Homework 4.1 Solutions Math 5110/6830

Σχετικά έγγραφα
3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

1. For each of the following power series, find the interval of convergence and the radius of convergence:

The Simply Typed Lambda Calculus

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Homework 3 Solutions

Homework for 1/27 Due 2/5

ST5224: Advanced Statistical Theory II

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6

Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing.

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

Section 7.6 Double and Half Angle Formulas

C.S. 430 Assignment 6, Sample Solutions

Homework 8 Model Solution Section

2 Composition. Invertible Mappings

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Math221: HW# 1 solutions


Areas and Lengths in Polar Coordinates

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Matrices and Determinants

derivation of the Laplacian from rectangular to spherical coordinates

Areas and Lengths in Polar Coordinates

Solutions to Exercise Sheet 5

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Concrete Mathematics Exercises from 30 September 2016

4.6 Autoregressive Moving Average Model ARMA(1,1)

Section 8.3 Trigonometric Equations

IIT JEE (2013) (Trigonomtery 1) Solutions

Srednicki Chapter 55

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1)

Every set of first-order formulas is equivalent to an independent set

Solution Series 9. i=1 x i and i=1 x i.

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra

Finite Field Problems: Solutions

Inverse trigonometric functions & General Solution of Trigonometric Equations

CHAPTER 103 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES

Right Rear Door. Let's now finish the door hinge saga with the right rear door

EE512: Error Control Coding

Συστήματα Διαχείρισης Βάσεων Δεδομένων

Other Test Constructions: Likelihood Ratio & Bayes Tests

Instruction Execution Times

Introduction of Numerical Analysis #03 TAGAMI, Daisuke (IMI, Kyushu University)

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Statistical Inference I Locally most powerful tests

Fourier Series. constant. The ;east value of T>0 is called the period of f(x). f(x) is well defined and single valued periodic function

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

PARTIAL NOTES for 6.1 Trigonometric Identities

Example Sheet 3 Solutions

Second Order Partial Differential Equations

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Exercises to Statistics of Material Fatigue No. 5

On Generating Relations of Some Triple. Hypergeometric Functions

Tridiagonal matrices. Gérard MEURANT. October, 2008

( ) 2 and compare to M.

Reminders: linear functions

Section 1: Listening and responding. Presenter: Niki Farfara MGTAV VCE Seminar 7 August 2016

Code Breaker. TEACHER s NOTES

Μηχανική Μάθηση Hypothesis Testing

Section 9.2 Polar Equations and Graphs

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Modbus basic setup notes for IO-Link AL1xxx Master Block

Problem Set 3: Solutions

Ψηφιακή Επεξεργασία Εικόνας

Fractional Colorings and Zykov Products of graphs

F19MC2 Solutions 9 Complex Analysis

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

( y) Partial Differential Equations

SOLVING CUBICS AND QUARTICS BY RADICALS

Trigonometric Formula Sheet

Quadratic Expressions

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 10η: Basics of Game Theory part 2 Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

7 Present PERFECT Simple. 8 Present PERFECT Continuous. 9 Past PERFECT Simple. 10 Past PERFECT Continuous. 11 Future PERFECT Simple

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

Newborn Upfront Payment & Newborn Supplement

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

TMA4115 Matematikk 3

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

CRASH COURSE IN PRECALCULUS

the total number of electrons passing through the lamp.

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011

On a four-dimensional hyperbolic manifold with finite volume

Volume of a Cuboid. Volume = length x breadth x height. V = l x b x h. The formula for the volume of a cuboid is

Supplemental Material: Scaling Up Sparse Support Vector Machines by Simultaneous Feature and Sample Reduction

An Inventory of Continuous Distributions

Paper Reference. Paper Reference(s) 1776/04 Edexcel GCSE Modern Greek Paper 4 Writing. Thursday 21 May 2009 Afternoon Time: 1 hour 15 minutes

LESSON 14 (ΜΑΘΗΜΑ ΔΕΚΑΤΕΣΣΕΡΑ) REF : 202/057/34-ADV. 18 February 2014

1 String with massive end-points

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

= λ 1 1 e. = λ 1 =12. has the properties e 1. e 3,V(Y

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΕΠΛ342: Βάσεις Δεδομένων. Χειμερινό Εξάμηνο Φροντιστήριο 10 ΛΥΣΕΙΣ. Επερωτήσεις SQL

department listing department name αχχουντσ ϕανε βαλικτ δδσϕηασδδη σδηφγ ασκϕηλκ τεχηνιχαλ αλαν ϕουν διξ τεχηνιχαλ ϕοην µαριανι

