Estimation for ARMA Processes with Stable Noise. Matt Calder & Richard A. Davis Colorado State University

Σχετικά έγγραφα
4.6 Autoregressive Moving Average Model ARMA(1,1)

LAD Estimation for Time Series Models With Finite and Infinite Variance

6.3 Forecasting ARMA processes

Other Test Constructions: Likelihood Ratio & Bayes Tests

Introduction to the ML Estimation of ARMA processes

Statistical Inference I Locally most powerful tests

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

Numerical Analysis FMN011

ST5224: Advanced Statistical Theory II

Solution Series 9. i=1 x i and i=1 x i.

Asymptotic distribution of MLE

Homework for 1/27 Due 2/5

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

6. MAXIMUM LIKELIHOOD ESTIMATION

Lecture 12: Pseudo likelihood approach

Module 5. February 14, h 0min

HW 3 Solutions 1. a) I use the auto.arima R function to search over models using AIC and decide on an ARMA(3,1)

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Lecture 34 Bootstrap confidence intervals

2 Composition. Invertible Mappings

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

FORMULAS FOR STATISTICS 1

Every set of first-order formulas is equivalent to an independent set

Second Order RLC Filters

Queensland University of Technology Transport Data Analysis and Modeling Methodologies

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Inverse trigonometric functions & General Solution of Trigonometric Equations

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review

Approximation of distance between locations on earth given by latitude and longitude

EE512: Error Control Coding

Areas and Lengths in Polar Coordinates

Finite Field Problems: Solutions

Areas and Lengths in Polar Coordinates

Durbin-Levinson recursive method

Homework 3 Solutions

Μηχανική Μάθηση Hypothesis Testing

TMA4115 Matematikk 3

F19MC2 Solutions 9 Complex Analysis

Concrete Mathematics Exercises from 30 September 2016

The challenges of non-stable predicates

An Inventory of Continuous Distributions

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Solutions to Exercise Sheet 5

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Matrices and Determinants

Modbus basic setup notes for IO-Link AL1xxx Master Block

C.S. 430 Assignment 6, Sample Solutions

P AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example:

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Section 8.3 Trigonometric Equations

Theorem 8 Let φ be the most powerful size α test of H

Optimal Parameter in Hermitian and Skew-Hermitian Splitting Method for Certain Two-by-Two Block Matrices

Quadratic Expressions

The Probabilistic Method - Probabilistic Techniques. Lecture 7: The Janson Inequality

Stationary ARMA Processes


ESTIMATION OF SYSTEM RELIABILITY IN A TWO COMPONENT STRESS-STRENGTH MODELS DAVID D. HANAGAL

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ

Risk! " #$%&'() *!'+,'''## -. / # $

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

( )( ) ( ) ( )( ) ( )( ) β = Chapter 5 Exercise Problems EX α So 49 β 199 EX EX EX5.4 EX5.5. (a)

Tridiagonal matrices. Gérard MEURANT. October, 2008

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Generalized additive models in R

Lecture 21: Properties and robustness of LSE

Local Approximation with Kernels

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

A Note on Intuitionistic Fuzzy. Equivalence Relation

2. ARMA 1. 1 This part is based on H and BD.

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Άνοιξη HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems

Homework 8 Model Solution Section

PARTIAL NOTES for 6.1 Trigonometric Identities

D Alembert s Solution to the Wave Equation

The Simply Typed Lambda Calculus

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

CRASH COURSE IN PRECALCULUS

Example Sheet 3 Solutions

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

( y) Partial Differential Equations

Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03)..

Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων. Εξάμηνο 7 ο

Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing.

Probability and Random Processes (Part II)

The ε-pseudospectrum of a Matrix

Section 9.2 Polar Equations and Graphs

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

Stationary ARMA Processes

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

ARMA Models: I VIII 1

Econ Spring 2004 Instructor: Prof. Kiefer Solution to Problem set # 5. γ (0)

Exercises to Statistics of Material Fatigue No. 5

Assalamu `alaikum wr. wb.

