Γεωμετρία Β Λυκείου Θεωρήματα διχοτόμων Αρμονικά συζυγή Ομοιότητα τριγώνων.



Σχετικά έγγραφα
ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ 8 ου ΚΕΦΑΛΑΙΟΥ ΟΜΟΙΟΤΗΤΑ

ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ

ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Α ΤΑΞΗΣ ΓΕΛ ΕΡΕΤΡΙΑΣ 9/6/2016 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ

ΚΕΦΑΛΑΙΟ 9 ο ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΟΡΘΟΓΩΝΙΟ ΤΡΙΓΩΝΟ

ΓΕΩΜΕΤΡΙΑ - ΚΕΦΑΛΑΙΟ 4ο Το Θεώρημα του Θαλή και οι Συνέπειές του

ΑΣΚΗΣΕΙΣ 3 Ο ΚΕΦΑΛΑΙΟ

ΚΕΦΑΛΑΙΟ 7 ο ΑΝΑΛΟΓΙΕΣ

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

Γεωμετρία Βˊ Λυκείου. Κεφάλαιο 9 ο. Μετρικές Σχέσεις

Γεωμετρία Β Λυκείου Τράπεζα θεμάτων

ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ. 1. Καθεμιά από τις παρακάτω προτάσεις μπορεί να είναι σωστή ή λάθος Να γράψετε Σ στο

2ηέκδοση 20Ιανουαρίου2015

Επαναληπτικό Διαγώνισµα Γεωµετρίας Β Λυκείου

και των πλευρών του,,, 1 αντίστοιχα τέτοια, ώστε. 3 Να αποδείξετε ότι: α) / / / /. (Μονάδες 10)

ΚΕΦΑΛΑΙΟ 8 ο ΟΜΟΙΟΤΗΤΑ

1 ο Αχαρνών 197 Αγ. Νικόλαος ο Αγγ. Σικελιανού 43 Περισσός

ΦΥΛΛΑ ΙΑ ΣΗΜΕΙΩΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

Σε κύκλο κέντρου Ο θεωρούμε δύο χορδές του ΑΒ και ΓΔ που τέμνονται σε ένα σημείο Μ. α) Αν το σημείο Α είναι το μέσο του τόξου ΓΔ, να αποδείξετε ότι:

Επαναληπτικό Διαγώνισμα Γεωμετρίας Α Λυκείου

Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ. Θέμα 2 ο (29)

Αναλογίες. ΘΕΜΑ 2ο. (Μονάδες 5) β) Να υπολογίσετε το ΓΒ συναρτήσει του κ. (Μονάδες 5) ΑΒ από το σημείο Γ ; (Μονάδες 15)

Ασκήσεις για τις εξετάσεις Μάη Ιούνη στη Γεωμετρία Β Λυκείου του ΜΑΝΩΛΗ ΨΑΡΡΑ

ΘΕΩΡΙA 5. Μονάδες 5x2=10 A2. Πότε ένα τετράπλευρο ονομάζεται τραπέζιο;

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ

Θεώρημα Θαλή. μ10. μ 10 γ) Δίνεται κυρτό τετράπλευρο ΑΒΓΔ και τα σημεία Ε,Ζ,Η και Θ των πλευρών του ΑΔ, ΑΒ, ΒΓ, ΓΔ αντίστοιχα τέτοια, ώστε


Απαντήσεις Λύσεις σε Θέματα από την Τράπεζα Θεμάτων. Μάθημα: Γεωμετρία Α Λυκείου

ΚΕΦΑΛΑΙΟ 9 ο ΘΕΩΡΗΜΑΤΑ ΔΙΑΜΕΣΩΝ

ΚΡΙΤΗΡΙΟ ΑΞΙΟΛΟΓΗΣΗΣ ΣΤΟ ΠΑΡΑΛΛΗΛΟΓΡΑΜΜΟ

ΘΕΜΑΤΑ ΓΕΩΜΕΤΡΙΑΣ Α λυκείου (ΚΕΦ )