14 Lesson 2: The Omega Verb - Present Tense

FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revision B

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

Transcript:

Homework 4. Solutios Math 5/683. a) For p + = αp γ α)p γ α)p + γ b) Let Equilibria poits satisfy: p = p = OR = γ α)p ) γ α)p + γ = α γ α)p ) γ α)p + γ α = p ) p + = p ) = The, we have equilibria poits p = ad p =. The, fp) = αp γ α)p γ α)p + γ αp γ α)p ) γ α)p + γ α γ α)p ) γ α)p + γ f p) = αγ α)p γ α)p + γ) αpγ α)p γ α)) γ α)p γ α)p + γ) = αγ α)p αγ α)p + αγ αγ α)p + αγ α)p γ α)p γ α)p + γ) = αγ αγ α)p γ α)p γ α)p + γ) At p = : f ) = α γ > whe α > γ ustable) < whe α < γ stable) At p = : f ) = So, we ca t be sure of the stability of p = from this. Do a cobweb to determie that this poit is stable whe p is ustable, etc.. a) First we have: p + = = αp + β p )p αp + β p )p + γ p ) ) α β)p + βp α β + γ)p γ β)p + γ

b) Fixed poits satisfy: c) Let p = p = OR = α β + γ)p ) γ β)p + γ = α β)p + β α β + γ)p ) γ β)p + γ α β)p β = α β + γ)p ) α 3β + γ)p + γ β = α β + γ)p ) α 3β + γ)p + γ β = ) α 3β + γ p ) p + γ β = α β + γ α β + γ p ) p γ β ) = α β + γ So, the equilibria poits are p = p = p 3 = γ β α β + γ α β)p ) + βp α β + γ)p ) γ β)p + γ α β)p + β α β + γ)p ) γ β)p + γ p ad p exist for all parameter values. However, p 3 eeds to be positive to exist: The, fp) = γ β α β + γ > the γ > β ad α + γ > β or γ < β ad α + γ < β α β)p + βp α β + γ)p γ β)p + γ f p) = [α β)p + β][α β + γ)p γ β)p + γ] [α β)p + βp][α β + γ)p γ β)] [α β + γ)p γ β)p + γ] For p = : For p = : = αγ + αβ + βγ)p + αγ βγ)p + βγ [α β + γ)p γ β)p + γ] f ) = β γ > whe β > γ ustable) < whe β < γ stable) f ) = β α > whe β > α ustable) < whe β < α stable)

For p 3 = α β+γ : ) γ β f α β + γ = αγ + αβ + βγ) [ α β + γ) α β+γ α β+γ ) ) + αγ βγ) α β+γ ) ) γ β) α β+γ + γ + βγ ] = αγ + αβ + βγ) ) α β+γ) + αγ βγ) α β+γ + βγ [ ] ) α β+γ + γ = αγ + αβ + βγ) ) α β+γ) + αγ))α β+γ) α β+γ) [ ] ) α β+γ + γ α β+γ α β+γ + βγ α β+γ) α β+γ) = αγ + αβ + βγ)γ β) + αγ βγ)γ β)α β + γ) + βγα β + γ) [ γ β) + γα β + γ)] = αγ αβ βγ)αγ beta ) αγ β ) αγ αβ βγ = αγ β For this to be stable we eed f p) < < αγ αβ βγ α < for αγ αβ βγ αγ β < Remember that for p 3 to exist, we eed γ > β AND α + γ > β OR γ < β AND α + γ < β. The, αγ βα + γ) αγ β > αγ ββ) αγ β > αγ β ) αγ β = The for γ > β which meas also meas that α > β, this poit is ustable. But for β > γ ad β > α, the this poit is stable. d) We ll start with oe of the coditios we had for p 3 to exist: γ > β AND α + γ > β. I this eviromet, the black moths are favored over the gray moths sice γ > β. However, we are also favorig the peppered moths over the gray moths sice β < α + γ < α + β so β < α Now let s look at the other coditio we could have for p 3 to exist: γ < β AND α + γ < β. I this eviromet, the grey moths are favored over the black moths sice γ < β. But they are also favored over the peppered moths sice β > α + γ > α + β so β > α We ca t tell aythig from these coditios about the selective advatages betwee the peppered ad black moths.

