ σ ε ρ ι ς ( 1 4 ) τ ο υ μ ή ν α Ο κ τ ω β ρ ί ο υ, η μ έ ρ α Τ ε τ ά ρ τ η, τ ο υ έ τ ο υ ς δ
Διαβάστε περισσότεραZ = 1.2 X 1 + 1, 4 X 2 + 3, 3 X 3 + 0, 6 X 4 + 0, 999 X 5. X 1 X 2 X 2 X 3 X 4 X 4 X 5 X 4 X 4 Z = 0.717 X 1 + 0.847 X 2 + 3.107 X 3 + 0.420 X 4 + 0.998 X 5. X 5 X 4 Z = 6.56 X 1 + 3.26 X 2 + 6.72 X 3
Διαβάστε περισσότεραE.E. Παρ. Ill (I) 429 Κ.Δ.Π. 150/83 Αρ. 1871,
E.E. Πρ. ll () 429 Κ.Δ.Π. 50/ Αρ. 7, 24.6. Αρθμός 50 ΠΕΡ ΤΑΧΥΔΡΜΕΩΝ ΝΜΣ (ΚΕΦ. 0 ΚΑ ΝΜ 42 ΤΥ 96 ΚΑ 7 ΤΥ 977) Δάτγμ δνάμ τ άρθρ 7() Τ Υπργκό Σμβύλ, σκώντς τς ξσίς π πρέχντ Κ»>. 0. σ' τό δνάμ τ δφί τ άρθρ
Διαβάστε περισσότεραSecond Order RLC Filters
ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor
Διαβάστε περισσότεραE T E L. E e E s G LT. M x, M y, M xy M H N H N x, N y, N xy. S ijkl. V v V crit
A c,a f,a m E c.e f,e m E e E s G f,g m L M x, M y, M xy M H N H N x, N y, N xy P c,p f,p m Q S S ijkl T T V V v V crit W h k t c,t f,t m u 0 v c,v f,v m w c,w f,w m cross-sectional area of composite,fiber
Διαβάστε περισσότεραHigher Derivative Gravity Theories
Higher Derivative Gravity Theories Black Holes in AdS space-times James Mashiyane Supervisor: Prof Kevin Goldstein University of the Witwatersrand Second Mandelstam, 20 January 2018 James Mashiyane WITS)
Διαβάστε περισσότεραMulti-GPU numerical simulation of electromagnetic waves
Multi-GPU numerical simulation of electromagnetic waves Philippe Helluy, Thomas Strub To cite this version: Philippe Helluy, Thomas Strub. Multi-GPU numerical simulation of electromagnetic waves. ESAIM:
Διαβάστε περισσότεραConsommation marchande et contraintes non monétaires au Canada ( )
Consommation marchande et contraintes non monétaires au Canada (1969-2008) Julien Boelaert, François Gardes To cite this version: Julien Boelaert, François Gardes. Consommation marchande et contraintes
Διαβάστε περισσότεραDuPont Suva 95 Refrigerant
Technical Information T-95 SI DuPont Suva refrigerants Thermodynamic Properties of DuPont Suva 95 Refrigerant (R-508B) The DuPont Oval Logo, The miracles of science, and Suva, are trademarks or registered
Διαβάστε περισσότεραTeSys contactors a.c. coils for 3-pole contactors LC1-D
References a.c. coils for 3-pole contactors LC1-D Control circuit voltage Average resistance Inductance of Reference (1) Weight Uc at 0 C ± 10 % closed circuit For 3-pole " contactors LC1-D09...D38 and
Διαβάστε περισσότεραES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems
ES440/ES911: CFD Chapter 5. Solution of Linear Equation Systems Dr Yongmann M. Chung http://www.eng.warwick.ac.uk/staff/ymc/es440.html Y.M.Chung@warwick.ac.uk School of Engineering & Centre for Scientific
Διαβάστε περισσότεραRadiation Stress Concerned with the force (or momentum flux) exerted on the right hand side of a plane by water on the left hand side of the plane.
upplement on Radiation tress and Wave etup/et down Radiation tress oncerned wit te force (or momentum flu) eerted on te rit and side of a plane water on te left and side of te plane. plane z "Radiation
Διαβάστε περισσότεραRadio détection des rayons cosmiques d ultra-haute énergie : mise en oeuvre et analyse des données d un réseau de stations autonomes.
