Inertial Navigation Mechanization and Error Equations

Σχετικά έγγραφα
EE 570: Location and Navigation

α β

Navigation Mathematics: Kinematics (Coordinate Frame Transformation) EE 565: Position, Navigation and Timing

FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revision B

EE 570: Location and Navigation

Solve the difference equation

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

1. For each of the following power series, find the interval of convergence and the radius of convergence:

Bessel function for complex variable

Presentation of complex number in Cartesian and polar coordinate system

derivation of the Laplacian from rectangular to spherical coordinates

CHAPTER 103 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

IIT JEE (2013) (Trigonomtery 1) Solutions

The Heisenberg Uncertainty Principle

Notes on the Open Economy

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6

Homework 4.1 Solutions Math 5110/6830

Introduction of Numerical Analysis #03 TAGAMI, Daisuke (IMI, Kyushu University)


Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Outline. M/M/1 Queue (infinite buffer) M/M/1/N (finite buffer) Networks of M/M/1 Queues M/G/1 Priority Queue

4.6 Autoregressive Moving Average Model ARMA(1,1)

Section 8.3 Trigonometric Equations

Diane Hu LDA for Audio Music April 12, 2010

Approximation of distance between locations on earth given by latitude and longitude

Homework 3 Solutions

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

On Generating Relations of Some Triple. Hypergeometric Functions

Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing.

Areas and Lengths in Polar Coordinates

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Areas and Lengths in Polar Coordinates

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Ψηφιακή Επεξεργασία Εικόνας

EN40: Dynamics and Vibrations

Second Order RLC Filters

C.S. 430 Assignment 6, Sample Solutions

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Matrices and Determinants

The Simply Typed Lambda Calculus

Geodesic Equations for the Wormhole Metric

Numerical Analysis FMN011

Lifting Entry (continued)

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Other Test Constructions: Likelihood Ratio & Bayes Tests

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Higher Derivative Gravity Theories

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

DERIVATION OF MILES EQUATION Revision D

1 String with massive end-points

Math221: HW# 1 solutions

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Srednicki Chapter 55

Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03)..

2 Composition. Invertible Mappings

B.A. (PROGRAMME) 1 YEAR

INTEGRATION OF THE NORMAL DISTRIBUTION CURVE

The challenges of non-stable predicates

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.

PARTIAL NOTES for 6.1 Trigonometric Identities

the total number of electrons passing through the lamp.

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

Solutions to Exercise Sheet 5

Variational Wavefunction for the Helium Atom

Forced Pendulum Numerical approach

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

Example Sheet 3 Solutions

Inverse trigonometric functions & General Solution of Trigonometric Equations

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Homework 8 Model Solution Section

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Tridiagonal matrices. Gérard MEURANT. October, 2008

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

Degenerate Perturbation Theory

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Solution Series 9. i=1 x i and i=1 x i.

( ) 2 and compare to M.

EE101: Resonance in RLC circuits

If we restrict the domain of y = sin x to [ π 2, π 2

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Lifting Entry 2. Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYLAND U N I V E R S I T Y O F

Homework for 1/27 Due 2/5

Μεταπτυχιακή διατριβή. Ανδρέας Παπαευσταθίου

Biorthogonal Wavelets and Filter Banks via PFFS. Multiresolution Analysis (MRA) subspaces V j, and wavelet subspaces W j. f X n f, τ n φ τ n φ.

«Χρήσεις γης, αξίες γης και κυκλοφοριακές ρυθμίσεις στο Δήμο Χαλκιδέων. Η μεταξύ τους σχέση και εξέλιξη.»

Partial Trace and Partial Transpose

Solutions - Chapter 4

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

B.A. (PROGRAMME) 1 YEAR

Fourier Series. Fourier Series

Concrete Mathematics Exercises from 30 September 2016

Supplemental Material: Scaling Up Sparse Support Vector Machines by Simultaneous Feature and Sample Reduction

Section 7.6 Double and Half Angle Formulas

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Transcript:

Iertial Navigatio Mechaizatio ad Error Equatios 1 Navigatio i Earth-cetered coordiates Coordiate systems: i iertial coordiate system; ECI. e earth fixed coordiate system; ECEF. avigatio coordiate system; local level, NED. Fudametal equatio of iertial avigatio: r i = f i + G i Navigatio i a coordiate system fixed to the Earth is more practical: First derivative: Secod derivative: r i = C i e re ṙ i = Ċi e re + C i eṙe = C i eω e i/er e + C i eṙe r i = Ċi eω e i/er e + C i e Ω e i/er e + C i eω e i/eṙe + Ċi eṙe + C i e re = CeΩ i e i/eω e i/er e + Ce i Ω e i/er e + CeΩ i e i/eṙe + CeΩ i e i/eṙe + C e re i = Ce (Ω i ei/eωei/ere + Ω ei/er ) e + 2Ω ei/eṙe + r e Combiig with the fudametal equatio: f e + G e = ω e i/e ωe i/e }{{ re + ω e i/e } re + 2ω e i/e }{{} ṙe + r e }{{} Cetripetal Euler Coriolis 1