Inference in the Skew-t and Related Distributions

Υπολογιστική Φυσική Στοιχειωδών Σωματιδίων

Transcript:

Estimation for ARMA Processes with Stable Noise Matt Calder & Richard A. Davis Colorado State University rdavis@stat.colostate.edu 1

ARMA processes with stable noise Review of M-estimation Examples of M-estimation LS LAD MLE Bootstrapping Simulations 2

ARMA(p,q) model with heavy tailed noise....... X t φ 1 X t-1 φ p X t-p = Z t + θ 1 Z t-1 + + θ q Z t-q, a. {Z t } ~ IID(α) with Pareto tails (0 < α < 2)...... b. φ(z) = 1 φ 1 z φ p z p and θ(z) = 1 + θ 1 z + + θ q z q have no common zeroes and no zeroes on or inside the unit circle. Shorthand notation. φ(b)x t = θ(b)z t, {Z t } ~ IID(α) (Β=backward shift) β= (φ 1,..., φ p, θ 1,..., θ q ) T (parameter vector) 3

Examples of AR(2) models. 0 50 100 150 200 250-400 0 200 400 0 200 400 600 800 0 50 100 150 200 250 4

0 50 100 150 200 250-500 0 500-1000 0 500 1000 0 50 100 150 200 250 5

Review of M-Estimation for ARMA Models Data. X 1,..., X n Model. (ARMA(p,q)) φ(b)x t = θ(b)z t, {Z t } ~ IID(α). Loss function. ρ( ) Criterion. Minimize where n Σ t=1 T n (β) = ρ(z t (β)) with respect to β, Z t (β ) = 0 and X t = 0, for t < 1,... Z t (β ) = φ(b)x t θ 1 Z t-1 (β ) θ q Z t-q (β ), t >0. 6

Result (Davis, Knight & Liu `92, Davis `95). If {Z t } ~SαS (symmetric α stable) and ψ(x)= ρ'(x) satisfies 1. Lipschitz of order τ > max(α 1,0). 2. Ε ψ(z 1 ) < if α < 1, 8 3. Ε ψ(z 1 ) = 0 and Var(ψ(Z 1 ) ) <, if α > 1, then n 1/α (β M β) d η where β M is the M-estimate of β. The limit random vector η is the minimizer of a stochastic process. 8 7

Εxample (MA(1)). Data. X 1,..., X n Model. X t = Z t + θ Z t-1, LAD estimation: Minimize θ 0 < 1, {Z t } ~ IID(α) n Σ t=1 n Σ t=1 T n (θ) = ( ρ(z t (θ)) - ρ(z t (θ 0 )) ) = (ρ(x t θx t-1 +θ 2 X t-2 - (-θ) t-1 X 1 ) - ρ (Z t (θ 0 ))) Set u=n 1/α (θ θ 0 ),... 8

S n (u) = T n (θ 0 + un -1/α ) n Σ t=1 = (ρ(z t (θ 0 + un -1/α )) - ρ(z t (θ 0 )) ) (Not a convex function of u even if ρ is convex!) Linearize Z t (θ 0 + un -1/α ) to get n Σ t=1 S n (u) (ρ(z t (θ 0 ) + un -1/α Z t ' (θ 0 )) ρ(z t (θ 0 )) ) where -Z t ' (θ 0 ) is the AR(1) process Y t = θ 0 Y t-1 +Z t. Result : u n := argmin(s n (u)) = n 1/ α (θ M θ 0 ) d η:= argmin(s (u)) 9

M-Estimation Examples 1. LS (least squares). ρ(x) = x 2 does not satisfy assumptions 1 3 of previous slide. However, ( n / ln n ) 1/α (β LS β) η LS d Remark: Estimation procedures which are inherently second order based will have scaling factor (n / ln n) 1/α. Examples are moment estimation (Davis & Resnick `85, `86) Yule-Walker estimation for AR's (Davis & Resnick `85, `86) Whittle estimate (and max Gaussian likelihood?) (Mikosch, Gadrich, Kluppelberg and Adler `95) 10

Moreover, β M β β LS β p 0 2. LAD (least absolute deviations). ρ(x) = x does not satisfy assumptions 1 3 of previous slide either. However, n 1/α (β LAD β) d η LAD 11

3. MLE (maximum likelihood). Suppose Z t has pdf f and ρ(x) = ln f(x). Then β MLE, which minimizes T n (β) = ln f(z t (β)), is an approximate MLE estimator. If one chooses f to be the symmetric λ stable density f λ, then ρ(x) = ln f λ (x) satisfies the assumptions of the result mentioned previously so that n Σ t=1 n 1/α d (β MLE,λ β) η λ Call β MLE,λ the maximum (λ-stable) likelihood estimate. 12

