Microelectronic Circuit Design Fifth Edition - Part I Solutions to Exercises

Σχετικά έγγραφα
Microelectronic Circuit Design Third Edition - Part I Solutions to Exercises

Microelectronic Circuit Design Fourth Edition - Part II Solutions to Exercises

( )( ) ( ) ( )( ) ( )( ) β = Chapter 5 Exercise Problems EX α So 49 β 199 EX EX EX5.4 EX5.5. (a)

Chapter 5. Exercise Solutions. Microelectronics: Circuit Analysis and Design, 4 th edition Chapter 5 EX5.1 = 1 I. = βi EX EX5.3 = = I V EX5.

Ηλεκτρονική ΙΙΙ Παύλος - Πέτρος Σωτηριάδης. Επανάληψη μέρος 2 ο. Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών - Μηχανικών Υπολογιστών

IXBH42N170 IXBT42N170

Answers to practice exercises

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Inverse trigonometric functions & General Solution of Trigonometric Equations

( )( ) ( )( ) 2. Chapter 3 Exercise Solutions EX3.1. Transistor biased in the saturation region

Matrices and Determinants

Μικροηλεκτρονική - VLSI

GenX3 TM 300V IGBT IXGA42N30C3 IXGH42N30C3 IXGP42N30C3 V CES = 300V I C110. = 42A V CE(sat) 1.85V t fi typ. = 65ns

Srednicki Chapter 55

= 0.927rad, t = 1.16ms

NPN Silicon RF Transistor BFQ 74

Second Order RLC Filters

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

the total number of electrons passing through the lamp.

IXBK64N250 IXBX64N250

Areas and Lengths in Polar Coordinates

AREAS AND LENGTHS IN POLAR COORDINATES. 25. Find the area inside the larger loop and outside the smaller loop

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

Aluminum Electrolytic Capacitors

d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n 1

NPN SILICON OSCILLATOR AND MIXER TRANSISTOR

CRASH COURSE IN PRECALCULUS

Homework 8 Model Solution Section

EE512: Error Control Coding

Διπολικό Τρανζίστορ Bipolar Junction Transistor (BJT)

Probability and Random Processes (Part II)

Section 8.3 Trigonometric Equations

Surface Mount Multilayer Chip Capacitors for Commodity Solutions

ITU-R BT ITU-R BT ( ) ITU-T J.61 (

Areas and Lengths in Polar Coordinates

Example Sheet 3 Solutions

Lecture Stage Frequency Response (1/10/02) Page 210-1

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

Second Order Partial Differential Equations

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

Aluminum Electrolytic Capacitors (Large Can Type)

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

Math221: HW# 1 solutions

Instruction Execution Times

SCOPE OF ACCREDITATION TO ISO 17025:2005

Capacitors - Capacitance, Charge and Potential Difference

PRELIMINARY DATA SHEET NPN EPITAXIAL SILICON TRANSISTOR FOR MICROWAVE HIGH-GAIN AMPLIFICATION

Solutions to Exercise Sheet 5

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

Si Photo-transistor Chip TKA124PT

Derivation of Optical-Bloch Equations

Math 6 SL Probability Distributions Practice Test Mark Scheme

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Multilayer Ceramic Chip Capacitors

Applications. 100GΩ or 1000MΩ μf whichever is less. Rated Voltage Rated Voltage Rated Voltage

Lifting Entry (continued)

(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3)

Section 9.2 Polar Equations and Graphs

Smaller. 6.3 to 100 After 1 minute's application of rated voltage at 20 C, leakage current is. not more than 0.03CV or 4 (µa), whichever is greater.

Durbin-Levinson recursive method

Multilayer Ceramic Chip Capacitors

Thin Film Chip Resistors

Homework 3 Solutions

1. Ηλεκτρικό μαύρο κουτί: Αισθητήρας μετατόπισης με βάση τη χωρητικότητα

C.S. 430 Assignment 6, Sample Solutions

Strain gauge and rosettes

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

SURFACE MOUNT NPN SILICON HIGH FREQUENCY TRANSISTOR

MAX4147ESD PART 14 SO TOP VIEW. Maxim Integrated Products 1 MAX4147 EVALUATION KIT AVAILABLE ; Rev 1; 11/96 V CC V EE OUT+ IN+ R t SENSE IN-


EE101: Resonance in RLC circuits

Surface Mount Aluminum Electrolytic Capacitors

Lifting Entry 2. Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYLAND U N I V E R S I T Y O F

First Sensor Quad APD Data Sheet Part Description QA TO Order #

P AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example:

[1] P Q. Fig. 3.1

4.6 Autoregressive Moving Average Model ARMA(1,1)

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

B37631 K K 0 60

Written Examination. Antennas and Propagation (AA ) April 26, 2017.

Parametrized Surfaces


( ) 2 and compare to M.