2 Navigatio i local-level coordiates It is eve more practical to calculate velocities i local level coordiates (velocity east, velocity orth), ad calculate positio i geodetic coordiates (latitude, logitude). 2.1 Velocity equatio By defiitio: First derivative: v C e ṙe v = Ċ e ṙe + C e re = C e Ω e /eṙe + C e re Solve for r e : r e = C e v Ω e /eṙe Now, repeatig the Earth cetered avigatio equatio from the previous sectio with the Euler term eglected: f e + G e = Ω e i/e Ωe i/e }{{ re + 2Ω e } i/eṙe + r e }{{}}{{} First term Secod term Third term We will covert the above equatio to avigatio coordiates term by term. First term: Secod term: Third term: ( ( ) Ω e i/eω e i/er e = C e C e Ω e i/ec) e C e Ω e i/ec e C e r e = C e Ω i/eω i/er 2Ω e i/eṙe = 2Ω e i/e Ce ( v ) = 2C e C e Ω e i/ec e v = 2C e Ω i/e v r e = C e v Ω e /eṙe ( ) = C e v C e C e Ω e /e Ce C e ṙ e = C e v C e Ω /e v 2

ecombiig: f e + G e = Ω e i/e Ωe i/e re + 2Ω e i/eṙe + r e = CΩ e i/eω i/er + 2CΩ e i/ev + C e v CΩ e /ev ( = C e Ω i/e Ω i/e r + 2Ω i/e v + v Ω /e ( v) = C e Ω i/e Ω i/e r + ( 2Ω i/e ) Ω /e v + v ) ( = C e Ω i/e Ω i/e r + ( 2Ω i/e + ) Ω e/ v + v ) ( = C e Ω i/e Ω i/e r + ( Ω i/e + ) Ω i/ v + v ) Ce (f e + G e ) = Ω i/e Ω i/e r + ( Ω i/e + ) Ω i/ v + v f + G = Ω i/eω i/er + ( ) Ω i/e + Ω i/ v + v ecall that g = G ω i/e (ω i/e r): f + g + Ω i/e Ω i/e r = Ω i/e Ω i/e r + ( Ω i/e + ) Ω i/ v + v f + g = ( Ω i/e + ) Ω i/ v + v v = ( ) ω i/e + ω i/ v + f + g The above equatio is itegrated i real time to calculate velocity i the avigatio coordiates. 2.2 Implemetatio Details The local Earth rate vector is give by ω i/e cos φ ω i/e =. ω i/e si φ The agular rate vector for the chage i the local level coordiate frame with respect to the Earth frame is give by λ cos φ ω e/ = φ λ si φ. So the agular rate vector for the Coriolis correctio is give by (2ω i/e + λ) cos φ ω i/e + ω i/ = 2ω i/e + ω e/ = φ (2ω i/e + λ) si φ. 3

Writig out the compoets of the matrices i the velocity equatio: v N (2ω i/e + λ) si φ φ v E = (2ω i/e + λ) si φ (2ω i/e + λ) v N cos φ v E v D φ (2ω i/e + λ) cos φ v D f N + f E + f D g The above equatio is itegrated i real time to obtai the velocity: v N (t) = v N (t ) + v E (t) = v E (t ) + v D (t) = v D (t ) + t ( ((2ω i/e + λ) si φ)v E + φv D + f N ) dτ t (((2ω i/e + λ) si φ)v N + ((2ω i/e + λ) cos φ)v D + f E ) dτ t ( φv N ((2ω i/e + λ) cos φ)v E + f D + g) dτ Note that the above implemetatio is ustable; a practical iertial avigatio system requires a exteral referece. Oe method for calculatig the latitude ad logitude rates is give by λ = φ = v N, v E cos φ. The whole values of latitude ad logitude are calculated by itegratig the rates. 3 Navigatio ψ-agle error equatios 3.1 Velocity error equatio Defie three coordiate systems omially aliged with avigatio or local level coordiates: t true coordiate frame; the local level coordiate frame at our true positio. 4

f N + v N (t ) v N φ φ(t ) φ f E + v E (t ) v E 1/ λ λ(t ) λ f D + + v D (t ) 1/( cos φ) h(t ) v D h g Coriolis 1 φ λ φ Figure 1: Iertial avigatio system velocity ad positio processig. c computed coordiate frame; the local level coordiate frame at the positio we have computed. The misaligmet agles betwee true ad computed coordiates are deoted by δθ. p platform coordiate frame. I a gimbaled system, the accelerometers are attached to a stable platform whose attitude is cotrolled by the gryos. The platform coordiate system is defied by the accelerometer sesitive axes. The misaligmet agles betwee computed ad platform coordiates are deoted by ψ. The system total attitude error, φ, is the misaligmet betwee the true ad platform coordiates ad is give by φ = ψ + δθ. The ψ-agle error equatios use the computed coordiate frame for error aalysis. The velocity equatio i the computed coordiate frame, but usig the true values of velocity, specific force, ad gravity: v c = ( ω c i/e + ) ωc i/c v c + f c + g c 5