Radio détection des rayons cosmiques d ultra-haute énergie : mise en oeuvre et analyse des données d un réseau de stations autonomes. Diego Torres Machado To cite this version: Diego Torres Machado. Radio
Διαβάστε περισσότερα( ) ( ) ( ) ( ) ( ) 槡 槡 槡 ( ) 槡 槡 槡 槡 ( ) ( )
3 3 Vol.3.3 0 3 JournalofHarbinEngineeringUniversity Mar.0 doi:0.3969/j.isn.006-7043.0.03.0 ARIMA GARCH,, 5000 :!""#$%&' *+&,$-.,/0 ' 3$,456$*+7&'89 $:;,/0 ?4@A$ ARI MA GARCHBCDE FG%&HIJKL$ B
Διαβάστε περισσότεραDuPont Suva 95 Refrigerant
Technical Information T-95 ENG DuPont Suva refrigerants Thermodynamic Properties of DuPont Suva 95 Refrigerant (R-508B) The DuPont Oval Logo, The miracles of science, and Suva, are trademarks or registered
Διαβάστε περισσότεραMacromechanics of a Laminate. Textbook: Mechanics of Composite Materials Author: Autar Kaw
Macromechanics of a Laminate Tetboo: Mechanics of Composite Materials Author: Autar Kaw Figure 4.1 Fiber Direction θ z CHAPTER OJECTIVES Understand the code for laminate stacing sequence Develop relationships
Διαβάστε περισσότεραMALMÖ UNIVERSITY HEALTH AND SOCIETY DISSERTATION 2014:3 ANTON FAGERSTRÖM EFFECTS OF SURFACTANT ADJUVANTS ON PLANT LEAF CUTICLE BARRIER PROPERTIES
MALMÖ UNIVERSITY HEALTH AND SOCIETY DISSERTATION 2014:3 ANTON FAGERSTRÖM EFFECTS OF SURFACTANT ADJUVANTS ON PLANT LEAF CUTICLE BARRIER PROPERTIES 1 Malmö University Health and Society, Doctoral Dissertation
Διαβάστε περισσότεραHomework 3 Solutions
Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For
Διαβάστε περισσότεραSPECIAL FUNCTIONS and POLYNOMIALS
SPECIAL FUNCTIONS and POLYNOMIALS Gerard t Hooft Stefan Nobbenhuis Institute for Theoretical Physics Utrecht University, Leuvenlaan 4 3584 CC Utrecht, the Netherlands and Spinoza Institute Postbox 8.195
Διαβάστε περισσότεραΕ.Ε. Παρ. I(II) Αρ. 3887,
.. Π. I() Α. 887, 2.7.2004 402 Ν. 25(ΙΙ)/2004 εί Συμλμτικύ Πϋλγισμύ Νόμς (Α. ) τυ 2004 εκδίδετι με δμσίευσ στν ίσμ φμείδ τς Κυικής Δμκτίς σύμφν με τ Αθ 52 τυ Συντάγμτς. Πίμι. 75() τν 200. Συντικός τίτλς.