2 η ενότητα ΤΑ ΤΡΑΝΖΙΣΤΟΡ ΣΤΙΣ ΥΨΗΛΕΣ ΣΥΧΝΟΤΗΤΕΣ

Τρανζίστορ Επίδρασης Πεδίου Field-effect transistors (FET)

MICROMASTER Vector MIDIMASTER Vector

Reminders: linear functions

MathCity.org Merging man and maths

Statistical Inference I Locally most powerful tests

ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations

w o = R 1 p. (1) R = p =. = 1

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Transcript:

Page Microelectronic Circuit Design Fifth Edition Part I Solutions to Exercises CHAPTER V LSB 5.V 0 bits 5.V 04bits 5.00 mv V MSB 5.V.560V 000000 9 + 8 + 4 + 0 785 0 V O 785 5.00mV or 5.V 3.95 V V O + + 6 + 0 Page V LSB 5.0V 8 bits 5.00V 56bits 3.95 V.V 9.53 mv N 56bits 6.44bits 5.00V 6 3 +6 + 8 + 4 + 5 + 4 + 3 + + 0 000 Page The dc component is V A 4V. The signal consists of the remaining portion of v A : v a 5 sin 000πt + 3 cos 000 πt) Volts. Page 3 5sin 000πt + 5 o 90 o ) v o 5cos 000πt + 5 o V o 5 65 o V i 0.00 0 o A v Page 5 A v R 5 0kΩ R 0 kω R R [ ] 5sin 000πt 65 o 5 65o 5000 65o o 0.00 0

Page 6 v s! 0.5sin 000πt) + sin 4000πt) +.5sin 6000πt) The three spectral component frequencies are f 000 Hz f 000 Hz f 3 3000 Hz a) The gain of the bandpass filter is zero at both f and f 3. At f, V o 0 V ) 0 V, and v o 0.0sin 4000πt) volts. b) The gain of the lowpass filter is zero at both f and f 3. At f, V o 5 0.5V ).5 V, and v o.50sin 000πt) volts. Page 7 R 39kΩ + 0.) or 35. kω R 4.9 kω R 3.6kΩ + 0.0) or 3.56 kω R 3.64 kω 39kΩ 0. 3.6kΩ 0.0 Page 9 V I P P nom 5 4.7 mw R + R 54kΩ P max.x5 ) 0.95x54kΩ 5.3 mw P min 0.9x5 3. mw.05x54kω Page 33 R 0kΩ + 0 3 55 5 o C o C ) 9.0 kω R 0kΩ + 0 3 85 5 o C o C ) 0.6 kω

Page 47 n i Page 47 n i n i.3x0 30 K 3 cm 6 ) 300K.08x0 3 K 3 cm 6 ) 50K 3 exp 3 exp.08x0 3 K 3 cm 6 ) 35K cm 3 ) m, L 3 + 4.34x0 39 * 0. cm 3 exp 3 CHAPTER 0.66eV 8.6x0 5 ev / K) 300K).7x03 cm 3.eV 8.6x0 5 ev / K) 50K) 4.34x0 39 cm 3 L 6.3x0 0 m.ev 8.6x0 5 ev / K) 35K) 4.0x00 cm 3 Page 48 v p µ p E 470 cm V s 0 V 4.70x0 3 cm cm s E V L x0 4 V cm 5.00x03 V cm v n µ n E 40 cm V s 000 V.4x0 6 cm cm s Page 48 a) From Fig..5: The drift velocity for Ge saturates at 6x0 6 cm / sec. At low fields the slope is constant. Choose E 00 V/cm µ n v n E 4.3x05 cm / s cm 4300 00V / cm s b The velocity peaks at x0 7 cm / sec µ n v n E 8.5x05 cm / s 00V / cm 8500 cm s µ p v p E.x05 cm / s 00V / cm 00 cm s 3

Page 50 n i.08x0 3 400 3 exp ρ σ.60x0 9.3x0 n i.08x0 3 50 3 exp. 8.6x0 5 400) 5.40x04 / cm 6 n i.3x0 / cm 3 40 ρ σ.60x0 9 4.34x0 39 Page 54 n i.08x0 3 400 3 exp 470 +.3x0 40 Ω cm. 8.6x0 5 50).88x0 77 / cm 6 n i 4.34x0 39 / cm 3 6500 000 + 4.34x0 39. 8.6x0 5 400) 5.40x04 / cm 6 holes p N A N D 0 6 x0 5 8x0 5 n n i cm 3 p 5.40x04 8x0 5 Antimony Sb) is a Column V element, so it is a donor impurity. p n i n 00 x0 holes 6 5.00x03 n > p n type silicon cm 3 Page 55 a) N D x0 6 / cm 3 N A 0 / cm 3 N T x0 6 / cm 3.69x0 53 Ω cm 6.75x0 8 electrons cm 3 n N D x0 6 electrons cm 3 365 µ n 5. +! x0 6 80 46 0.68 cm /V s µ p 44.9 +! x0 6 38 0.7 cm /V s + + 9.68x0 6.3x0 6 N D 0 / cm 3 N A 3x0 7 / cm 3 N T 3x0 7 / cm 3 365 µ n 5. +! 3x0 7 484 46 0.68 cm /V s µ p 44.9 +! 3x0 7 0 0.7 cm /V s + + 9.68x0 6.3x0 6 b) N T N D + N A 4x0 6 / cm 3 + 6x0 6 / cm 3 x0 7 / cm 3 365 µ n 5. +! x0 7 77 46 0.68 cm /V s µ p 44.9 +! x0 7 53 0.7 cm /V s + + 9.68x0 6.3x0 6 4