For the log term dyamics, we kow that the W allele will either disappear p = ), take over p = ), or go to a coexistece p 3. Recall the coditios for each of these to be stable. For p = to be stable we eeded γ > β. So, the W allele is lost if the black moths are favored over the grey moths. Ad, for p = to be stable we eeded α > β. So, the W allele is fixed if the peppered moths are favored over the grey moths. Both of these are true as i the case before. So, how could this happe? We have stable equilibria! Remember that we still have a ustable equilibria ibetwee the two stable oes. Mathematically this better be true!! We always eed to alterate the stability of the poits. This meas that if we start to the left of p 3, the the W allele will be lost. But, if we start to the right of p 3, the the W allele wis everythig! However, if both p ad p + are ustable ie. for β > γ & β > α), the the coexistece equilibria p 3 is stable. Therefore we get some peppered moths ad some of the other kids depedig o if γ > α or vice versa. e) We are ow give that α < β < γ with the black ww) moths at equilibrium. By our previous aalysis, p = is stable, p = is ustable ad p 3 does t exist. However, the peppered moths W W ) are makig their comeback & ow have much higher levels. What happes? Well, sice p = is stable, the the peppered moths will evetually die out agai. Poor peppered moths. f) For β < α < γ, we agai have three equilibria poits. Recall that if we re above p 3, the the peppered moths populatio will survive. Otherwise, they will be lost agai.

Homework 4. Solutios Math 5/683. a) with a R =.5, a J =.7, p R =., ad p J =.5:.4..4. &.8.6.4.8.6.4.. 3 4 5 6 7..4.6.8 b) with a R =.5, a J =.7, p R =.7, ad p J =.9: 4 x 9 4 x 9 & 8 6 4 8 6 4 3 4 5 6 7 4 6 8 x 9 c) with a R =., a J =., p R =., ad p J =.: & 6 5 4 3 3 5 4 3 3 4 3 4 5 6 7 4 4 4 6 d) with a R =.5, a J =.8, p R =., ad p J =.5: &.5.4.3...9.8.7.6.45.4.35.3.5..5..5.5 3 4 5 6 7.55.6.65.7.75.8.85.9.95

Matlab code: a=[.5;.7;.;.5]; b=[.5;.7;.7;.9]; c=[;;.;-.]; d=[.5;.8;.;.5]; A=[a b c d]; N=7; for i=:4 ar=a,i); aj=a,i); pr=a3,i); pj=a4,i); R=zeros,N); J=zeros,N); R)=; J)=; for =:N- R+)=ar*R)+pr*J); J+)=aj*J)+pj*R); figurei) subplot,,) plot[:n-)], R, m:.,[:n-)],j, k:h ); xlabel ); ylabel & ); leged,,); hold off; subplot,,) x=r; y=j; plotx,y, k, Liewidth,3); xlabel ); ylabel ); ed ed. a) Cobweb diagram:.9.8.7.6 x +.5.4.3....4.6.8 x b) The poit, ) is ustable, ad the ozero equilibria is stable.

c) Solutio:.65.6.55 x.5.45.4.35.3.5.5.5 3 3.5 4 Matlab code for both part a) ad c): N=5; x=zeros,n); x)=.3; figure); for =:4 x+)=.8*-x))*x); axis square; hold off; plot[:n-)],x, k:d, Liewidth,); xlabel ); ylabel x_ ); ed % for the cobwebbig: t=:.:; figure) plott,.8*t.*-t)), b, Liewidth,3); hold o; axis square; fplot *y,[ ], Liewidth,3, k ); lie[x) x)],[ x)], Color, c, Liewidth,); plotx),x), kh, Liewidth,); for =:3 lie[x) x+)],[x+) x+)], Color, c, Liewidth,) lie[x+) x+)],[x+) x+)], Color, c, Liewidth,) plotx+), x+), kh, Liewidth,); xlabel x_ );ylabel x_{+} ); ed lie[x4) x4+)],[x4+) x4+)], Color, c, Liewidth,) d) The fixed poits are: x = x = Kr ) r Stability of fixed poits: let fx) = r x ) x K

The, f x) = r x ) rx K K = r x ) K Ad, f Kr ) r f ) ) = r = r ) r ) r = r r ) = r So, x = is stable for < r <, ad ustable otherwise. Ad, x = Kr ) r is stable for < r < 3, ad ustable otherwise. We ca also tell from this that there will be cyclig period doublig) that begis at r = 3. Your clue to kow this should have bee the fact that you ca t have ustable or stable) equilibria poits ext to each other. They always have to alterate stability ie. if oe is stable, the other is ustable, ad vice versa). Bifurcatio Diagram: