Lecture 6. Goals: Determine the optimal threshold, filter, signals for a binary communications problem VI-1

Σχετικά έγγραφα
Analysis of optimal harvesting of a prey-predator fishery model with the limited sources of prey and presence of toxicity

Lecture 12 Modulation and Sampling

Example Sheet 3 Solutions

Oscillating dipole system Suppose we have two small spheres separated by a distance s. The charge on one sphere changes with time and is described by

) 2. δ δ. β β. β β β β. r k k. tll. m n Λ + +

Example 1: THE ELECTRIC DIPOLE

( ) ( t) ( 0) ( ) dw w. = = β. Then the solution of (1.1) is easily found to. wt = t+ t. We generalize this to the following nonlinear differential

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines

21. Stresses Around a Hole (I) 21. Stresses Around a Hole (I) I Main Topics

6.003: Signals and Systems. Modulation

Analytical Expression for Hessian

Matrix Hartree-Fock Equations for a Closed Shell System

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Trigonometry 1.TRIGONOMETRIC RATIOS

Section 8.3 Trigonometric Equations

5.4 The Poisson Distribution.

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

(a,b) Let s review the general definitions of trig functions first. (See back cover of your book) sin θ = b/r cos θ = a/r tan θ = b/a, a 0

6.003: Signals and Systems

Concrete Mathematics Exercises from 30 September 2016

PARTIAL NOTES for 6.1 Trigonometric Identities

Problem Set 3: Solutions

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

w o = R 1 p. (1) R = p =. = 1

Approximate System Reliability Evaluation

Appendix. The solution begins with Eq. (2.15) from the text, which we repeat here for 1, (A.1)

The Simply Typed Lambda Calculus

= e 6t. = t 1 = t. 5 t 8L 1[ 1 = 3L 1 [ 1. L 1 [ π. = 3 π. = L 1 3s = L. = 3L 1 s t. = 3 cos(5t) sin(5t).

6. MAXIMUM LIKELIHOOD ESTIMATION

Second Order RLC Filters

3 Frequency Domain Representation of Continuous Signals and Systems

Numerical Analysis FMN011

Math221: HW# 1 solutions

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 10η: Basics of Game Theory part 2 Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

Lifting Entry 2. Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYLAND U N I V E R S I T Y O F

Variational Wavefunction for the Helium Atom

Differentiation exercise show differential equation

Areas and Lengths in Polar Coordinates

( ) ( ) ( ) Fourier series. ; m is an integer. r(t) is periodic (T>0), r(t+t) = r(t), t Fundamental period T 0 = smallest T. Fundamental frequency ω

Probabilistic Image Processing by Extended Gauss-Markov Random Fields

HOMEWORK#1. t E(x) = 1 λ = (b) Find the median lifetime of a randomly selected light bulb. Answer:

C.S. 430 Assignment 6, Sample Solutions

2 Composition. Invertible Mappings

Fractional Colorings and Zykov Products of graphs

Inverse trigonometric functions & General Solution of Trigonometric Equations

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Section 7.6 Double and Half Angle Formulas

Lecture 21: Scattering and FGR

George S. A. Shaker ECE477 Understanding Reflections in Media. Reflection in Media

The choice of an optimal LCSCR contract involves the choice of an x L. such that the supplier chooses the LCS option when x xl

e t e r Cylindrical and Spherical Coordinate Representation of grad, div, curl and 2

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Matrices and Determinants

Exercise, May 23, 2016: Inflation stabilization with noisy data 1

Lifting Entry (continued)

Mean-Variance Analysis

Approximation of distance between locations on earth given by latitude and longitude

Other Test Constructions: Likelihood Ratio & Bayes Tests

Calculating the propagation delay of coaxial cable

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Uniform Convergence of Fourier Series Michael Taylor

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Electronic Companion to Supply Chain Dynamics and Channel Efficiency in Durable Product Pricing and Distribution

Strain gauge and rosettes

ω = radians per sec, t = 3 sec

D Alembert s Solution to the Wave Equation

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Αναγνώριση Προτύπων. Baysian Θεωρία Αποφάσεων (DETECTION)

26 28 Find an equation of the tangent line to the curve at the given point Discuss the curve under the guidelines of Section

Areas and Lengths in Polar Coordinates

derivation of the Laplacian from rectangular to spherical coordinates

Bayes Rule and its Applications

Finite Field Problems: Solutions

( )( ) ( ) ( )( ) ( )( ) β = Chapter 5 Exercise Problems EX α So 49 β 199 EX EX EX5.4 EX5.5. (a)

Curvilinear Systems of Coordinates

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Laplace s Equation in Spherical Polar Coördinates

EE512: Error Control Coding

MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra

Online Appendix to the Paper No Claim? Your Gain: Design of Residual Value Extended Warranties under Risk Aversion and Strategic Claim Behavior

ENGR 691/692 Section 66 (Fall 06): Machine Learning Assigned: August 30 Homework 1: Bayesian Decision Theory (solutions) Due: September 13