Page 57 Use the mobilty expressions in Fig..8 with a spread sheet or MATLAB ρ σ σ 000.60x0 9 µ n n u n n 6.5x0 / cm 3 64.5) 9.68x0 9 a) N D x0 6 / cm 3 N A 0 / cm 3 N T x0 6 / cm 3 0.00 Ω cm 365 µ n 5. + x0 6 070 46 0.68 cm /V s µ p 44.9 + x0 6 66 0.7 cm /V s + * + * 9.68x0 6 ).3x0 6 ) n N D x06 p n i cm 3 n 00 5000 6 x0 cm ρ 3 qu n n.60x0 9 b) N T N D + N A x0 6 / cm 3 + 3x0 6 / cm 3 5x0 6 / cm 3 070 x0 6 0.9 Ω cm 365 µ n 5. + 5x0 6 886 46 0.68 cm /V s µ p 44.9 + 5x0 6 98 0.7 cm /V s + * + * 9.68x0 6 ).3x0 6 ) p N A N D x06 n n i cm 3 p 00 0000 ρ 6 x0 cm 3 qu n n.60x0 9 Page 58 Boron B) is a ColumnIII element, so it is an acceptor impurity. 98 x0 6 p N A N D 4x0 8 holes cm n n i 3 p 00 electrons 5 ptype material 8 4x0 cm 3 N T 4x08 cm 3 and mobilities from expressions in Fig..8: µ n 53 cm V s µ p 54.8 cm V s ρ qµ p p.60x0 9 4x0 8 54.8 Indium In) is a ColumnIII element, so it is an acceptor impurity. p N A N D 7x0 9 holes cm n n i 3 p 00 electrons.43 ptype material 9 7x0 cm 3 N T 7x09 cm 3 µ n 67.5 cm V s µ p 46. cm V s ρ σ.93 mω cm.60x0 9 7x0 9 ) 46.) 0.085 Ω cm 3.6 Ω cm 5

Page 59 V T kt q.38x0 3 50 4.3 mv V.60x0 9 T.38x0 3 77 6.63 mv.60x0 9 V T.38x0 3 300 5.8 mv V.60x0 9 T.38x0 3 400 34.5mV.60x0 9 D n kt q µ n 5.8mV 365+ 5.) cm cm 36.6 V s s D p kt q µ p 5.8mV 46 + 44.9) cm V s.cm s dn j n qd n dx.60x0 9 C 0 cm 0 6 04 µm 30 A s cm 3 µm cm cm dp j p qd p dx.60x0 9 C 4 cm 0 6 04 µm 64 A s cm 3 µm cm cm 6

CHAPTER 3 Page 77 φ j V T ln N N A D n i 0.05V ln x08 0 0 ) 0 0.05 V w do Page 78 E max ε s ε s q + φ j.7 N A.60x0 9 x0 + 8 0 x p N D qn A dx qn x A p E max.6x0 9 C 0 7 / cm 3 8.85x0 4 ε s E max ε s qn D 0.3x0 5 cm).7 8.854x0 4 F / cm x n 75 kv cm 0 0.05.63x0 6 cm 0.063 µm dx qn D x n ε s For the values in Ex.3. : E max.05v kv 798.63x0 6 cm cm x p 0.063µm + x08 * 0.058 µm x 0 0 n 0.063µm + 00 * ) x0 8 ) Page 8 n kt.38x0 3 300 0.059 T 300 q.60x0 9.03 9 K 5.6x0 4 µm Page 83 ) i D 40x0 5 A exp 0.55, ) +. 43 µa i D 40x0 5 A exp 0.70, +. 57.9 ma * 0.05 * 0.05 V D 0.05V ) ln + 6x0 3 A 0.643 V 40x0 5 A ) i D 5x0 5 A exp 0.04, ) +. 3.99 fa i D 5x0 5 A exp.0, +. 5.00 fa * 0.05 * 0.05 7

