DERIVATION OF MILES EQUATION Revision D

Σχετικά έγγραφα
DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revision B

INTEGRATION OF THE NORMAL DISTRIBUTION CURVE

Consider a single-degree-of-freedom system in a free-fall due to gravity. &&x

Solve the difference equation

The Heisenberg Uncertainty Principle

1. For each of the following power series, find the interval of convergence and the radius of convergence:

n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1)

Presentation of complex number in Cartesian and polar coordinate system

On Generating Relations of Some Triple. Hypergeometric Functions

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Bessel function for complex variable

α β

EN40: Dynamics and Vibrations

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Homework for 1/27 Due 2/5

Introduction of Numerical Analysis #03 TAGAMI, Daisuke (IMI, Kyushu University)

CHAPTER 103 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES

Section 8.3 Trigonometric Equations


SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6

Matrices and Determinants

Differential equations

Section 7.6 Double and Half Angle Formulas

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

derivation of the Laplacian from rectangular to spherical coordinates

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing.

Inertial Navigation Mechanization and Error Equations

Degenerate Perturbation Theory

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

B.A. (PROGRAMME) 1 YEAR

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Finite Field Problems: Solutions

ST5224: Advanced Statistical Theory II

Στα επόμενα θεωρούμε ότι όλα συμβαίνουν σε ένα χώρο πιθανότητας ( Ω,,P) Modes of convergence: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ.

Lecture 17: Minimum Variance Unbiased (MVUB) Estimators

Notes on the Open Economy

Solutions: Homework 3

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

LAD Estimation for Time Series Models With Finite and Infinite Variance

EE512: Error Control Coding

Other Test Constructions: Likelihood Ratio & Bayes Tests

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

w o = R 1 p. (1) R = p =. = 1

Ψηφιακή Επεξεργασία Εικόνας

Second Order RLC Filters

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

Srednicki Chapter 55

The Simply Typed Lambda Calculus

Solutions to Exercise Sheet 5

Example Sheet 3 Solutions

1. Matrix Algebra and Linear Economic Models

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.

On Inclusion Relation of Absolute Summability

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Parametrized Surfaces

SOLVING CUBICS AND QUARTICS BY RADICALS

Diane Hu LDA for Audio Music April 12, 2010

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

Inverse trigonometric functions & General Solution of Trigonometric Equations

( ) 2 and compare to M.

Biorthogonal Wavelets and Filter Banks via PFFS. Multiresolution Analysis (MRA) subspaces V j, and wavelet subspaces W j. f X n f, τ n φ τ n φ.

Lecture 15 - Root System Axiomatics

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

Homework 3 Solutions

2 Composition. Invertible Mappings

Areas and Lengths in Polar Coordinates

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Statistical Inference I Locally most powerful tests

IIT JEE (2013) (Trigonomtery 1) Solutions

The Neutrix Product of the Distributions r. x λ

Probability and Random Processes (Part II)

Outline. M/M/1 Queue (infinite buffer) M/M/1/N (finite buffer) Networks of M/M/1 Queues M/G/1 Priority Queue

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

C.S. 430 Assignment 6, Sample Solutions

PARTIAL NOTES for 6.1 Trigonometric Identities

Calculating the propagation delay of coaxial cable

F19MC2 Solutions 9 Complex Analysis

department listing department name αχχουντσ ϕανε βαλικτ δδσϕηασδδη σδηφγ ασκϕηλκ τεχηνιχαλ αλαν ϕουν διξ τεχηνιχαλ ϕοην µαριανι

Fractional Colorings and Zykov Products of graphs

Areas and Lengths in Polar Coordinates

Math221: HW# 1 solutions

B.A. (PROGRAMME) 1 YEAR

Module 5. February 14, h 0min

ME 374, System Dynamics Analysis and Design Homework 9: Solution (June 9, 2008) by Jason Frye

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

Gauss Radau formulae for Jacobi and Laguerre weight functions

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Forced Pendulum Numerical approach

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81

Quadratic Expressions

Steady-state Analysis of the GI/M/1 Queue with Multiple Vacations and Set-up Time