VEKTORANALYS. CURVILINEAR COORDINATES (kroklinjiga koordinatsytem) Kursvecka 4. Kapitel 10 Sidor

Μηχανική Μάθηση Hypothesis Testing

ME 374, System Dynamics Analysis and Design Homework 9: Solution (June 9, 2008) by Jason Frye

Lecture 15 - Root System Axiomatics

HW 3 Solutions 1. a) I use the auto.arima R function to search over models using AIC and decide on an ARMA(3,1)

Lecture 26: Circular domains

6.003: Signals and Systems. Modulation

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

Outline Analog Communications. Lecture 05 Angle Modulation. Instantaneous Frequency and Frequency Deviation. Angle Modulation. Pierluigi SALVO ROSSI

Finite difference method for 2-D heat equation

EE101: Resonance in RLC circuits

MathCity.org Merging man and maths

6.3 Forecasting ARMA processes

1 3D Helmholtz Equation

A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Transcript:

Lecue 6 Goals: Deemine e opimal esold, file, signals fo a binay communicaions poblem VI-

Minimum Aveage Eo Pobabiliy Poblem: Find e opimum file, esold and signals o minimize e aveage eo pobabiliy. s s Z γ dec s γ dec s n P e P e π Peos ansmied Peos ansmied Pobabiliy s ansmied VI-

π π π Pobabiliy s ansmied e aveage pobabiliy of eo is P ep e π Pe π () Le ŝ ŝ s s d d oupu due o s alone oupu due o s alone Since we assume a e eceive will decide s if e oupu of e file is lage an a esold and s if i is smalle, we need o assume a. ŝ ŝ P e P Z γ s ansmied VI-3

If s is ansmied en Z akes e fom Z ŝ η wee η is a Gaussian andom vaiable wi mean and vaiance σ N ; σ N N d N H f d f us P e P P ŝ η γ Q ŝ η γ ŝ γ () P e P P Z ŝ γ s ansmied η γ s ansmied P η γ ŝ VI-4

s Q γ ŝ (3) Subsiuing () and (3) ino () yields P e γ s π Q ŝ γ π Q γ ŝ (4) e poblem is o minimize e eo pobabiliy ove all coices of γ. s s and VI-5

π π Sep : Minimize P e ove γ Facs used: Q Q x x x e x π π e u du Meod: Se e deivaive of P e wi espec o γ equal o. d P e dγ exp ŝ π γ exp γ ŝ π VI-6

π exp ŝ π exp ŝ γ γ ŝ exp γ ŝ ŝ γ σn π π γ γŝ ŝ ŝ γŝ γ σ N ln π π γ ŝ ŝ σ N ln π π ŝ ŝ γ σ N ln π π ŝ ŝ ŝ ŝ γ op ŝ σ N ln π π ŝ ŝ (5) Special Case: If π π en γ op ŝ ŝ VI-7

Wa is P e fo e opimal esold? ŝ γ op ŝ ŝ σ N ln π π ŝ ŝ ŝ ŝ ŝ ŝ σ N ŝ ln π π ŝ γ op ŝ ŝ ŝ ŝ ln π (6) π Definiion: ŝ f g s ŝ s f g s s d s d s s d VI-8

us fom (6) Similaly Remembe a σ N Le λ ŝ γ op ŝ γ op N N s s s s s s ln π (7) π ln π (8) π d(9) d () s s s s s d s s d VI-9

Ē s s s s d E E s s Ē Ē E E s Ē s Ē () Combining (7), (8), (9), (), and () ŝ γ op s N N s ln π π s s Ē N 4Ē N s s ln π π VI-

Le λ s s en ŝ γ op λ β λ Ē N β 4Ē N ln π π Similaly γ op ŝ λ β λ VI-

Summay of Sep : γ op ŝ σ N ln π π ŝ ŝ πq λ ŝ P e γ op s s πq λ β λ β λ λ s s Ē N β 4Ē N ln π π Ē E E s s Ē VI-

πq λ λ Find e opimal file Sep : o minimize e aveage pobabiliy of eo Meod: Fis sow a P e is an deceasing funcion of λ by sowing e deivaive is negaive. en find e a maximizes λ (us minimizing P e ). P e s s Pe γ op πqλ s s β λ β λ P e λ π e π λ π β λ β λ β λ π exp exp β λ λ λ π β β e β β λ λ β λ π π π β λ VI-3

exp λ β λ π β λ e β π β λ e β β Ē N N 4Ē ln π π ln π ln π π π e β π π e β π π π e β ππ π e βπ π d P e dλ e λ π e β λ λ ππ β λ ππ β λ β λ VI-4

op s Since d P e dλ so a Pe is minimized by maximizing λ. λ s s Fom Scwaz s inequaliy s s s us s s λ wi equaliy if s. Coose λ ). Fo opimal esold and opimal file s P e γ op s s πq β πq β s o e signals. s is called e maced file because i is maced γ op op s E E N ln π π VI-5

Fo e opimal file e oupu due o signal alone ae ŝ E Ē ŝ Ē E If π π en P eq Q Ē N VI-6