ΡΑΛΛΕΙΟ ΓΕΛ ΘΗΛΕΩΝ ΠΕΙΡΑΙΑ ΣΧ. ΕΤΟΣ ΕΠΑΝΑΛΗΨΗ Γεωμετρίας Β Λυκείου. // ) και BE

Οµοιότητα Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Β. ΜΕΘΟ ΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ

Τάξη A Μάθημα: Γεωμετρία

ΘΕΜΑΤΑ ΑΠΟ ΤΗΝ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ

β) Να αποδείξετε ότι τα τρίγωνα ΑΒΓ και ΚΛΓ είναι όμοια και στη συνέχεια να συμπληρώσετε

ΚΕΦΑΛΑΙΟ 9 ο ΓΕΝΙΚΕΥΣΗ ΠΥΘΑΓΟΡΕΙΟΥ ΘΕΩΡΗΜΑΤΟΣ

1 ΘΕΜΑΤΑ ΓΡΑΠΤΩΝ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ

A λ υ τ ε ς Α σ κ η σ ε ι ς ( Τ ρ ι γ ω ν α )

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - 2 ο ΘΕΜΑ

1. ** Σε ισοσκελές τρίγωνο ΑΒΓ µε κορυφή το Α, έχουµε ΒΓ = 4 cm και ΑΒ = 7 cm. Να υπολογίσετε: ii. Το ύψος ΒΚ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ. ΓΕΩΜΕΤΡΙΑ Β τάξης Γενικού Λυκείου 2 ο Θέμα. Εκφωνήσεις - Λύσεις των θεμάτων. Έκδοση 1 η (14/11/2014)

ΘΕΜΑ 4 Ο ΑΒ 3 ΕΓ Α ΑΒ,

4 ΔΙΑΜΕΣΟΣ ΟΡΘΟΓΩΝΙΟΥ ΤΡΙΓΩΝΟΥ

3 o ΓΕ.Λ. ΚΕΡΑΤΣΙΝΙΟΥ. ΖΟΥΖΙΑΣ ΠΑΝΑΓΙΩΤΗΣ Μαθηματικός EΠΑΝΑΛΗΨΗ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΠΕΡΙΕΧΟΜΕΝΑ

Γεωμετρία Β Λυκείου Τράπεζα θεμάτων

Οι γωνίες και που ονομάζονται «εντός εναλλάξ γωνίες» και είναι ίσες. «εντός-εκτός και επί τα αυτά μέρη γωνίες» και είναι ίσες.

2ο ΘΕΜΑ. μ Σε ισοσκελές τρίγωνο ΑΒΓ AB

ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΪΟΣ ΙΟΥΝΙΟΣ

ΘΕΜΑΤΑ. β. ΜΗΔ = 45 Μονάδες 5. Θέμα 4 ο Δίνεται ορθογώνιο τρίγωνο ΑΒΓ ( Α = 90 ) με ΑΓ > ΑΒ, η διάμεσός του ΑΖ και έστω Δ και

ΚΕΦΑΛΑΙΟ 10 Ο ΕΜΒΑΔΑ 10.5 ΛΟΓΟΣ ΕΜΒΑΔΩΝ ΟΜΟΙΩΝ ΤΡΙΓΩΝΩΝ - ΠΟΛΥΓΩΝΩΝ 10.6 ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ ΠΟΛΥΓΩΝΟΥ ΣΕ ΙΣΟΔΥΝΑΜΟ ΤΟΥ

ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΜΗΚΟΣ ΚΥΚΛΟΥ ΕΜΒΑΔΟΝ ΚΥΚΛΟΥ

ΑΣΚΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ ΚΕΦΑΛΑΙΟ 1 Ο Γ ΓΥΜΝΑΣΙΟΥ

Γεωμετρία Β Λυκείου. Τράπεζα Θεμάτων 18-22/1/2015

Γεωμετρία Β Λυκείου ΚΕΦΑΛΑΙΟ 8: ΟΜΟΙΟΤΗΤΑ

ΣΗΜΕΙΩΣΕΙΣ 7ου ΚΕΦΑΛΑΙΟΥ

ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Αμυραδάκη 20, Νίκαια ( ) ΝΟΕΜΒΡΙΟΣ 2013 ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΓΕΩΜΕΤΡΙΑΣ...