Transcript:

By Tom Irvie Email: tomirvie@aol.com July, DERIVATION OF MILES EQUATION Revisio D Itroductio The obective is to derive Miles equatio. This equatio gives the overall respose of a sigle-degree-of-freedom system to base excitatio where the excitatio is i the form of a radom vibratio acceleratio power spectral desity. Derivatio Cosider a sigle degree-of-freedom system m &&x k c &&y where m equals mass, c equals the viscous dampig coefficiet, ad k equals the stiffess. The absolute displacemet of the mass equals x, ad the base iput displacemet equals y. The free-body diagram is m &&x k(y-x) cy (& x&) Summatio of forces i the vertical directio, F mx && () mx && c(& y x&) k ( y x) ()

Substitutig the relative displacemet terms ito equatio () yields mz (&& &&) y cz& kz (3) mz && cz& kz my && () Dividig through by mass yields, By covetio, && z ( c/ m)& z ( k / m) z && y (5) ( c/ m) ( k / m) where is the atural frequecy i (radias/sec), ad is the dampig ratio. Substitutig the covetio terms ito equatio (5) yields && z z& z && y (6) Take the Fourier trasform of each side. Let Y( ) X( ) { z z z} e t & & dt { & y } e t dt & (7) { y(t) } e t dt t { x(t) } e dt Now take the Fourier trasform of the velocity term dz(t) { z(t) } e t & dt e t dt dt ()

Itegrate by parts { z(t) & } e t dt d{ z(t)e } t [z(t)]( )e t dt (9) { z(t) } e t dt z(t)e t & () z(t)e t dt () z(t)e t as t approaches the ± limits. () { z(t) } e t & dt () z(t)e t dt () { z(t) & } e t dt ()X( ) (3) Furthermore d z(t) { z(t) } e t & dt e t dt dt () dz(t) dz(t) { z(t) } e t dt d e t & [ ( )e t dt dt (5) dt dz(t) dz(t) { z(t) } e t dt e t & () e t dt dt (6) dt dz(t) dt as t approaches the limits. e t ± (7) dz(t) { z(t) } e t & dt () e t dt () dt 3

{ z(t) & } e t dt ()()Z( ) & (9) { z(t) & } e t dt Z( ) & () Recall { z z z} e t & & dt { & y } e t dt & () Let the subscript A deote acceleratio. By substitutio, Z( ) ( Z( ) ) Z( ) Y A ( ) () ( ) Z( ) Y A ( ) (3) YA ( ) Z ( ) () ( ) Z A ( ) Z( ) (5) Y A ( ) Z A ( ) ( ) (6) The relative acceleratio equatio ca be expressed i terms of Fourier trasforms as ZA ( ) X A ( ) Y A ( ) (7) XA ( ) Z A ( ) Y A ( ) ()

Y A ( ) A ( X ) Y A ( ) (9) ( ) [ ( ) ) X ]Y A A ( ) ( (3) ( ) [ ) X ]Y A A ( ) ( (3) ( ) Multiply each side by its complex cougate [ )Y * ( ) X * ]Y A A A ( )X ][ ( A ( ) (3) ( ) ( ) [ ( ]Y * A ( )Y ( ) X * A A ( )X ) A ( ) (33) ( ) ( ) [ () ]Y * A ( )Y ( ) X * A A ( )X A ( ) (3) ( ) ( ) The Fourier trasforms are coverted ito power spectral desities usig the method show i Referece 3, where T is the duratio. lim * T X A ( )X A ( ) / T X APSD ( ) (35) limt * Y A ( )Y A ( ) / T Y APSD ( ) (36) 5

[ ( ) ]Y APSD ( ) X APSD ( ) (37) ( ) ( ) Equatio (A-3) ca be trasformed as a fuctio of frequecy f as follows f [f ( f ) ]ŶAPSD(f ) Xˆ APSD (f ) (3) (f f ) (f f ) Divide each side by f Xˆ APSD (f ) [ (f / f ) ]Ŷ APSD (f ) ( (f / f ) ) (f /f ) (39a) Let f / f, [ ( ) ] APSD (f ) Xˆ Ŷ APSD(f ), f / f (39b) ( ) () Defie H ( ) as H ( ) ( ) () Multiply by the complex cougate H ( ) H *( ) ( ) ( ) () Note that ( ) H * ( ) ŶA PSD (f ), f / f Xˆ A PSD (f ) H () 6