Διαβάστε περισσότερα3.4 MI Components, Allowable Load Data and Specifications. MI Girder 90/120. Material Specifications. Ordering Information
MI Girder 90/120 Materia Specifications 1 15 / 16 " (50) Materia Gavanizing Ordering Information Description S235 JRG2 DIN 10025, (ASTM A283 (D) 34 ksi) Hot-dip gavanized 3 mis (75 μm) DIN EN ISO 1461,
Διαβάστε περισσότεραPROPERTIES OF ORDINARY WATER SUBSTANCE AT SATURATION FROF TME CRITICAL POINT DOWN TO 66 C EQUATIONS & TABLES
PROPERTIES OF ORDINARY WATER SUBSTANCE AT SATURATION FROF TME CRITICAL POINT DOWN TO 66 C EQUATIONS & TABLES M. CONDE ENGINEERING, 2002 M. CONDE ENGINEERING, Zurich 2002 Properties of ordinary water substance
Διαβάστε περισσότερα11 η Εβδομάδα Δυναμική Περιστροφικής κίνησης. Έργο Ισχύς στην περιστροφική κίνηση Στροφορμή
11 η Εβδομάδα Δυναμική Περιστροφικής κίνησης Έργο Ισχύς στην περιστροφική κίνηση Στροφορμή Έργο και ισχύς στην περιστροφική κίνηση Εφαπτομενική δύναμη που περιστρέφει τον τροχό κατά dθ dw F ds = F R dθ
Διαβάστε περισσότεραrs r r â t át r st tíst Ó P ã t r r r â
rs r r â t át r st tíst P Ó P ã t r r r â ã t r r P Ó P r sã rs r s t à r çã rs r st tíst r q s t r r t çã r r st tíst r t r ú r s r ú r â rs r r â t át r çã rs r st tíst 1 r r 1 ss rt q çã st tr sã
Διαβάστε περισσότεραSpherical Coordinates
Spherical Coordinates MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Spherical Coordinates Another means of locating points in three-dimensional space is known as the spherical
Διαβάστε περισσότεραSecond Order Partial Differential Equations
Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y
Διαβάστε περισσότεραECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations
ECE 308 SIGNALS AND SYSTEMS FALL 07 Answers to selected problems on prior years examinations Answers to problems on Midterm Examination #, Spring 009. x(t) = r(t + ) r(t ) u(t ) r(t ) + r(t 3) + u(t +
Διαβάστε περισσότεραHygromécanique des panneaux en bois et conservation du patrimoine culturel. Des pathologies... aux outils pour la conservation
Hygromécanique des panneaux en bois et conservation du patrimoine culturel. Des pathologies... aux outils pour la conservation Bertrand Marcon To cite this version: Bertrand Marcon. Hygromécanique des
Διαβάστε περισσότεραMECHANICAL PROPERTIES OF MATERIALS
MECHANICAL PROPERTIES OF MATERIALS! Simple Tension Test! The Stress-Strain Diagram! Stress-Strain Behavior of Ductile and Brittle Materials! Hooke s Law! Strain Energy! Poisson s Ratio! The Shear Stress-Strain
Διαβάστε περισσότεραDelhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: Ph:
Seria : 0. T_ME_(+B)_Strength of Materia_9078 Dehi Noida Bhopa Hyderabad Jaipur Luckno Indore une Bhubanesar Kokata atna Web: E-mai: info@madeeasy.in h: 0-56 CLSS TEST 08-9 MECHNICL ENGINEERING Subject
Διαβάστε περισσότεραIntroduction to Theory of. Elasticity. Kengo Nakajima Summer
Introduction to Theor of lasticit Summer Kengo Nakajima Technical & Scientific Computing I (48-7) Seminar on Computer Science (48-4) elast Theor of lasticit Target Stress Governing quations elast 3 Theor
Διαβάστε περισσότερα1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint
1. a) 5 points) Find the unit tangent and unit normal vectors T and N to the curve at the point P, π, rt) cost, t, sint ). b) 5 points) Find curvature of the curve at the point P. Solution: a) r t) sint,,
Διαβάστε περισσότερα상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님
상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님 Motivation Bremsstrahlung is a major rocess losing energies while jet articles get through the medium. BUT it should be quite different from low energy
Διαβάστε περισσότεραCouplage dans les applications interactives de grande taille
Couplage dans les applications interactives de grande taille Jean-Denis Lesage To cite this version: Jean-Denis Lesage. Couplage dans les applications interactives de grande taille. Réseaux et télécommunications
Διαβάστε περισσότερα2. Α ν ά λ υ σ η Π ε ρ ι ο χ ή ς. 3. Α π α ι τ ή σ ε ι ς Ε ρ γ ο δ ό τ η. 4. Τ υ π ο λ ο γ ί α κ τ ι ρ ί ω ν. 5. Π ρ ό τ α σ η. 6.
