Handbook of Electrochemical Impedance Spectroscopy

Σχετικά έγγραφα
Handbook of Electrochemical Impedance Spectroscopy

Handbook of Electrochemical Impedance Spectroscopy

EE101: Resonance in RLC circuits

SMD Power Inductor-VLH

SMD Wire Wound Ferrite Chip Inductors - LS Series. LS Series. Product Identification. Shape and Dimensions / Recommended Pattern LS0402/0603/0805/1008

TÜV MANAGEMENT SERVICE ISO

SMD Power Inductor-VLH

Cal-Chip Electronics, Incorporated Multilayer Chip Inductors For High Frequency

Magnetically Coupled Circuits

Homework 8 Model Solution Section

Ηλεκτρονική ΙΙΙ Παύλος - Πέτρος Σωτηριάδης. Αντιστάθμιση. Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών - Μηχανικών Υπολογιστών

Design and Fabrication of Water Heater with Electromagnetic Induction Heating

± 20% ± 5% ± 10% RENCO ELECTRONICS, INC.

Solutions - Chapter 4

HMY 220: Σήματα και Συστήματα Ι

Study on Re-adhesion control by monitoring excessive angular momentum in electric railway traction

CHAPTER (2) Electric Charges, Electric Charge Densities and Electric Field Intensity

X-Y COUPLING GENERATION WITH AC/PULSED SKEW QUADRUPOLE AND ITS APPLICATION

CHAPTER 70 DOUBLE AND TRIPLE INTEGRALS. 2 is integrated with respect to x between x = 2 and x = 4, with y regarded as a constant

Answers to practice exercises

Chapter 6 BLM Answers

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Review of Single-Phase AC Circuits

Φυσική Χημεία Υλικών και Ηλεκτροχημεία. Φασματοσκοπία Εμπέδησης. κινητική μεταφοράς φορτίου. ιδανική χωρητική συμπεριφορά. φ = α π/2 έλεγχος από την

An Advanced Manipulation for Space Redundant Macro-Micro Manipulator System

Multilayer Chip Capacitors C0G/NP0/CH

Second Order RLC Filters

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

Single Stage Amplifiers

Spectrum Representation (5A) Young Won Lim 11/3/16

High Frequency Ceramic Inductors TLNMH0603P Series

SMD Wire Wound Ferrite Chip Inductors - SQC Series. SQC Series. Product Identification. Shapes and Dimensions

ibemo Kazakhstan Republic of Kazakhstan, West Kazakhstan Oblast, Aksai, Pramzone, BKKS office complex Phone: ; Fax:


Sampling Basics (1B) Young Won Lim 9/21/13

Te chnical Data Catalog

Written Examination. Antennas and Propagation (AA ) April 26, 2017.

ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations

Te chnical Data Catalog

Contents Introduction to Filter Concepts All-Pole Approximations

ME 365: SYSTEMS, MEASUREMENTS, AND CONTROL (SMAC) I

516(5,(6. LOW NOISE 150mA LDO REGULATOR

Fundamentals of Signals, Systems and Filtering

Project: 296 File: Title: CMC-E-600 ICD Doc No: Rev 2. Revision Date: 15 September 2010

ohm y j mho B 2 B = j (ratio of E R /E S with open ended line) per_cent increase% 100

Low Value Multilayer Inductors (LMCI Series)

NPI Unshielded Power Inductors

38 Te(OH) 6 2NH 4 H 2 PO 4 (NH 4 ) 2 HPO 4

the total number of electrons passing through the lamp.

CT Correlation (2B) Young Won Lim 8/15/14

Ηλεκτρονική ΙΙΙ Παύλος - Πέτρος Σωτηριάδης. Ταλαντωτές. Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών - Μηχανικών Υπολογιστών

ΤΕΙ ΠΕΙΡΑΙΑ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΧΗΜΕΙΑΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΛΙΚΩΝ. Δρ. Αθ.Ρούτουλας Καθηγητής

ITU-R BT ITU-R BT ( ) ITU-T J.61 (

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

Lifting Entry (continued)

Parametrized Surfaces

Quartz Crystal Test Report

Ferrite Chip Beads For Automotive Use

10.7 Performance of Second-Order System (Unit Step Response)

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Multilayer Ferrite Chip Beads / CM Series Feature Application Product Identification CM 1608 RL 120 Configurations & Dimensions Series Name Unit: mm

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

If we restrict the domain of y = sin x to [ π 2, π 2

ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΠΙΘΑΝΟΤΗΤΕΣ (Νο2) ΧΡΗΣΙΜΕΣ ΣΧΕΣΕΙΣ έ ώ ό έ ώ. ώ ό. ί ό ό 1, 1,2,, 1,,,,,,, 1,2,,, V ό V V. ή ό ί ά ύ. ό, ί ί ή έ ύ.