Page 85! a) V BE V T ln + I! D 0.05V ln + 40x0 6 A 0.593 V x0 5 A! V BE V T ln + I! D 0.05V ln + 400x0 6 A 0.65 V x0 5 A! b) V BE V T ln + I! D 0.059V ln + 40x0 6 A 0.64 V x0 5 A! V BE V T ln + I! D 0.059V ln + 400x0 6 A 0.674 V x0 5 A ΔV BE 57.6 mv ΔV BE 59.6 mv Page 86! ln i D ln i D dv D dt k q ln! i D kt q ln ) Assume i D is constant, and E G E GO d dt v d T V T d dt d dt 3KBT! exp E! GO + KBT 3 exp E! GO + E GO kt kt kt d dt 3 T + E GO kt 3 T + qv GO 3 kt T + V GO V T T V D V D 75K) 0.680V.8x0 3 V K 350K) 0.680V.8x0 3 V K! Kn i KBT 3 exp E GO kt dv D dt v d T V T 300K 75K) 0.76 V 350K 300K) 0.589 V d dt v V 3V d GO T T Page 87 w d 0.3µm + 0V 0.979V 0.378 µm E V + φ j) max 0.979V ) w d 0.378x0 4 cm 58kV cm 0 fa + 0V 0.8V 36.7 fa 8

Page 9 C jo.7 8.854x0 4 F / cm 9.7 nf 0.3x0 4 cm cm C j 0V.5pF C j 5V ) 4.64 pf 5V + 0.979V Page 93 9.7 nf cm 0 cm).5x0 cm).5 pf C D 0 5 A 0.05V 0 8 s 4.00 pf C D 8x0 4 A 0.05V 0 8 s 30 pf C D 5x0 A 0.05V 0 8 s 0.0 µf Page 97 Two points on the load line : V D 0, 5V 5kΩ ma; 0, V D 5V The intersection of the two curves occurs at the Q pt : 0.88 ma, 0.6 V Page 99 0 0 4 + V D V D V T ln + I D 0 0 4 + 0.05ln + I D Page 00 id fzero@id) 00000*id0.05*log+id/e3), 5e4) ans 9.458e004 Page 0 Using MATLAB: vd fzero@vd) 00000*e4)*exp40*vd))vd), 0.5) vd 0.636 V id e4)*exp40*vd)) id 9.3684e04 id fzero@id) 00000*idlog+id/e3)),.00) id 9.458e04 id fzero@id) 00000*idlog+id/e5)),.00) id 9.30e04 Page 08 9

From the answer, the diodes are on,on,off. + V B 0.6V 0V ) 0 V B.87 V 0kΩ 0VV I + I B D.5kΩ V B 0.6V 0V 0kΩ.87 0.6 0V ).3 ma 0kΩ.87 0.6 0V ).3 ma V D3.87 0.6).7 V 0kΩ > 0, > 0, V D3 < 0. These results are consistent with the assumptions. Page 0 R min 5kΩ.67 kω 0 5 kω V O 0V 5kΩ+kΩ 3.33 V V Z V O 5 V V Z is conducting) is off) Page V L 0V kω + V 5V L 0.kΩ + V L 5kΩ 0 V 6.5 V I 6.5V 5V L Z 0.kΩ +00Ω.5mA) 78. mw P Z 5V.5mA Line Regulation 0.kΩ mv 9.6 0.kΩ + 5kΩ V π 60.5mA Load Regulation 0.kΩ 5kΩ 98.0 Ω Page 7 V dc V on 6.3 7.9 V I dc 7.9V 0.5Ω 5.8 A V I dc r C T 5.8A 0.5F 60 s 0.57 V ΔT ω V r 0.57V * ), 0.9 ms θ c 0π 0.9ms) 80o 8.9V + π 9.7o V dc V on 0 3. V I dc 3.V Ω 6.57 A C I dc T 6.57A V r 0.F 60 s.0 F ΔT ω V r π 60 0.V * ), 0.36 ms θ c 0π 0.36ms 4.V + 80o π 6.8o Page 9 0

At 300K : V D kt q ln + I D.38x0 3 J / K 300K.60x0 9 C ln + 48.6A 0.994 V 0 5 A At 50 o C : V D kt q ln + I D.38x0 3 J / K 73K + 50K ln + 48.6A.07 V.60x0 9 C 0 5 A Note : For V T 0.05V, V D kt q ln + I D 0.05V ln + 48.6 A 0.96 V 0 5 A Page 6 V rms V dc + V on C ωc π 60Hz ΔT ω V r 5 +.3 V C I dc T V r 0.F) 6V ) 340 A 0.0 ) 5) π 60) 6 A 0.0 5V s 0.F,000 µf 60 T 0.363 ms I P I dc ΔT A s 60 0.363ms 84 A