Π Ε Ρ Ι Ε Χ Ο Μ Ε Ν Α 1. Ε ι σ α γ ω γ ή 2. Α ν ά λ υ σ η Π ε ρ ι ο χ ή ς 3. Α π α ι τ ή σ ε ι ς Ε ρ γ ο δ ό τ η 4. Τ υ π ο λ ο γ ί α κ τ ι ρ ί ω ν 5. Π ρ ό τ α σ η 6. Τ ο γ ρ α φ ε ί ο 1. Ε ι σ α γ ω
Διαβάστε περισσότεραCredit Risk. Finance and Insurance - Stochastic Analysis and Practical Methods Spring School Jena, March 2009
Credit Risk. Finance and Insurance - Stochastic Analysis and Practical Methods Spring School Jena, March 2009 1 IV. Hedging of credit derivatives 1. Two default free assets, one defaultable asset 1.1 Two
Διαβάστε περισσότεραSpace-Time Symmetries
Chapter Space-Time Symmetries In classical fiel theory any continuous symmetry of the action generates a conserve current by Noether's proceure. If the Lagrangian is not invariant but only shifts by a
Διαβάστε περισσότεραAssessment of otoacoustic emission probe fit at the workfloor
Assessment of otoacoustic emission probe fit at the workfloor t s st tt r st s s r r t rs t2 t P t rs str t t r 1 t s ér r tr st tr r2 t r r t s t t t r t s r ss r rr t 2 s r r 1 s r r t s s s r t s t
Διαβάστε περισσότεραHigh order interpolation function for surface contact problem
3 016 5 Journal of East China Normal University Natural Science No 3 May 016 : 1000-564101603-0009-1 1 1 1 00444; E- 00030 : Lagrange Lobatto Matlab : ; Lagrange; : O41 : A DOI: 103969/jissn1000-56410160300
Διαβάστε περισσότεραTechnical Information T-9100 SI. Suva. refrigerants. Thermodynamic Properties of. Suva Refrigerant [R-410A (50/50)]
d Suva refrigerants Technical Information T-9100SI Thermodynamic Properties of Suva 9100 Refrigerant [R-410A (50/50)] Thermodynamic Properties of Suva 9100 Refrigerant SI Units New tables of the thermodynamic
Διαβάστε περισσότεραROBOT. Dynamic Model Based Motor Control for Wheeled Mobile Robots
3 4 8 7 ROBOT Vo.3, No.4 Juy, 8-446(8)4-36-7, 8 9 DMMC I DMMC TP49 A Dynamic Mode Based Motor Contro for Wheeed Mobie Robots CHEN Xiao-peng,, LI Cheng-rong, LI Gong-yan, LUO Yang-yu (. Beijing Institute
Διαβάστε περισσότεραChapter 7 Transformations of Stress and Strain
Chapter 7 Transformations of Stress and Strain INTRODUCTION Transformation of Plane Stress Mohr s Circle for Plane Stress Application of Mohr s Circle to 3D Analsis 90 60 60 0 0 50 90 Introduction 7-1
Διαβάστε περισσότεραΣυνοπτική περιγραφή των συνηθέστερων εργαστηριακών δοκιµών Βραχοµηχανικής Εδαφοµηχανικής
Αριστοτέλειο Πανεπιστήµιο Θεσσαλονίκης Τµήµα Γεωλογίας Εργαστήριο Τεχνικής Γεωλογίας & Υδρογεωλογίας 54124 Θεσσαλονίκη, e-mail: christar@geo.auth.gr Συνοπτική περιγραφή των συνηθέστερων εργαστηριακών δοκιµών
Διαβάστε περισσότεραP AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example:
(B t, S (t) t P AND P,..., S (p) t ): securities P : actual probability P : risk neutral probability Realtionship: mutual absolute continuity P P For example: P : ds t = µ t S t dt + σ t S t dw t P : ds
Διαβάστε περισσότεραDERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C
DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C By Tom Irvine Email: tomirvine@aol.com August 6, 8 Introduction The obective is to derive a Miles equation which gives the overall response
Διαβάστε περισσότεραMechanical Behaviour of Materials Chapter 5 Plasticity Theory
Mechanical Behaviour of Materials Chapter 5 Plasticity Theory Dr.-Ing. 郭瑞昭 Yield criteria Question: For what combinations of loads will the cylinder begin to yield plastically? The criteria for deciding
Διαβάστε περισσότεραChapter 6: Systems of Linear Differential. be continuous functions on the interval
Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations
Διαβάστε περισσότεραm 1, m 2 F 12, F 21 F12 = F 21
m 1, m 2 F 12, F 21 F12 = F 21 r 1, r 2 r = r 1 r 2 = r 1 r 2 ê r = rê r F 12 = f(r)ê r F 21 = f(r)ê r f(r) f(r) < 0 f(r) > 0 m 1 r1 = f(r)ê r m 2 r2 = f(r)ê r r = r 1 r 2 r 1 = 1 m 1 f(r)ê r r 2 = 1 m
Διαβάστε περισσότεραOPTIMAL OPERATION OF THE SELECTIVE WITHDRAWAL SYSTEM IN TONO DAM RESERVOIR
,5,1 OPTIMAL OPERATION OF THE SELECTIVE WITHDRAWAL SYSTEM IN TONO DAM RESERVOIR 1, Andrea Casteetti,3 Rodofo Soncini-Sessa 3 Hiroshi YAJIMA, Andrea CASTELLETTI and Rodofo SONCINI-SESSA 1 () 8-855 -11 Centre
Διαβάστε περισσότεραComparison of characteristic by Transformer Winding Method of Contactless Power Transfer Systems for Electric Vehicle
SPC-9-39 Comparison of characteristic by Transformer Winding Method of Contactess Power Transfer Systems for Eectric ehice Tauya wata, Natsui Ehara, Yasuyoshi Kaneo, Shigeru Abe (Saitama University) Tomio
Διαβάστε περισσότεραcz+d d (ac + cd )z + bc + dd c z + d
T (z) = az + b cz + d ; a, b, c, d C, ad bc 0 ( ) a b M T (z) = (z) az + b c d cz + d (T T )(z) = T (T (z) (T T )(z) = az+b a + cz+d b c az+b + = (aa + cb )z + a b + b d a z + b cz+d d (ac + cd )z + bc
Διαβάστε περισσότεραMolekulare Ebene (biochemische Messungen) Zelluläre Ebene (Elektrophysiologie, Imaging-Verfahren) Netzwerk Ebene (Multielektrodensysteme) Areale (MRT, EEG...) Gene Neuronen Synaptische Kopplung kleine
Διαβάστε περισσότεραkatoh@kuraka.co.jp okaken@kuraka.co.jp mineot@fukuoka-u.ac.jp 4 35 3 Normalized stress σ/g 25 2 15 1 5 Breaking test Theory 1 2 Shear tests Failure tests Compressive tests 1 2 3 4 5 6 Fig.1. Relation between
Διαβάστε περισσότεραReminders: linear functions
Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U
Διαβάστε περισσότεραGrey Cast Irons. Technical Data
Grey Cast Irons Standard Material designation Grey Cast Irons BS EN 1561 EN-GJL-200 EN-GJL-250 EN-GJL-300 EN-GJL-350-1997 (EN-JL1030) (EN-JL1040) (EN-JL1050) (EN-JL1060) Characteristic SI unit Tensile
Διαβάστε περισσότεραΣΤΑΤΙΚΗ ΜΗ ΓΡΑΜΜΙΚΗ ΑΝΑΛΥΣΗ ΚΑΛΩ ΙΩΤΩΝ ΚΑΤΑΣΚΕΥΩΝ
1 ΕΘΝΙΚΟ ΜΕΤΣΟΒΟ ΠΟΛΥΤΕΧΝΕΙΟ Σχολή Πολιτικών Μηχανικών ΠΜΣ οµοστατικός Σχεδιασµός και Ανάλυση Κατασκευών Εργαστήριο Μεταλλικών Κατασκευών Μεταπτυχιακή ιπλωµατική Εργασία ΣΤΑΤΙΚΗ ΜΗ ΓΡΑΜΜΙΚΗ ΑΝΑΛΥΣΗ ΚΑΛΩ