Θέματα ενδοσχολικών εξετάσεων Γεωμετρίας Β Λυκείου Σχ. έτος , Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

ΙΣΟΣΚΕΛΕΣ ΤΡΙΓΩΝΟ ΜΕΣΟΚΑΘΕΤΟΣ - ΔΙΧΟΤΟΜΟΣ. 2ο ΘΕΜΑ

ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.3 ΕΓΓΡΑΦΗ ΒΑΣΙΚΩΝ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΣΕ ΚΥΚΛΟ ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΟΥΣ

Aν οι ευθείες ΚΒ και ΓΛ τέμνονται στο σημείο Μ, τότε η ΑΜ είναι μεσοκάθετος του ευθυγράμμου τμήματος ΚΛ

ΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ ( α μέρος )

Εισαγωγή 1. Εξωτερικά του παραλληλογράμμου ΑΒΓΔ κατασκευάζουμε τα τετράγωνα ΑΒΕΖ και ΔΓΘΗ. Να αποδείξετε ότι : α. ZH E, H

Ασκήσεις - Πυθαγόρειο Θεώρηµα

ΓΕΩΜΕΤΡΙΑ - ΚΕΦΑΛΑΙΟ 4ο Το Θεώρηµα του Θαλή και οι Συνέπειές του

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ ΤΩΝ ΕΠΑΛ

ΙΣΟΤΗΤΑ ΚΑΙ ΟΜΟΙΟΤΗΤΑ ΣΧΗΜΑΤΩΝ

= π 3 και a = 2, β =2 2. a, β

ΚΕΦΑΛΑΙΟ 10 Ο ΕΜΒΑΔΑ 10.1 ΠΟΛΥΓΩΝΙΚΑ ΧΩΡΙΑ 10.2 ΕΜΒΑΔΟΝ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. ΙΣΟΔΥΝΑΜΑ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ ΕΜΒΑΔΟΝ ΒΑΣΙΚΩΝ ΕΥΘΥΓΡΑΜΜΩΝ ΣΧΗΜΑΤΩΝ

ΓΕΩΜΕΤΡΙΑ Γ γυμνασίου από Σχολικό Βιβλίο + Ασκήσεις Εξάσκησης

ΕΥΚΛΕΙΔΕΙΑ ΓΕΩΜΕΤΡΙΑ Θεωρία

ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ ΘΕΜΑΤΑ ΓΙΑ ΕΡΓΑΣΙΑ

Γεωμετρία. Κεφ 1 ο : Γεωμετρια.

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΚΕΦΑΛΑΙΟ 8 Ο - ΟΜΟΙΟΤΗΤΑ ΘΕΜΑ 2 Ο

ΣΧΕ ΙΑ ΚΡΙΤΗΡΙΩΝ ΑΞΙΟΛΟΓΗΣΗΣ ΤΟΥ ΜΑΘΗΤΗ ΣΤΗ ΓΕΩΜΕΤΡΙΑ

ΠΑΡΑΤΗΡΗΣΕΙΣ - ΥΠΟΔΕΙΞΕΙΣ

Θέματα ενδοσχολικών εξετάσεων Άλγεβρας Α Λυκείου Σχ. έτος , Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου

Τηλ: Ανδρέου Δημητρίου 81 & Ακριτών 26 -ΚΑΛΟΓΡΕΖΑ [2]