CRASH COURSE IN PRECALCULUS

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Figure 3 Three observations (Vp, Vs and density isosurfaces) intersecting in the PLF space. Solutions exist at the two indicated points.

IXBH42N170 IXBT42N170

Microelectronic Circuit Design Third Edition - Part I Solutions to Exercises

( )( ) La Salle College Form Six Mock Examination 2013 Mathematics Compulsory Part Paper 2 Solution

Reaction of a Platinum Electrode for the Measurement of Redox Potential of Paddy Soil

4.6 Autoregressive Moving Average Model ARMA(1,1)

AT Surface Mount Package SOT-363 (SC-70) I I Y. Pin Connections B 1 C 1 E 1 E 2 C 2 B , 7:56 PM

= 0.927rad, t = 1.16ms

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Supporting Information

GenX3 TM 300V IGBT IXGA42N30C3 IXGH42N30C3 IXGP42N30C3 V CES = 300V I C110. = 42A V CE(sat) 1.85V t fi typ. = 65ns

B37631 K K 0 60

DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E.

Απαντήσεις των Θεμάτων Ενδιάμεσης Αξιολόγησης στο Μάθημα «Ηλεκτροτεχνία Ηλεκτρικές Μηχανές» Ημερομηνία: 29/04/2014. i S (ωt)

Κλασσική Θεωρία Ελέγχου

Εισαγωγή στην Τεχνολογία Αυτοματισμού

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

is like multiplying by the conversion factor of. Dividing by 2π gives you the

& : $!" # RC : ) %& & '"( RL : ), *&+ RLC : - # ( : $. %! & / 0!1& ( :

Development and Verification of Multi-Level Sub- Meshing Techniques of PEEC to Model High- Speed Power and Ground Plane-Pairs of PFBS

Eight Examples of Linear and Nonlinear Least Squares

PLEASE READ THE FOLLOWING INSTRUCTIONS CAREFULLY

Numerical Analysis FMN011

ΑΝΩΤΑΤΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΠΕΙΡΑΙΑ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΔΟΜΙΚΩΝ ΕΡΓΩΝ

Ferrite Chip Beads. NCB Series

Srednicki Chapter 55

*H31123A0228* 1. (a) Find the value of at the point where x = 2 on the curve with equation. y = x 2 (5x 1). (6)

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Μέθοδος Σταθερών Χρόνου Ανοικτού Κυκλώματος

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

Experimental Study of Dielectric Properties on Human Lung Tissue

555 TIMER APPLICATIONS AND VOLTAGE REGULATORS

Core Mathematics C34

Section 8.3 Trigonometric Equations

Transcript:

Handbook of Electrochemical Impedance Spectroscopy Im Z u c T u c T Re Z CIRCUITS made of RESISTORS and INDUCTORS ER@SE/LEPMI J.-P. Diard, B. Le Gorrec, C. Montella Hosted by Bio-Logic @ www.bio-logic.info September 6, 7

Contents Circuits containing one L 5. Circuit (R+L)............................. 5.. Impedance.......................... 5.. Reduced impedance..................... 5. Circuit (R/L)............................. 6.. Impedance.......................... 6.. Reduced impedance..................... 6.3 Circuit (R +( /L ))........................ 7.3. Impedance.......................... 7.3. Reduced impedance..................... 7.4 Circuit (( +L )/R )........................ 8.4. Impedance.......................... 8.4. Reduced impedance..................... 8.5 Transformation formulae (R+(R/L)) ((R+L)/R)..................... 8.5. Transformation formulae (R+(R/L)) ((R+L)/R)... 8.5. Transformation formulae ((R+L)/R) (R+(R/L))... 9.6 Circuits containing L vs. circuits containing C........... 9.6. Transformation formulae circuit circuit and circuit 3 circuit 4.................. 9.6. Transformation formulae circuit 3 circuit....... 9.6.3 Transformation formulae circuit circuit 3....... 9.6.4 Transformation formulae circuit 4 circuit....... 9.6.5 Transformation formulae circuit circuit 4........6.6 Transformation formulae circuit 3 circuit........6.7 Transformation formulae circuit circuit 3........6.8 Transformation formulae circuit 4 circuit........6.9 Transformation formulae circuit circuit 4........7 Modified inductance......................... Circuits made of one R and two Ls. Circuit (( /L )+L ).......................... Impedance............................ Time constants..........................3 Reduced impedance...................... Circuit (( +L )/L ).......................... Impedance.......................... 3 3