Page 5 K n µ n ε ox T ox 500 cm V s Scaling: K n K n K n W L 5x0 7 cm 5x0 7 cm CHAPTER 4 3.9 8.854x0 4 F / cm) 69.x0 6 C 5x0 7 cm V s 69.µA V 69.µA V 345 µa µa 0µm 50 000 µa V µm V K µa 60µm n 50 000 µa V 3µm V K n 50 µa 0µm 000 µa V 0.5µm V For 0 V and V, < V TN and the transistor is off. Therefore 0. V V TN.5 0.5 V and V DS 0. V Triode region operation W K n L V V V DS GS TN V DS 5 µa 0µm.5 0. 0.V.3 µa V µm V TN 3.5.5V and V DS 0. V Triode region operation W K n L V TN V DS V DS 5 µa 0µm 3.5 0. 0.V 36.3 µa V µm K n 5 µa 00µm 50 µa V µm V Page 53 R on V TN + W K n L V TN ) K n R on V + 50 µa V 50 µa V ) 4.00 kω R on 000Ω) 3.00 V 50 µa V.00 kω 4 )

Page 54 V DS should be 0.5 V V TN.5.5 V and V DS 0.8 V Triode region operation W K n L V V V DS GS TN V DS 000 µa.5 0.5 0.5V 344 µa V g m K n V DS 000 µa V 0.5V 50 µs Page 56 V TN 5 4 V and V DS 0 V Saturation region operation K n V TN ) ma V W K n K n L W L ma 40µA 5 Assuming saturation region operation, ma V K n V TN ) g m K n V TN ) ma V 5 ) V 8.00 ma W 5L 8.75 µm.5 ) V.3 ma.5 )V.50 ms.5 I Checking : g m D.5mA V TN V.50 ms Page 57 V TN 5 4 V and V DS 0 V Saturation region operation K n V TN ) + λv DS ) + λv DS ) K n V TN ma 5 ) V + 0.0 0 V ma 5 ) V + 0 0 V [ ] 9.60 ma [ ] 8.00 ma V TN 4 3 V and V DS 5 V Saturation region operation K n V TN ) + λv DS ) 5 K n V TN ) + λv DS ) 5 µa 4 ) V + 0.0 5 V V [ ] 8 µa [ ] 0 µa µa 5 ) V + 0.0 0 3

Page 58 50 Assuming pinchoff region operation, K n 0 V TN V TN + K n V + 00 µa) 50µA/V 4.00 V Assuming pinchoff region operation, K n V TN ) 50 Page 60 V TN V TO + γ V SB + 0.6V 0.6V µa V +V 00 µa µa V [ V )] 5 µa + 0.75 0 + 0.6 0.6) V.5 V V TN + 0.75 3 + 0.6 0.6).84 V V TN + 0.75.5 + 0.6 0.6 a) is less than the threshold voltage, so the transistor is cut off and 0. b) V TN V and V DS 0.5 V Triode region operation K n V TN V DS * V DS ma 0.5 * 0.5V 375 µa ) V ) c) V TN V and V DS V Saturation region operation K n V TN ) + λv DS ) 0.5 ma V [ ] 50 µa ) V + 0.0 Page 6 a is greater than the threshold voltage, so the transistor is cut off and 0. b) V TN + V and V DS 0.5 V Triode region operation K n V TN V DS V DS 0.4 ma + 0.5 0.5)V 50 µa V c) V TN + V and V DS V Saturation region operation K n V TN ) + λv DS ) 0.4 ma V + V + 0.0 )* +, 08 µa 4

Page 67 C GC 00 µf 5x0 6 m) 0.5x0 6 m) 0.500 ff m Triode region : C GD C GS C GC + C W 0.5 ff + 300 pf GSO m Saturation region : C GS 3 C + C W 0.333 ff + 300 pf GC GSO m C GD C GSO W 300 pf 5x0 6 m).50 ff m 5x0 6 m 5x0 6 m.75 ff.83 ff Page 68 KP K n 50U LAMBDA λ 0.033 VTO V TN PHI φ F 0.6 W W.5U L L 0.5U Page 70 Circuits/cm α 0.8µm nm 0.8µm 0.0µm 8.8) 66.9 PowerDelay Product α 3 8.8 ; Rounding 550 times improvement 3 548 i * ε D µ ox W /α n T ox /α L /α P * A * αp W /α) L /α) α 3 P A v GS V TN v DS v DS α i D P * V DD i * D V DD α i D i * D α i D P * α P P * A α 3 P * A α P Page 7 a) f T 500cm /V s π 0.5x0 4 cm b) f T π V 500cm /V s V 40nm) 7 GHz 500cm /V s π * 40x0 9 m ) 00 cm m 4.97 THz + V, 5