Remark. Can minimize n Σ t=1 T n (β) = ln f λ (Z t (β)) with respect to both λ and β to obtain pseudo-mle's of both parameters. 13

Bootstrapping the M-Estimate (Davis and Wu `95). Data. X 1,..., X n Model. X t = φ 1 X t-1 + + φ p X t-p +Z t, {Z t } ~ IID(α) M-estimate. φ Estimated residuals. Z t =X t φ 1 X t-1 +... φ p X t-p Bootstrap sample. X * t = φ 1 X * t-1 +... + φ p X * * t-p +Z t for t = 1,..., m n, where {Z * t }~IID(F n ), F n = empirical df of Z p+1,..., Z n. BS M-estimate. φ... 14

Result. If m n / n 0, then P(m 1/α n (φ φ) p X n ) P( η ). Removing the dependence on normalizing constants. Let M n = max{ X 1,..., X n } M * m = max{ X * 1,..., X * m }. Then M n (φ φ) d w and P(M * m (φ φ) p X n ) P( w ). 15

Simulation Comparison. Principal objectives: compare performance of β MLE,α, β LAD, and β LS. compare performance of β MLE,α, β MLE, 1, β MLE,α, and β LAD. investigate performance of the MLE estimator of α. 3 Models ({Z t } ~ SαS) AR(1) : X t =.4 X t-1 + Z t MA(1): X t = Z t +.8 Z t-1 ARMA(1,1): X t =.4 X t-1 + Z t +.8 Z t-1 Sample size = 200, replications = 10,000 16

α = 1.75 Model True Values β β β LAD LS MLE, α M.1 φ =.4.397 (.0465).397(.0474).398(.0394) M.2 θ =.8.802 (.0317).803(.0330).803(.0270) M.3 φ =.4.389 (.0456).397(.0525).398(.0440) θ =.8.807 (.0353).804(.0363).803(.0296) α = 1.0 Model True Values β β β LAD LS MLE, α M.1 φ =.4.3995 (.0073).3971(.0263).3999(.0061) M.2 θ =.8.8000 (.0043).8005(.0207).7997(.0039) M.3 φ =.4.3997 (.0083).3979(.0320).3999(.0071) θ =.8.8005 (.0048).8012(.0232).7996(.0048) 17

α =.50 Model True Values β β β LAD LS MLE, α M.1 φ =.4.3997 (.00058).3988(.01022).4000(.00007) M.2 θ =.8.7978 (.00226).8004(.01052).7576(.04242) M.3 φ =.4.3988 (.00142).3986(.01396).3998(.00071) θ =.8.8000 (.00012).8014(.01179).7529(.04715) 18

M.1, φ α=1.75 M.2, θ α=1.75 0.25 0.40 0.55 LAD LS MLE 0.65 0.80 0.95 LAD LS MLE M.1, φ α=1.0 M.2, θ α=1.0 0.35 0.45 0.75 0.85 LAD LS MLE LAD LS MLE 19

M.1, φ, α=0.5 M.2, θ α=0.5 0.36 0.40 0.44 LAD LS MLE 0.76 0.80 0.84 LAD LS MLE 20

M.1, φ α=1.75 M.2, θ α =1.75 0.25 0.40 0.55 0.65 0.80 0.95 LAD MLE Cchy Est. LAD MLE Cchy Est. M.1, φ α=0.8 M.2, θ α=0.8 0.390 0.405 LAD MLE Cchy Est. 0.790 0.805 LAD MLE Cchy Est. 21

Estimation of α 0 500 1500 2500 M.1, φ α = 0.80 500 1000 1500 2000 0 M1, φ α = 1.75 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 M.2, θ α = 0.80 M.2, θ α = 1.75 0 500 1500 2500 0 500 1000 1500 2000 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 22

Robustness of the estimates. Z 1 has a Pareto tail with exponent α = 4.0. M.1, φ α =4.0 M.2, θ α =4.0 0.30 0.40 0.50 0.70 0.80 0.90 LAD LS Cauchy LAD LS Cauchy 23

Conclusions Parameters of an ARMA model with heavy tailed noise can be estimated quite well. LAD estimates almost as good as MLE when noise is stable. Drawbacks of MLE: computationally more difficult requires an estimate of α MLE estimation of α performs well but is not very robust. 24