Διαβάστε περισσότερα11 η Εβδομάδα Δυναμική Περιστροφικής κίνησης. Έργο Ισχύς στην περιστροφική κίνηση Στροφορμή Αρχή διατήρησης στροφορμής
11 η Εβδομάδα Δυναμική Περιστροφικής κίνησης Έργο Ισχύς στην περιστροφική κίνηση Στροφορμή Αρχή διατήρησης στροφορμής Έργο και ισχύς στην περιστροφική κίνηση Εφαπτομενική δύναμη που περιστρέφει τον τροχό
Διαβάστε περισσότερα(, ) (SEM) [4] ,,,, , Legendre. [6] Gauss-Lobatto-Legendre (GLL) Legendre. Dubiner ,,,, (TSEM) Vol. 34 No. 4 Dec. 2017
34 4 17 1 JOURNAL OF SHANGHAI POLYTECHNIC UNIVERSITY Vol. 34 No. 4 Dec. 17 : 11-4543(174-83-8 DOI: 1.1957/j.cnki.jsspu.17.4.6 (, 19 :,,,,,, : ; ; ; ; ; : O 41.8 : A, [1],,,,, Jung [] Legendre, [3] Chebyshev
Διαβάστε περισσότεραΚβαντομηχανική Ι 6o Σετ Ασκήσεων. Άσκηση 1
Χειμερινό εξάμηνο 6-7 Κβαντομηχανική Ι 6o Σετ Ασκήσεων Άσκηση a) Τρόπος α : Λύνουμε όλους (ή έστω μερικούς από) τους συνδυασμούς [l i, r j ]: [l x, x] = [l y, y] = [l z, x] = i ħ y Κ.ο.κ., και συμπεραίνουμε
Διαβάστε περισσότερα692.66:
1 69.66:6-83 05.05.05 -,, 015 .. 7... 8 1.... 19 1.1.,.. 19 1.. 8 1.3.. 1.4... 1.4.1.... 33 36 40 1.4.. 44 1.4.3. -... 48.. 53.,.. 56.1., -....... 56..... 6.3.... 71.. 76 3.,.... 77 3 3.1.... 77 3.1.1....
Διαβάστε περισσότερα5 Ι ^ο 3 X X X. go > 'α. ο. o f Ο > = S 3. > 3 w»a. *= < ^> ^ o,2 l g f ^ 2-3 ο. χ χ. > ω. m > ο ο ο - * * ^r 2 =>^ 3^ =5 b Ο? UJ. > ο ο.
728!. -θ-cr " -;. '. UW -,2 =*- Os Os rsi Tf co co Os r4 Ι. C Ι m. Ι? U Ι. Ι os ν ) ϋ. Q- o,2 l g f 2-2 CT= ν**? 1? «δ - * * 5 Ι -ΐ j s a* " 'g cn" w *" " 1 cog 'S=o " 1= 2 5 ν s/ O / 0Q Ε!θ Ρ h o."o.
Διαβάστε περισσότεραμ μ μ s t j2 fct T () = a() t e π s t ka t e e j2π fct j2π fcτ0 R() = ( τ0) xt () = α 0 dl () pt ( lt) + wt () l wt () N 2 (0, σ ) Time-Delay Estimation Bias / T c 0.4 0.3 0.2 0.1 0-0.1-0.2-0.3 In-phase
Διαβάστε περισσότεραt ts P ALEPlot t t P rt P ts r P ts t r P ts
t ts P ALEPlot 2 2 2 t t P rt P ts r P ts t r P ts t t r 1 t2 1 s r s r s r 1 1 tr s r t r s s rt t r s 2 s t t r r r t s s r t r t 2 t t r r t t2 t s s t t t s t t st 2 t t r t r t r s s t t r t s r t
Διαβάστε περισσότεραErrata (Includes critical corrections only for the 1 st & 2 nd reprint)
Wedesday, May 5, 3 Erraa (Icludes criical correcios oly for he s & d repri) Advaced Egieerig Mahemaics, 7e Peer V O eil ISB: 978474 Page # Descripio 38 ie 4: chage "w v a v " "w v a v " 46 ie : chage "y
Διαβάστε περισσότεραDesign Method of Ball Mill by Discrete Element Method
Design Method of Ball Mill by Discrete Element Method Sumitomo Chemical Co., Ltd. Process & Production Technology Center Makio KIMURA Masayuki NARUMI Tomonari KOBAYASHI The grinding rate of gibbsite in
Διαβάστε περισσότεραUniform Convergence of Fourier Series Michael Taylor
Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula
Διαβάστε περισσότεραMath 6 SL Probability Distributions Practice Test Mark Scheme
Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry
Διαβάστε περισσότερα