Find e opimal signals s eo. Sep 3: and s Meod: P e depends on e signal only oug Ē and. Ē E E o minimize e aveage pobabiliy of s I is obvious a we could jus incease e enegy o infiniy and ge eo pobabiliy. Insead we will fix Ē and vay e signals o vay. Again we sow a P e is an inceasing funcion of and en coose e signals o minimize. s Ē P e πq β πq β Ē N β 4Ē N ln π π VI-7

d P e d π e β π β π e β π β e β π e β β π e β β e β π π Ē N d P e d Fom Scwaz s inequaliy s s Ē s Ē s VI-8

wi equaliy if s Ks K. Fo s Ks E E E E wi equaliy if E E. (Aimeic mean Geomeic mean). wo signals s and s ae said o be anipodal if s s Opimal signals ae anipodal. E N β N 8E ln π π VI-9

If π π en P eq Q E N VI-

Aside: Scwaz s inequaliy: Fo any f g f f g g Since e polynomial in is neve negaive ee mus be eie no zeos o a double zeo. us e discimanan mus be no be posiive. 4 f g 4 f g f g f g f g Equaliy occus wen f x Kgx. If K is posiive e inequaliy on e ig side becomes equaliy and if K is negaive e inequaliy on e ig side becomes equaliy. is is Scwaz s inequaliy. VI-

Aside: Aimeic mean Geomeic mean: Le a and a be eal nonnegaive numbes. a a wi equaliy if a a a aa a a a a a a a a a a a 4aa 4a a a a a a wi equaliy if a a VI-

s s ŝ ŝ σ N n Summay γ dec s γ dec s N d s s d d N H f d f VI-3

πq λ op P e γ s s π Q ŝ γ π Q γ ŝ Sep : Opimize wi espec o γ. P e γ op s s πq λ β λ β λ Ē N β 4Ē N ln π π λ s s s s s γ op ŝ ŝ ŝ σ N ŝ ln π π Sep : Opimize wi espec o. P e γ op s s πq β πq β VI-4

op ˆβ Ē N β 4Ē N ln π π γ op op op s E E s N ln π π e maced file. Sep 3: Opimize wi espec o s and s. P e γ op s op s op πq ˆ ˆβ πq ˆ ˆβ ˆ Ē N N 8Ē ln π π s s op s s s s op op s VI-5

γ op op s op s op N ln π π VI-6

SPECIAL CASE π P e π Q ŝ γ Q γ ŝ Sep : Opimize wi espec o γ P e Q λ Ē N λ s S Ē E E E s d E s s Ē s d VI-7

ˆ γ op ŝ ŝ Sep : Opimize wi espec o P e Q Ē N op s s maced file γ op E E Sep 3: Opimize wi espec o s and s. P e Q ˆ Ē N s s VI-8

op s γop VI-9

Example: s s Ap s Ap Baseband signals op Ap Assume s ansmied s A A Ap p p Ap p d d d VI-3

p e oupu due o signal alone: VI-3

ŝ A e oupu due o noise is a Gaussian andom vaiable wi mean zeo and vaiance σ N N 4A Le be e sampling ime. Since e signal ou is a maximum wen and e noise vaiance does no depend on e sample ime e opimum AN VI-3

sampling ime is. Equivalen fom of opimal eceive s s γ dec s γ dec s Z d s s s s d VI-33

Z s s s d s d If s and s ae ime limied o en Z s s d γ dec s γ dec s s s is is called e Coelaion Receive. VI-34

Example: Binay Pase Sif Keying (RF signals) s Acos ω p s s s i i Acos ω p Acos ω iπ p VI-35

ω s s γ dec s γ dec s Acos VI-36

ω Assume ω oω nπ E i s i d A A A A cos ω d cos sin ω ω d P eq E N Q A N π π γ VI-37

ω ω ω Subopimal Receives s i i Acos p ω nπ Z γ dec s γ dec s n cos Claim: σ n N (powe equals /). P e Q ŝ Q ŝ 4. e faco of / is due o muliplying by cos VI-38

ωs Poof: σ n E N 4 N 4 N 4 E n n N δ n cos N cos ω cos s s d sin ω cos cos ω ω ω n d s ω ω cos cos cos ωs ωs dds dds dds VI-39

povide a ω ŝ i oω nπ. i A i A i Acos ω p low pass cos d ig feq. d w d P e Q ŝ i VI-4

Example: Single pole RC file RC e e u RC u d e RC e d VI-4

d u d σ N N 4 e u d e e d d e e VI-4

e e e ŝ We would like o maximize ŝ ŝ is maximized a andσ N N 4 is consan e opimal sampling ime is is σn. Since VI-43

esuls in a signal-o-noise aio of ŝ SNR 3 e A N 4 Maximize w... f e f e e e e Le x en xe x e x x x e x e x VI-44

x e x We can numeically solve is o ge x is yeilds a signal-o-noise aio of 56 and so 56 RC 8. SNR A 95 N Loss due o subopimal eceive =.89 db VI-45