Rearrage equatio () as H ( ) H *( ) (3) Solve for the roots R ad R of the first deomiator. ( ) ± ( ) R,R () ± R,R (5) R, R ± (6) Solve for the roots R3 ad R of the secod deomiator. ( ) ± ( ) R3,R (7) ± R3,R () R3, R ± (9) Summary, R (5) (5) R R3 (5) (53) R (5) 7

Note R -R* (55) R3 R* (56) R -R* (57) Now substitute ito the deomiators. H ( ) H *( ) (5) H ( ) H *( ) ( R)( R)( R3)( R) (59) Substitute equatios (55) through (57) ito equatio (59). H ( ) H *( ) ( R)( R* )( R* )( R) (6)

Expad ito partial fractios. ( R)( R* )( R* )( R) α ( R) β ( R* ) λ ( R* ) σ ( R) (6) Multiply through by the deomiator o the left-had side of equatio (6). [ ] α ( R)( R* )( R* )( R) ( R) β ( R)( R* )( R* )( R) ( R* ) λ ( R)( R* )( R* )( R) ( R* ) σ ( )( )( )( ) ( R) R R* R* R (6) 9

[ ] α β λ σ ( R* )( R* )( R) ( R)( R* )( R) ( R)( R* )( R) ( R)( R* )( R* ) [ ] (63) [ ] α β λ σ α β λ σ ( R* )( R) ( ( R R* ) RR* )( R) ( ( R R* ) RR* )( R) ( ( R R* ) RR* )( R* ) ( 3 R R* RR* ) ( 3 ( R R R* ) ( RR* R RR* ) R R* ) ( 3 ( R R R* ) ( RR* R RR* ) R R* ) ( 3 ( R* R R* ) ( RR* RR* R* ) RR* ) (6) (65)

[ ] α β λ σ ( 3 R R* RR* ) ( 3 R* R R R* ) ( 3 R* R R R* ) ( 3 R R* RR* ) [ ] (66) [ α β λ σ] 3 [ Rα R* β R* λ Rσ] [ R* α R β R λ R* σ] [ RR* α R R* β R R* λ RR* σ] (67) [ ] [ α β λ σ] 3 [ Rα R* β R* λ Rσ] [ R* α R β R λ R* σ] [ R* α Rβ Rλ R* σ] RR * (6)

Equatio (6) ca be broke up ito four separate equatios, (69) through (7). α β λ σ (69) [ R R* β R* λ Rσ ] α (7) [ R* α R β R λ R* σ] (7) [ R * α Rβ Rλ R* σ] RR* (7) The four equatios are assembled ito matrix form. Recall R R* R* R R* R R R* R R α R β R* λ R* σ / ( RR* ) (73) (7) R R* (75) R R* (76) Substitute equatio (76) ito (73). R R* R* R* R R R* R R α R β R* λ R* σ (77)

3 Multiply the first row by * R ad add to the third row. σ λ β α R* R R R* R* R R* R R R* R* R (7) Scale the third row. σ λ β α R* R R R* R R* R* R (79a) Multiply the third row by - ad add to the first row. σ λ β α R* R R R* R R* R* R (79b) Multiply the first row by -R ad add to the secod row. Also multiply the first row by R* ad add to the fourth row. σ λ β α R* R R R R* R* () Multiply the third row by -R* ad add to the secod row. Also, multiply the third row by R ad add to the fourth row.