ΚΡΙΤΗΡΙΑ ΙΣΟΤΗΤΑΣ ΤΡΙΓΩΝΩΝ

ΚΕΦΑΛΑΙΟ 10 Ο ΕΜΒΑΔΑ 10.1 ΠΟΛΥΓΩΝΙΚΑ ΧΩΡΙΑ 10.2 ΕΜΒΑΔΟΝ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. ΙΣΟΔΥΝΑΜΑ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ ΕΜΒΑΔΟΝ ΒΑΣΙΚΩΝ ΕΥΘΥΓΡΑΜΜΩΝ ΣΧΗΜΑΤΩΝ

ΑΣΚΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ

ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ

5o ΚΕΦΑΛΑΙΟ : Παραλληλόγραμμα - Τραπέζια

Διαίρεση ευθυγράμμου τμήματος σε ν ίσα τμήματα

Επαναληπτικές Ασκήσεις στην Γεωμετρία Α Λυκείου

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΓΕΩΜΕΤΡΙΑ. Β τάξης Γενικού Λυκείου Θέμα 4ο. Εκφωνήσεις - Λύσεις των θεμάτων. Έκδοση 1 η (16/11/2014)

ΑΣΚΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ

7.7 Ασκήσεις σχολικού βιβλίου σελίδας 156

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

ΚΕΦΑΛΑΙΟ λ + λ = + = + = = = λ.

Όμοια τρίγωνα. Ορισμός : Δύο τρίγωνα είναι όμοια όταν έχουν τις γωνίες τους ίσες και τις αντίστοιχες πλευρές τους ανάλογες.

ΑΣΚΗΣΕΙΣ ΣΤΟ ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ


Ερωτήσεις τύπου «Σωστό - Λάθος» Σωστό Λάθος

Ασκήσεις Επανάληψης Τάξη Δ Εν. 1: Διανύσματα

Γεωμετρία Α' Λυκείου Κεφάλαιο 3 ο (Τρίγωνα) Γεωμετρία Αˊ Λυκείου. Κεφάλαιο 3 ο Τρίγωνα

ΓΕΩΜΕΤΡΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ ΣΤΟΧΟΙ: Με τη συμπλήρωση του στόχου αυτού θα μπορείτε να: Σχεδιάζετε τρίγωνα, τετράπλευρα και πολύγωνα.

Συνοπτική θεωρία. Οι σημαντικότερες αποδείξεις. Ερωτήσεις αντικειμενικού τύπου. Ασκήσεις. Διαγωνίσματα

2. Αν ΑΒΓΔ είναι ένα τετράπλευρο περιγεγραμμένο σε κύκλο ακτίνας ρ, να δείξετε ότι ισχύει: ΑΒ + ΓΔ 4ρ.

ΘΕΜΑ 2 Δίνεται παραλληλόγραμμο ΑΒΓΔ με ΑΒ=2ΒΓ. Προεκτείνουμε την πλευρά ΑΔ (προς το μέρος του Δ) κατά τμήμα ΔΕ=ΑΔ και φέρουμε την ΒΕ που τέμνει τη ΔΓ

Transcript:

Γεωμετρία Β Λυκείου Θεωρήματα διχοτόμων Αρμονικά συζυγή Ομοιότητα τριγώνων. Καρδαμίτσης Σπύρος «Τὰ ὅμοια πολύγωνα εἴς τε ὅμοια τρίγωνα διαιρεῖται καὶ εἰς ἴσα τὸ πλῆθος καὶ ὁμόλογα τοῖς ὅλοις, καὶ τὸ πολύγωνον πρὸς τὸ πολύγωνον διπλασίονα λόγον ἔχει ἤπερ ἡ ὁμόλογος πλευρὰ πρὸς τὴν ὁμόλογον πλευράν.» Από το V βιβλίο των στοιχείων του Ευκλείδη ΑΣΚΗΣΗ 1 η Σε τρίγωνο ΑΒΓ με β > γ η εσωτερική και εξωτερική διχοτόμος της γωνίας Α τέμνουν την ευθεία της πλευράς ΒΓ στα σημεία Δ και Ε αντίστοιχα. α) Να δείξετε ότι τα σημεία Δ και Ε είναι αρμονικά συζυγή των Β και Γ. β) Αν α = 13, β = 14 και γ = 12 να υπολογιστεί το μήκος του ευθυγράμμου τμήματος ΔΕ. AB α) Είναι η ΑΔ διχοτόμος της γωνίας Α, επομένως, και εξωτερική διχοτόμος της A AB γωνίας Α, οπότε άρα, δηλαδή τα σημεία Δ και Ε είναι αρμονικά A συζυγή των Β και Γ. 1312 β) Είναι ΔΒ = = = 6 14 12 1312 αφού β > γ έχουμε ότι ΕΒ = = 78 14 12

ΑΣΚΗΣΗ 2 η Δίνεται παραλληλόγραμμο ΑΒΓΔ. Οι διχοτόμοι των γωνιών του Α και Δ τέμνουν τις διαγώνιές του ΒΔ και ΑΓ στα σημεία Κ και Λ αντίστοιχα. Να αποδείξετε ότι: α) ΑΚ ΔΛ β) ΚΛ // ΒΓ α) Αφού οι ΑΚ και ΔΛ είναι διχοτόμοι των γωνιών Α και Δ αντίστοιχα τότε και Αφού το τετράπλευρο ΑΒΓΔ είναι παραλληλόγραμμο είναι Α + Δ = 180 ο ή 2ω + 2φ = 180 ή ω + φ = 90 ο άρα ΑΚ ΔΛ β) Εφ όσον οι ΑΚ και ΔΛ είναι διχοτόμοι των γωνιών ΑΔΒ και ΑΔΓ αντίστοιχα, τότε A ισχύουν: και αλλά ΑΒ = ΓΔ (ΑΒΓΔ είναι παραλληλόγραμμο) τότε από τις παραπάνω σχέσεις έχουμε ότι, οπότε σύμφωνα με το θεώρημα του Θαλή έχουμε ΚΛ // ΑΔ.

ΑΣΚΗΣΗ 3 η Δίνεται κύκλος με διάμετρο (Ο,R) με διάμετρο ΑΒ. Έστω Μ τυχαίο σημείο του κύκλου και ΓΔ μια χορδή κάθετη στην διάμετρο ΑΒ. Αν τα τμήματα ΜΓ και ΜΔ τέμνουν την διάμετρο ΑΒ στα σημεία Ε και Ζ αντίστοιχα, να δείξετε ότι τα σημεία Β και Α είναι αρμονικά συζυγή ως προς τα Ζ και Ε. Επειδή είναι ΓΔ κάθετη στην ΑΒ τότε είναι ΒΓ = ΒΔ, επομένως και M1 M 2, δηλαδή η MZ BZ ΜΒ είναι εσωτερική διχοτόμος της γωνίας Μ στο τρίγωνο ΖΜΕ, άρα (1) ME BE Επειδή AMB =90 ο ως γωνία εγγεγραμμένη σε ημικύκλιο είναι ΜΑ ΜΒ δηλαδή η ΜΑ είναι MZ AZ εξωτερική διχοτόμος της γωνίας Μ στο τρίγωνο ΖΜΕ, άρα (2) ME AE Τέλος από τις σχέσεις (1) και (2) έχουμε: αρμονικά συζυγή ως προς τα Ζ και Ε. BZ AZ, δηλαδή τα σημεία Β και Α είναι BE AE