Page 7 V V L 05 cm L V 05 0 4 cm cm L 0 5 V 0 5 cm cm 0 V V L 0 5 V x0 7 cm cm 0. V V MIN min*+ V TN ),V DS,V SAT, min[ 3.5, 4,.5].5 V K n V TN V MIN V MIN + λv DS V MIN min*+ V TN ),V DS,V SAT, min 3.5, 4, 0 K n V TN V MIN V MIN + λv DS Page 74 a 0 4 4 0.5.5 [ ] 3.5 V 0 4 3.5 3.5 From the graph for 0.5 V, 0 8 A b) From the graph for V TN 0.5 V, 3x0 5 A c) I 0 9 transistors 3x0 5 A/transistors) 3 µa Page 76 L Λ 0.50 µm W 0Λ.5 µm Active area 0Λ Λ) 0Λ 0 0.5µm).88 µm Gate area Λ 0Λ) 0Λ 0 0.5µm) 0.33 µm.5) *+ + 0.0 4), 607.5 µa 3.5) *+ + 0.0 4), 66.5 µa Transistor area 0Λ + Λ + Λ) Λ + Λ + Λ) 4Λ 4 0.5µm) 3.50 µm N 04 µm) 3.50µm 8.6 x 06 transistors 6

Page 83 Upper group + V TN K n V TN K n ± +V TN K n Assume saturation region operation. ) + K n V EQ V TN K n 30µA V EQ 0 V TN ± K n K n V TN K n V TN V TN +V TN V TN + V EQ V TN + + K n V EQ V TN K n K n K n 36.8 µa + V EQ K n ) 39kΩ) + 30µA) 39kΩ) 4 ) 5.8 V Saturation region is correct. QPoint: 36.8 µa, 5.8 V ) V DS 0 4kΩ 36.8µA Assume saturation region operation. 5µA 6.7 µa 39kΩ) + 5µA) 39kΩ) 4.5) 6.96 V Saturation region is correct. QPoint: 6.7 µa, 6.96 V ) V DS 0 4kΩ 6.7µA Assume saturation region operation. 5µA 5.4 µa 6kΩ) + 5µA) 6kΩ) 4 ) 6.5 V Saturation region is correct. QPoint: 5.4 µa, 6.5 V ) V DS 0 37kΩ 5.4µA 7

Page 83 Second group R V EQ MΩ V DD 0V 4 V Assume saturation region operation. R + R MΩ+.5MΩ ) + K n V EQ V TN K n 5µA 99.5 µa.8kω) + 5µA).8kΩ) 4 ) 5.94 V Saturation region is correct. QPoint: 99.5 µa, 5.94 V ) V DS 0 40.8kΩ 99.5µA R V EQ.5MΩ V DD 0V 6 V Assume saturation region operation. R + R.5MΩ+MΩ 5µA 99. µa kω) + 5µA) kω) 6 ) 6.03 V Saturation region is correct. QPoint: 99. µa, 6.03 V ) V DS 0 40kΩ 99.µA I Bias V EQ V DD R + R R + R V DD I Bias 0V µa 5 MΩ R V DD R R + R ) V EQ 5MΩ 4V R + R V DD 0V MΩ R 5MΩ R 3 MΩ R EQ R Page 87 Should refer to Fig. 4.30 R. MΩ 4 39000 V SB 39000 V TN + 0.75 V SB + 0.6 0.6 Spreadsheet iteration yields 8. µa. 5µA V TN ) 8

Page 90 Assume saturation region operation. 0 6 5x0 6 6x0 4 +) V GS + 0.70 4.6 0.46V, +.76V 5.4 µa V DS 0 37kΩ 5.4µA) 5x0 6.46 + Saturation region is correct. Q Point : 5.4 µa, 6.5 V [ ] 6.5 V Page 94 a V DS 3 V, 3.5 +.5 V. The transistor is pinched off. SS V ) GS ma V, +. 84 µa Pinchoff requires V DS +.5 V * 3.5V b) V DS 6 V, 3.5) +.5 V. The transistor is pinched off. SS V GS ma V ), +. 50 µa Pinchoff requires V DS +.5 V * 3.5V c) V DS 0.5 V, 3.5) +.5 V. The transistor is in the triode region. SS V DS V DS ma 3.5 Pinchoff requires V DS +.5 V a) V DS 0.5 V, 4 SS V DS V DS 0.mA b) V DS 6 V, 4 SS V GS + 3.5 0.5 0.5 5.0 µa + V. The transistor is in the triode region. + 4 0.5 0.5.9 µa 4) +3 V. The transistor is pinched off. ) 0.mA V, +. 3 µa * 4V 9