4 CONTENTS.. Time constants........................ 3..3 Reduced impedance..................... 3.3 Transformation formulae ((R/L)+L) ((R+L)/L)........ 3.3. Transformation formulae ((R/L)+L) ((R+L)/L).... 3.3. Transformation formulae ((R+L)/L) ((R/L)+L).... 3

Chapter Circuits containing one L. Circuit (R+L) R L Figure.: Circuit (R+L)... Impedance Z(ω) = R + i L ω, Re Z(ω) = R, Im Z(ω) = L ω.. Reduced impedance Z (u) = Z/R = + i u, u = ω τ, τ = L/R Re Z (u) =, Im Z (u) = u - Im Z * - u c = Im Y * u c = Re Z * Re Y * Figure.: Nyquist diagrams of reduced impedance and admittance (Y = R Y ) for the (R+L) circuit. 5

6 CHAPTE. CIRCUITS CONTAINING ONE L. Circuit (R/L) L R Figure.3: Circuit (R/L)... Impedance Z(ω) = i ω L + R = i L R ω R + i L ω Re Z(ω) = L R ω R + L, Im Z(ω) = L ω.. Reduced impedance Z (u) = Z R = Re Z (u) = R ω R + L ω i u + i u, u = ω τ, τ = L/R u + u, Im Z (u) = u + u - Im Z * -.5 u c = Im Y * - u c = Re Z * Re Y * Figure.4: Nyquist diagrams of reduced impedance and admittance (Y = R Y ) for the (R/L) circuit.

.3. CIRCUIT (R +( /L )) 7.3 Circuit (R +( /L )) L R Figure.5: Circuit (R +(/L ))..3. Impedance Z(ω) = R + + = i ω L ( R + i ω L ) ( + R ) R + i ω L Re Z(ω) = ω L ω L + R + R, Im Z(ω) = ω L ω L +.3. Reduced impedance Z (u) = Z/R = + i T u + i u, u = τ ω, τ = L / (.) T = ( + R )/R = + /R > Re Z (u) = + T u + u, Im Z ( + T) u (u) = + u lim Re u Z (u) =, lim Re u Z (u) = T T Im Z u c T u c Im Y.5 u c u c T T Re Z Re Y Figure.6: Nyquist diagram of reduced impedance and admittance (Y = R Y ) for the (R +(/L )) circuit, plotted for T = 3.

8 CHAPTE. CIRCUITS CONTAINING ONE L.4 Circuit (( +L )/R ) R L Figure.7: Circuit ((+L )/R )..4. Impedance Z(ω) = (i ω L + ) R i ω L + + R = ( R + i ω L ) ( + R ) ( + i ω L ) + R Re Z(ω) = R ( ω L + ( + R ) ) ω L R ω L + ( + R ), Im Z(ω) = ω L + ( + R ).4. Reduced impedance Z (u) = Z ( + R ) R = + i T u + i u, u = τ ω, τ = L /( + R ) T = τ /τ, τ = L /, T = + R / > cf..3., Eq. (.) and Fig..6..5 Transformation formulae (R+(R/L)) ((R+L)/R) L R R L Figure.8: The (R+(R/L)) and ((R+L)/R) circuits are non-distinguishable..5. Transformation formulae (R+(R/L)) ((R+L)/R) R = + R, L = L, = R + R

.6. CIRCUITS CONTAINING L VS. CIRCUITS CONTAINING C 9.5. Transformation formulae ((R+L)/R) (R+(R/L)) L = L R R, =, R = R + R + R + R.6 Circuits containing L vs. circuits containing C L R R L Circuit : R R L Circuit : R L R C 3 R 4 R 3 C 4 3 4 Circuit 3: R R C Circuit 4: R C R Figure.9: (R+(R/L)), ((R+L)/R), (R+(R/C)), ((R+C)/R) circuits are nondistinguishable, taking account of negative values of parameters..6. Transformation formulae circuit circuit and circuit 3 circuit 4 cf..5 and Handbook of EIS : Circuits made of Rs and Cs..6. Transformation formulae circuit 3 circuit L = C 3 3, R = 3 + R 3, = 3.6.3 Transformation formulae circuit circuit 3 C 3 = L, R 3 = + R, 3 =.6.4 Transformation formulae circuit 4 circuit R 4 L = C 4 R 4, R = R 4, = 4 + R 4