ΑΣΚΗΣΗ 4 η Δίνεται ισοσκελές τρίγωνο ΑΒΓ (ΑΒ = ΑΓ), το ύψος του ΓΔ και ημιευθεία Γx ΑΓ, που BΔ ΓΔ τέμνει την πλευρά ΑΒ στο σημείο Ε. Να αποδείξετε ότι:. ΒΕ ΓΕ Στο τρίγωνο ΒΓΕ έχουμε ότι: B 90 και στο τρίγωνο ΒΔΓ έχουμε ότι: B 90 αλλά είναι Β = Γ αφού το τρίγωνο ΑΒΓ είναι ισοσκελές επομένως είναι: B, δηλαδή η ΒΓ είναι διχοτόμος της γωνίας ΔΓΕ του τριγώνου ΔΓΕ επομένως B σύμφωνα με το θεώρημα εσωτερικής διχοτόμου έχουμε:

ΑΣΚΗΣΗ 5 η Δίνεται τρίγωνο ΑΒΓ και ΒΔ η διχοτόμος του. Από το μέσο Μ της πλευράς του ΑΓ φέρνουμε ευθεία παράλληλη της διχοτόμου ΒΔ που τέμνει την ΒΓ στο σημείο Ζ και την προέκταση της ΑΒ στο σημείο Ε. Να αποδείξετε ότι ΓΖ = ΑΕ. Λόγω των παραλλήλων ΒΔ και ΕΜ από το θεώρημα του Θαλή έχουμε τις αναλογίες AB A (1) και (2) AE AM πολλαπλασιάζοντας τις σχέσεις (1) και (2) έχουμε: (3) επειδή η ΒΔ είναι εσωτερική διχοτόμος του τριγώνου ΑΒΓ από το θεώρημα της εσωτερικής διχοτόμου έχουμε την αναλογία με βάση την αναλογία αυτή η σχέση (3) απλοποιούμενη γίνεται: επειδή το Μ είναι μέσο της ΑΓ έχουμε τελικά =1 άρα ΓΖ = ΑΕ.

ΑΣΚΗΣΗ 6 η Οι μη παράλληλες πλευρές ΑΔ και ΒΓ τραπεζίου ΑΒΓΔ τέμνονται στο σημείο Ο. Αν είναι ΑΒ = 12cm, ΓΔ = ΑΔ = 4cm και ΒΓ = 8cm, να υπολογίσετε τα μήκη των ευθυγράμμων τμημάτων ΟΔ και ΟΓ. Τα τρίγωνα ΟΓΔ και ΟΑΒ έχουν την γωνία Ο κοινή και λόγω των παραλλήλων πλευρών του τραπεζίου, επομένως είναι όμοια οπότε: 4 1 ή ή 4 8 12 3 επομένως έχουμε: 1 4 3ΟΔ = ΟΔ + 4 ΟΔ = 2cm. και 3 1 8 3ΟΓ = ΟΓ + 8 ΟΓ = 4cm. 3

ΑΣΚΗΣΗ 7 η Δίνεται κύκλος κέντρου Ο και σημείο Ρ εξωτερικό του κύκλου. Από το σημείο Ρ φέρνουμε μια εφαπτόμενη του κύκλου ΡΑ και μια τέμνουσα ΡΒΓ. Να αποδείξετε ότι: 2 AB ΡΒ AΓ 2 ΡΓ Τα τρίγωνα ΡΑΒ και ΡΑΓ έχουν την γωνία Ρ κοινή και επομένως είναι όμοια, οπότε: ή (1) και (2) με πολλαπλασιασμό των σχέσεων (1) και (2) έχουμε: 2 2 ( χορδή και εφαπτομένη)

