MICROSTRUCTURE AND MECHANICAL PROPERTIES OF 1500 MPa GRADE ULTRA HIGH STRENGTH LOW ALLOY STEEL

Σχετικά έγγραφα
RELATIONSHIP BETWEEN MECHANICAL PROPERTIES AND LAMELLAR ORIENTATION OF PST CRYSTALS IN Ti 45Al 8Nb ALLOY

ACTA MATHEMATICAE APPLICATAE SINICA Nov., ( µ ) ( (

STUDY ON CYCLIC OXIDATION RESISTANCE OF HIGH NIOBIUM CONTAINING TiAl BASE ALLOY WITH ERBIUM

Effects of Retained Austenite Characteristics on Delayed Fracture Properties of Ultra High-Strength TBF Steels

2011 Đ 3 Ñ ACTA METALLURGICA SINICA Mar pp


MICROSTRUCTURE EVOLUTION OF HYPEREUTEC- TOID STEELS DURING WARM DEFORMATION II. Cementite Spheroidization and Effects of Al

FRACTURE TOUGHNESS OF WELDED JOINTS OF X100 HIGH STRENGTH PIPELINE STEEL

EFFECTS OF TEMPERING TEMPERATURE ON THE IMPACT TOUGHNESS OF STEEL 42CrMo

Z L L L N b d g 5 * " # $ % $ ' $ % % % ) * + *, - %. / / + 3 / / / / + * 4 / / 1 " 5 % / 6, 7 # * $ 8 2. / / % 1 9 ; < ; = ; ; >? 8 3 " #


INFLUENCES OF PHASE PRECIPITATIONS OF TERNARY β Ti Mo Zr(Sn) ALLOYS ON YOUNG S MODULUS AND MECHANICAL PROPERTIES

ØSrÚCa Mg 12Zn 4Al 0.3MnÜ

SYNTHESIS OF PLASTIC Zr BASED BULK METALLIC GLASS WITH CRYSTAL PHASE BY DIRECTIONAL SOLIDIFICATION

EFFECT OF WELDING PROCESSING PARAMETERS ON POROSITY FORMATION OF MILD STEEL TREATED BY CO 2 LASER DEEP PENETRATION WELDING

1-6 Ð Ï Te (mass%) 0% 0.3% 0.5% 0.8% 1.0% 2.0% 2 Î 1 6

2 SFI

EFFECT OF HIGH MAGNETIC FIELD ON THE TRANSI- TION BEHAVIOR OF Cu RICH PARTICLES IN Cu 80%Pb HYPERMONOTECTIC ALLOY

CORROSION BEHAVIOR OF X70 PIPELINE STEEL IN SIMULATED KU ERLE SOIL SOLUTION WITH CO 2

Delta Inconel 718 δ» ¼

BEHAVIOR OF MARTENSITE REVERSE TRANSFORMA- TION IN 18Mn TRIP STEEL DURING WARM DEFORMATION

NUMERICAL SIMULATION OF KEYHOLE SHAPE AND TRANSFORMATION FROM PARTIAL TO OPEN STATES IN PLASMA ARC WELDING

BEHAVIOUR AND MECHANISM OF STRAIN HARDEN- ING FOR DUAL PHASE STEEL DP1180 UNDER HIGH STRAIN RATE DEFORMATION

CONVECTION EFFECTS AND BANDING STRUCTURE FORMATION MECHANISM DURING DIRECTIONAL SOLIDIFICATION OF PERITECTIC ALLOYS I. Experimental Result

EFFECT OF HAFNIUM CONTENT ON MORPHOLOGY EVOLUTION OF γ PRECIPITATES IN P/M Ni BASED SUPERALLOY

FRICTION AND WEAR PROPERTIES OF SURFACE PLASMA Cr W ALLOYING LAYER OF γ TiAl ALLOY

EFFECTS OF TEMPERATURE GRADIENT ON LAMEL- LAR ORIENTATIONS OF DIRECTIONAL SOLIDIFIED TiAl BASED ALLOY

THE MICRO FABRICATING PROCESS AND ELECTRO- MAGNETIC PROPERTIES OF TWO KINDS OF Fe POWDERS WITH DIFFERENT GRAIN SIZES AND INTERNAL STRAINS