R* R α R β λ R* σ () The first row equatio yields α σ () The third row equatio yields λ β (3) Equatio () thus reduces to R* R R λ R* σ () Complete the solutio usig Cramer's rule. Recall R* R λ det er mi at R R* σ (5) R R* R (6) R (7) ( ) R () ( ) R (9) R* (9)

R * (9) ( ) R * (9) Thus, ( ) R * (93) R R* (9) [ R R* ] 6 (95) R* R λ det er mi at 6 (96) R R* σ λ 6 det er mi at R R* (97) λ 6 λ ( R* ) ( R* ) R R (9) (99) Recall, R () 5

λ () λ () λ (3) σ 6 R* det er miat R () σ σ [ R* ( )( R) ] 6 [ R* ( )( R) ] (5) (6) R (7) σ ( ) () 6

7 σ 3 (9) ( ) ( ) σ () ( ) ( ) σ () Recall, σ α () β λ (3) The complete solutio set is thus σ λ β α ()

The partial fractio expasio is thus H ( ) H *( ) α ( R) β ( R* ) λ ( R* ) σ ( R) (5) The overall respose & x& GRMS ca be obtaied by itegratig Xˆ A PSD(f ) across the frequecy spectrum ad the takig the square root of the area per Refereces ad. & x& ( ) GRMS f, H( ) H * ( ) ŶA PSD(f ) df (6) & x& ( ) GRMS f, f H( ) H *( ) ŶA PSD(f ) d (7) Now assume that Ŷ A PSD (f ) is a costat level represeted by the variable A. Furthermore, assume the level is costat over a ifiite frequecy rage, startig at zero. & x& ( ) GRMS f, Af H( ) H * ( ) d () {& x& ( f, ) } GRMS A f H ( ) H * ( ) d (9) Substitutig equatio (5) ito (9) yields

9 ( ) { } d d d d A f f, x& GRMS & ()

( ) { } d d d d A f f, x& GRMS & ()

( ) { } l l l l A f f, x& GRMS & () Note that [ ] ( ) ( ) π φ k exp y x l y x l (3) where φ x y arcta ()...,,, k ± ± (5) [ ] [ ] π φ k y x l y x l (6)

Take k. ( ) { } arcta l arcta l arcta l arcta l A f f, x& GRMS & (7) Both the real ad imagiary compoets of the atural log terms cacel out at the lower itegratio limit. The imagiary compoets of the atural log terms cacel out at the upper limit. The sum of the real compoets of the atural log terms approaches zero as the upper limit approaches ifiity.

3 ( ) { } arcta arcta arcta arcta A f f, x& GRMS & ()

( ) { } arcta arcta arcta arcta A f f, x& GRMS & (9) Now make trigoometric substitutios.

5 ( ) { } { } π π π arcta arcta arcta arcta A f f, x& GRMS & (3) ( ) { } ( ) π GRMS A f, f x& & (3) ( ) { } ( ) π GRMS A f, f x& & (3) ( ) { } ( ) π A f, f x && GRMS (33) ( ) ( ) π A f, f x & GRMS & (3)

( ) For., (35) For small dampig, & A f π x ( f, ) GRMS (36) Q (37) π & x GRMS ( f, Q) f Q A (3) Now cosider the realistic case where the acceleratio power spectral desity level varies with frequecy. Nevertheless, costrai the acceleratio power spectral desity level to be costat withi ± octave of the atural frequecy. A ŶAPSD(f ) (39) π & x GRMS ( f, Q) f Q ŶAPSD(f ) () Note that equatio (), the Miles equatio, may lead to error, particularly if the acceleratio power spectral desity fuctio has sigificat variatio with frequecy. Thus, the geeral method i Referece 3 is the preferred method. The geeral method is show as equatio (). N ( ) { ( } f, i ) & x GRMS ŶAPSD(fi) Δf i, i fi / f () i [ ] i i 6

The geeral method allows the power spectral desity to vary with frequecy. It also allows for power spectral desity iputs with fiite frequecy limits. Refereces. L. Meirovitch, Aalytical Methods i Vibratio, Macmilla, New York, 967.. W. Thomso, Theory of Vibratio with Applicatios, d Editio, Pretice Hall, New Jersey, 9. 3. T. Irvie, A Itroductio to the Vibratio Respose Spectrum, Vibratiodata Publicatios, 999. 7