ΑΣΚΗΣΗ 8 η Σε τραπέζιο ΑΒΓΔ οι μη παράλληλες πλευρές του ΑΔ και ΒΓ τέμνονται σε σημείο Κ. Από το σημείο Κ φέρνουμε ευθεία παράλληλη προς τις βάσεις του τραπεζίου, που τέμνει τις προεκτάσεις των διαγωνίων του τραπεζίου ΒΔ και ΑΓ στα σημεία Ε και Ζ αντίστοιχα. Να δείξετε ότι: BΓ ΔΓ α) ΒΚ ΕΚ β) ΕΚ = ΚΖ α) Τα τρίγωνα ΒΓΔ και ΒΕΚ έχουν την γωνία B1 κοινή και EBK λόγω των παραλλήλων ευθειών (ε) και ΓΔ. Συνεπώς είναι όμοια άρα β) Ανάλογα με το πρώτο ερώτημα και τα τρίγωνα ΑΔΓ και ΑΚΖ είναι όμοια A οπότε επειδή λόγω των παραλλήλων ευθειών (ε), ΓΔ και ΑΒ ισχύει, από τις προηγούμενες σχέσεις προκύπτει ότι, άρα είναι ΕΚ = ΚΖ.

ΑΣΚΗΣΗ 9 η Δίνεται τρίγωνο ΑΒΓ και Μ τυχαίο σημείο της πλευράς του ΒΓ. Έστω Δ, Ε τα μέσα των πλευρών του ΑΒ και ΑΓ αντίστοιχα. Η ευθεία ΕΜ τέμνει την ΑΒ στο σημείο Λ και η ευθεία ΜΔ την ΑΓ στο σημείο Κ. Αν είναι ΑΘ//ΔΕ τότε να αποδείξετε ότι: KA BM α) KE ΔΕ γ) ΑΜ//ΚΛ α) Τα Δ και Ε είναι τα μέσα των πλευρών του τριγώνου ΑΒΓ συνεπώς ΔΕ//ΒΓ. Αφού ΑΘ//ΔΕ τότε θα είναι και ΑΘ//ΒΓ άρα A1 B ως εντός εναλλάξ γωνίες, 1 2 ως κατακορυφή γωνίες και ΑΔ = ΒΔ, συνεπώς τα τρίγωνα ΑΘΔ και ΒΔΜ είναι ίσα. KA Τα τρίγωνα ΚΑΘ και ΚΔΕ είναι όμοια τότε A και από την ισότητα των τριγώνων KE KA ΑΘΔ και ΔΒΜ είναι ΑΘ = ΒΜ, οπότε η σχέση γίνεται KE β) Από την ομοιότητα των τριγώνων ΛΒΜ και ΛΔΕ έχουμε KA και με βάση το α) ερώτημα έχουμε οπότε από το Θεώρημα του Θαλή είναι KE ΑΜ//ΚΛ

ΑΣΚΗΣΗ 10 η Δίνεται τρίγωνο ΑΒΓ και Μ το μέσο της πλευράς του ΒΓ. Από το σημείο Μ φέρνουμε τυχαία ευθεία (ε) που τέμνει τις ΑΒ και ΑΓ στα σημεία Ρ και Κ αντίστοιχα και από το σημείο Α ευθεία (η) παράλληλη της πλευράς ΒΓ του τριγώνου που τέμνει την ευθεία (ε) στο σημείο Ν. Να αποδείξετε ότι: α) Τα τρίγωνα ΡΑΝ και ΡΒΜ είναι όμοια β) ΡΝΚΜ = ΡΜΚΝ α) Τα τρίγωνα ΡΑΝ και ΡΒΜ έχουν την γωνία P κοινή και 2 λόγω των παραλλήλων PN AN (η) και ΒΓ, επομένως είναι όμοια, άρα PM BM β) Τα τρίγωνα ΚΑΝ και ΚΜΓ έχουν K1 K2 (ως κατακορυφή γωνίες) και N M 1 KN AN επομένως είναι όμοια, άρα KM M αλλά ΜΒ = ΜΓ αφού το Μ είναι μέσο της πλευράς ΒΓ, οπότε η παραπάνω σχέση γράφεται: KN AN KM BM Τέλος από την παραπάνω σχέση και από το (α) ερώτημα έχουμε: PN KN ΡΝΚΜ = ΡΜΚΝ PM KM