Page 96 a V DS 3 V, 3 4 V. The transistor is pinched off. SS V GS.5mA 3V ), +. 56 µa Pinchoff requires V DS V * 4V b) V DS 6 V, 4) 3 V. The transistor is pinched off. SS V GS.5mA V ), +..4 ma Pinchoff requires V DS 3 V * 4V c) V DS 0.5 V, 4) V. The transistor is in the triode region. SS V DS V DS.5mA 4 0.5 0.5 4 Pinchoff requires V DS V 73 µa Page 97 BETA SS BETA SS.5mA 0.65 ma VTO V LAMBDA λ 0.05 V 5mA.5 ma VTO V LAMBDA λ 0.0 V 0

Page 99 VTO 5 V BETA SS 5mA 0. ma LAMBDA λ 0.0 V 5 V G V S I G R G 0 K n V TN ) K n V TN 0.4mA 5) kω 5 V R GS S V TN 5 + V GS 5 SS V GS Assuming pinchoff,.9 ma and V DS 9.9mA kω+kω 3.09 V, V DS >, and pinchoff is correct. Assuming pinchoff, SS V GS.5 V SS V GS V DS.5mA kω+ kω.5 5 5mA.5 5 for SS K n V TN and V TN V GS 5 + 5 0 and the rest is identical. 3.7 V. 5x0 3 ) x0 3 ) +.5 ma 5 V GS +.5 + 5 0 7.00 V. +.5 V, V DS >, and pinchoff is correct. QPoint:.5 ma, 7.00 V ) Page 00 a V G I G R G 0nA 680kΩ 6.80 mv. V G V S I G R G SS V GS.00680 5x0 3 ) 0 3 ) + 5 V GS 5 + 5 0 The value of V G is insignificant with respect to the constant term of 5. So the answers are the same to 3 significant digits. b) V G I G R G µa 680kΩ V G V S I G R G SS V GS.6 V SS V GS V DS.54mA kω+kω 0.680 V and now cannot be neglected. 0.680 5x0 3 ) 0 3 ) + 5mA.6 5.54 ma 7.38 V QPoint:.54 ma, 7.38 V ) 5 V GS 5 + 8.4 0

CHAPTER 5 Page a) β F α F 0.970 α F 0.970 3.3 β F 0.993 0.993 4 β F 0.50.50 0.333 b) α F β F β F + 40 4 0.976 α 00 F 0 0.995 α 3 F 4 0.750 Page 3 ) i C 0 5 A exp 0.700 exp 9.30, +. 0 5 A) exp 9.30, +..45 ma * 0.05 0.05 0.5 * 0.05 ) i E 0 5 A exp 0.700 exp 9.30, +. + 0 5 A) exp 0.700, +..46 ma * 0.05 0.05 00 * 0.05 i B 0 5 A 00 ) exp 0.700, +. + 0 5 A) exp 9.30, +. 4.5 µa * 0.05 0.5 * 0.05 Page 5 ) i C 0 6 A exp 0.750 exp 0.700, +. 0 6 A) exp 0.700, +. 563 µa * 0.05 0.05 0.4 * 0.05 ) i E 0 6 A exp 0.750 exp 0.700, +. + 0 6 A) exp 0.750, +. 938 µa * 0.05 0.05 75 * 0.05 i B 0 6 A 75 ) exp 0.750, +. + 0 6 A) exp 0.700, +. 376 µa * 0.05 0.4 * 0.05 ) i T 0 5 A exp 0.750, + exp. 0.7 ma * 0.05 0.05 ) i T 0 6 A exp 0.750 exp 4.5, +..07 ma * 0.05 0.05

Page 7 V BE V T ln I C + 0.05V ln 0 4 A 0 6 A + 0.69 V V BE V T ln I C + 0.05V ln 0 3 A 0 6 A + 0.748 V Page 8 npn :V BE > 0, V BC < 0 Forward Active Region pnp :V EB > 0, V CB > 0 Saturation Region Page 3 β F α F α F 0.95 0.05 9 β α R R 0.5 α R 0.75 3 V BE 0, V BC << 0 : I C + * 0 6 A + * 0.400 fa ) 0.333) I E 0.00 fa β R I B 0 6 A 0.300 fa β R 0.333 V BE << 0, V BC << 0 : I C β R 3x0 6 A 0.300 fa I E β F 0 6 A 9.0 5.6 aa I B 0 6 A β F β R 9.0 0 6 A 0.305 fa / 3 Page 33 a The currents do not depend upon V CC as long as the collector base junction is reverse biased by more than 0. V. Later when Early votlage V A is discussed, one should revisit this problem.) b) I E 00 µa I B I E β F + 00µA.96 µa I C β F I B 50I B 98.0 µa 5 V BE V T ln I C + 0.05V ln 98.0µA 0 6 A + 0.690 V 3