The velocity equatio agai, but usig the values of velocity, specific force, ad gravity that are estimated i real time by the avigatio computer: ˆv c = ( ω c i/e + ωc i/c) ˆv c + ˆf c + ĝ c Each of the estimated values i the equatio above is the sum of the true value ad a error: ˆv c = v c + δv c The specific force vector is measured i the platform frame, but for the real time calculatios, it is assumed to be i the computed frame: ˆf c = f p + δf c Similarly, the gravity vector is sesed i the true frame, but for the real time calculatios, it is assumed to be i the computed frame: ĝ c = g t + δg c δh Substitutig ito the estimated velocity equatio: v c + δ v c = ( ω c i/e + ωc i/c) (v c + δv c ) + f p + δf c + g t + δg c δh Ad subtractig off the true values: δ v c = ( ω c i/e + ωc i/c) δv c + f p f c + δf c + g t g c + δg c δh f p = C p c f c = (I (ψ )) f c = f c ψ f c g t = Ccg t c = (I + (δθ )) g c = g c + δθ g c The velocity error equatio: δ v c = ( ω c i/e + ) ωc i/c δv c ψ f c + δf c + δθ g c + δg c 6

3.2 Positio error equatio r e (t) = r e () + r e (t) + δr e (t) = r e () + δr e (t) = C e c (τ)vc (τ) dτ C e c (τ) (vc (τ) + δv c (τ)) dτ C e c (τ)δv c (τ) dτ δr c (t) = Ce c (t) Cc e (τ)δvc (τ) dτ δṙ c (t) = Ċc e (t) Cc e (τ)δvc (τ) dτ + Ce c (t)ce c (t)δvc (t) = Ċc e (t)δre (t) + δv c (t) = CeΩ c e c/eδr e + δv c = Ω c c/e δrc + δv c = Ω c e/c δrc + δv c δṙ c = ω c e/c δrc + δv c 3.3 Attitude error equatio ω p i/p = ωc i/c + εp ω p i/p = Cp c ωc i/p ( = Cc p ω c i/c + ωc/p) c = Cc p ω c i/c + ω p c/p = (I (ψ )) ω c i/c + ωp c/p = ω c i/c ψ ωc i/c + ωp c/p = ω c i/c ψ ω c i/c + ψ ω c i/c ψ ωc i/c + ψ = ω c i/c + εp ψ = ω c i/c ψ + εp 7

3.4 State space error model δ v = ( ω i/e + ω i/) δv ψ f + δf + δθ g + δg δh δṙ = ω e/ δr + δv ψ = ω i/c ψ + εp δgδh = gcomputed gactual = g 2g δh = ξg ηg g 2g δh ξg ηg g + g where ξ ad η are verticle deflectios of gravity, ad g is a bias error i the magitude of gravity. The term 2g δh is the liearized error i the calculated value of gravity due to a error i height. δθ g = = δθ = δr E δr E δr N ta φ δr E ta φ δr N ta φ δr E δr E δr N δr N g δr E g δr E g g δr δθ g + δgδh N + ξg = g δr E + ηg 2g δr D g g δr N ξg = g δr E + ηg 2g δr D g }{{}}{{}}{{} G δr δg = G δr + δg 8

ω e/ = ω i/e cos φ ω i/e = ω i/e si φ λ cos φ φ = λ si φ ω i/ = ω i/e + ω e/ v E v N v E ta φ ω i/ + ω i/ = 2ω i/e + ω e/ Combiig all terms for the complete ψ-agle error model: δṙ Ω e/ I ( ) δ v = G 2Ω i/e + Ω e/ (f δr ) ( ) δv + δf + δg ψ Ω i/e + ψ ε p Ω e/ 9

1 δṙ N δṙ E δṙ D δ v N δ v E = δ v D ψ N ψ E ψ D λ si φ φ 1 λ si φ λ cos φ 1 φ λ cos φ 1 g (2ω i/e + λ) si φ φ g (2ω i/e + λ) si φ (2ω i/e + λ) cos φ 2g φ (2ω i/e + λ) cos φ f D f E f D f N f E f N (ω i/e + λ) si φ φ (ω i/e + λ) si φ (ω i/e + λ) cos φ φ (ω i/e + λ) cos φ δr N δr E δr D δv N δf N + δg N δv E + δf E + δg E δv D δf D + δg D ψ N ε N ψ E ε E ψ D ε D Figure 2: Complete state space form ψ-agle error equatio.