CHAPTE. CIRCUITS CONTAINING ONE L.6.5 Transformation formulae circuit circuit 4 R 4 = R, 4 = R ( + R ), C 4 = L R.6.6 Transformation formulae circuit 3 circuit L = C 3 3, R = R 3, = R 3 (3 + R 3 ) 3.6.7 Transformation formulae circuit circuit 3 C 3 = L ( + R ), R 3 = R, 3 = R R + R.6.8 Transformation formulae circuit 4 circuit L = C 4 (4 + R 4 ), R = 4 R 4 4 + R 4, = 4.6.9 Transformation formulae circuit circuit 4 4 =, R 4 = R + R, C 4 = L ( + R ).7 Modified inductance Z = L α (i ω) α, Re Z = L α ω α c α, Im Z = L α ω α s α c α = cos( π α ), s α = sin( π α ) Z = L α ω α, φ Z = π α = cte The L α unit (H cm s α ) depends on α. Α Π Α Π Im Z Im Y Re Z Re Y Figure.: Nyquist diagrams of the impedance and admittance for the modified inductance L α, plotted for α =.8.

Chapter Circuits made of one R and two Ls. Circuit (( /L )+L ) L L Figure.: Circuit ((/L )+L )... Impedance i ω (L + L ) Z(ω) = + + iω L = i ω L.. Time constants ( + i ω L ) L (L + L ) + i ω L Z(ω) = (L + L ) i ω ( + i ω τ ) + i ω τ, τ = L, τ = L L (L + L ) Re Z(ω) = ω (L + L ) (τ τ ), Im Z(ω) = ω (L ( ) + L ) + ω τ τ + ω τ + ω τ lim Re Z(ω) = (L + L ) (τ τ ) = R ω τ

CHAPTER. CIRCUITS MADE OF ONE R AND TWO LS..3 Reduced impedance Z (u) = Z(ω)/ = i u ( + i T u) T + i u (.) u = ω τ, T = τ τ = L L + L < Re Z (u) = u + u, Im Z (u) = u ( ) + T u ( + T) ( + u ), lim Re Z(u) = u Im Z Re Z Figure.: Nyquit diagrams of reduced impedance for the ((/L )+L ) circuit (Eq. (.), Fig.., T = /4, /9, /9, the line thickness inceases with increasing T). Horizontal tangent for T /9 (L /L 8). Dots: reduced caracteristic angular frequency: u c = ; circles: reduced caracteristic angular frequency u c = /T.. Circuit (( +L )/L ) L L Figure.3: Circuit ((+L )/L ).

.3. TRANSFORMATION FORMULAE ((R/L)+L) ((R+L)/L) 3.. Impedance ( Z(ω) = i ω L i ω L + i ω L ) (i ω L + ) = i ω L + i ω L + + i ω (L + L ).. Time constants Z(ω) = i ω L ( + i ω τ ), τ = L + L, τ = L + i ω τ Re Z(ω) = ω L (τ τ ) + ω, Im Z(ω) = ω L ( ) + ω τ τ τ + ω τ lim Re Z(ω) = L (τ τ ) = L ω τ (L + L )..3 Reduced impedance Z (u) = Z(ω)/ = ( T) i u ( + i T u) + iu (.) u = ω τ, T = τ τ = L L + L < Re Z (u) = ( + T) u + u, Im Z ( + T) u (u) = + u (Fig..4) lim Re Z(u) = L u (L + L ) ( + T u ).3 Transformation formulae ((R/L)+L) ((R+L)/L).3. Transformation formulae ((R/L)+L) ((R+L)/L) = (L + L ), L = L + L, L = L + L L L.3. Transformation formulae ((R+L)/L) ((R/L)+L) L = L L, L = L, = L L + L L + L (L + L )

4 CHAPTER. CIRCUITS MADE OF ONE R AND TWO LS Im Z Re Z Figure.4: Nyquit diagrams of the reduced impedance for the ((+L )/L ) circuit (Eq. (.), Fig..3, T = /4, /9, /9, the line thickness inceases with increasing T). Horizontal tangent for T /9 (L /L 8). Dots: reduced caracteristic angular frequency: u c = ; circles: reduced caracteristic angular frequency u c = /T. L L L L Figure.5: The ((R/L)+L) and ((R+L)/L) circuits are non-distinguishable.