Page 34 a The currents do not depend upon V CC as long as the collector base junction is reverse biased by more than 0. V. Later when Early voltage V A is discussed, one should revisit this problem.) b) Forward active region : I B 00 µa I E β F +)I B 5.0 ma I C β F I B 5.00 ma V BE V T ln I C + 0.05V ln 5.00mA 0 6 A + 0.789 V Checking : V BC 5 + 0.789 4. Forward active region with V CB 0 requires V CC V BE or V CC 0.764 V Page 36 0.7V 9V a) I E I B 5.6kΩ.48 ma I E β F + I E 5 9. µa I C β F I B 50I B.45 ma V CE V C V E 9 4300I C b) I E β F + 0.7) 3.47 V QPoint:.45 ma, 3.47 V ) I C 5 β F 50 00µA 0µA R 0.7V 9V 0µA The nearest 5 value is 8 kω. Page 37 0.7V 9V I E 5.6kΩ 8.3V 8.4 kω 0µA.48 ma I B I E β F + I E 50 9. µa I β I 50I C F B B.45 ma I E β + F I C 5 β F 50 I.0I V V ln I C C C BE T +* 0.05ln x0 5 I C +) ) + V BE + 800.0 5x0 6 )exp V. BE * 0 9 V BE 0.7079 V using a calculator solver, 0.05) / or spreadsheet. I C 5x0 6 exp 0.7079 * 99 µa V CE 9 4300I C 0.708 0.05 ) D BJT α F x0 4 A 0.95.0 fa 5.44 V 4

Page 40 0.7V 9V I C 5.6kΩ.48 ma I B I C β R + I C 0.74 ma I β I E R B I B 0.74 ma Page 4 ma + * +! 40µA V CESAT 0.05V )ln* 99.7 mv * 0.5 ma ) * 50 40µA), + * 0.mA + 0.5)mA V BESAT 0.05V )ln*! 0 5 A 0.694 mv * + 0.5 )* 50, 0.mA ma + * V BCSAT 0.05V )ln* 50! 0 5 A 0.67 mv *! + 0.5 )* 0.5 50, Note: V CESAT V BESAT V BCSAT 67.7mV Page 45.5 cm / s a) D n kt q µ n 0.05V 500cm /V s b) qad nn i N AB W.6x0 9 C 50µm Page 48 V T.38x0 3 J / K.60x0 9 C f β f T β F 373K 300MHz 5.40 MHz 0 4 cm / µm).5cm / s) 0 0 / cm 6 ) 0 8 / cm 3 ) µm) 3.mV C D I C V T τ F 0 8 A aa 0A 0.03V 4x0 9 s).4 µf 5

Page 49 I C 0 5 Aexp 0.7 + 0.74 ma β F 75 + 0 90.0 I B.74mA 9.3 µa 0.05 50 50 90.0 I C 0 5 Aexp 0.7.45 ma β F 75 I B.45mA 9.3 µa 0.05 75 Page 5 g m 40 V 0 4 A C D 4.00mS 5ps Page 54 4.00 ms g m 40 40.0 ms V 0 3 A 0.00 pf C D 40.0mS 5ps).00 pf V T kt q.38x0 3 300 5.9 mv IS.60x0 9 BF 80 VAF 70 V I C 350µA exp V BE exp 0.68.39 fa 0.059 Page 58 8kΩ V EQ 8kΩ + 36kΩ V 4.00 V R EQ 8kΩ 36kΩ kω 4.00 0.7 V I B + 75 +)6 kω.687 µa I C 75I B 0 µa I E 76I B 04 µa V CE 000I C 6000I E 4.9 V Q po int : 0 µa, 4.9 V V T 80kΩ V EQ 80kΩ + 360kΩ V 4.00 V R EQ 80kΩ 360kΩ 0 kω 4.00 0.7 V I B 0 + 75+)6 kω.470 µa I 75I 85 µa I 76I C B E B 88 µa V CE 000I C 6000I E 4.9 V Q po int : 85 µa, 4.93 V 6

Page 59 I I C 5 50I B 0I B 5 8kΩ V EQ 8kΩ + 36kΩ V 4.00 V R EQ 8kΩ 36kΩ kω 4.00 0.7 V I B + 500 +)6 kω 0.4 µa I C 500I B 05.6 µa I E 76I B 06.0 µa V CE 000I C 6000I E 4.8 V Q point : 06 µa, 4.8 V Page 60 The voltages all remain the same, and the currents are reduced by a factor of 0. Hence all the resistors are just scaled up by a factor of 0. 0 kω. MΩ 8 kω 80 kω 6.8 kω 68 kω Page 6 9 0.7 V I B 36 + 50 +) kω 95.4 µa I C 50I B 4.77 ma I E 5I B 4.87 ma V CE 9 000 I C + I B 4.3 V Q point : 4.77 ma, 4.3 V ) Page 66 VBE V) IC A) VBE V) 0.70000.055E04 0.6756 0.6756.038E04 0.6778 0.6778.037E04 0.6778 0.6778.037E04 0.6778 7