2011 Ð 5 ACTA MATHEMATICAE APPLICATAE SINICA May, ( MR(2000) ß Â 49J20; 47H10; 91A10

P Ò±,. Ï ± ˆ ˆŒˆ Š ƒ ˆŸ. Œ ƒ Œ ˆˆ γ-š Œˆ ƒ ƒˆ 23 ŒÔ. ² μ Ê ². Í μ ²Ó Ò Í É Ö ÒÌ ² μ, É μí±, μ²óï

EFFECT OF LOADING MODES ON MECHANICAL PROPERTY AND STRAIN INDUCED MARTENSITE TRANSFORMATION OF AUSTENITIC STAINLESS STEELS

Blowup of regular solutions for radial relativistic Euler equations with damping

2 PbO 2. Pb 3 O 4 Sn. Ti/SnO 2 -Sb 2 O 4 -CF/PbO x SnO 2 -Sb PbO 2. Sn-Sb 1:1. 1 h. Sn:Sb=10:1. PbO 2 - CeO 2 PbO 2. [8] SnO 2 +Sb 2 O 4 _

PHOTOCATALYTIC PROPERTIES OF TiO 2 THIN FILMS PREPARED BY MICROARC OXIDATION AND DOPING ELECTROLYTES

M 2. T = 1 + κ 1. p = 1 + κ 1 ] κ. ρ = 1 + κ 1 ] 1. 2 κ + 1

WAFER LEVEL ELECTRODEPOSION OF Fe Ni NOVEL UBM FILMS

Supporting information. An unusual bifunctional Tb-MOF for highly sensing of Ba 2+ ions and remarkable selectivities of CO 2 /N 2 and CO 2 /CH 4

CHARACTERISTIC BEHAVIORS OF PARTICLE PHASES IN NiCrBSi TiC COMPOSITE COATING BY LASER CLADDING ASSISTED BY MECHANICAL VIBRATION

MICROSTRUCTURE STABILITY IN A FULLY LAMELLAR HIGH Nb TiAl ALLOY AFTER LONG TERM THERMAL CYCLING

MICROSTRUCTURES AND PROPERTIES OF PULSED MIG ARC BRAZED FUSION WELDED JOINT OF Al ALLOY AND GALVANIZED STEEL

Studies on the Binding Mechanism of Several Antibiotics and Human Serum Albumin

No. 7 Modular Machine Tool & Automatic Manufacturing Technique. Jul TH166 TG659 A

48 12 Ö Vol.48 No ACTA METALLURGICA SINICA Dec pp Î µ TG142.1, Á A Ì µ (2012)

Resurvey of Possible Seismic Fissures in the Old-Edo River in Tokyo

EFFECTS OF B ON THE MICROSTRUCTURE AND HYDROGEN RESISTANCE PERFORMANCE OF Fe Ni BASE ALLOY

P Œ ²μ, Œ.. ƒê Éμ,. ƒ. ²μ,.. μ. ˆ ˆŸ Œˆ ˆŸ ˆ Š Œ ˆŸ Ÿ - ˆ ˆ ŠˆŒˆ Œ Œˆ ˆ œ ˆ Œ ˆ ŒˆŠ Œ -25

p din,j = p tot,j p stat = ρ 2 v2 j,

Analysis on construction application of lager diameter pile foundation engineering in Guangdong coastal areas

ZnO-Bi 2 O 3 Bi 2 O 3

Supporting Information

AN RFID INDOOR LOCATION ALGORITHM BASED ON FUZZY NEURAL NETWORK MODEL. J. Sys. Sci. & Math. Scis. 34(12) (2014, 12),

UDC. An Integral Equation Problem With Shift of Several Complex Variables 厦门大学博硕士论文摘要库

Study on the Strengthen Method of Masonry Structure by Steel Truss for Collapse Prevention

EFFECTS OF Al Al 4 C 3 REFINER AND ULTRASONIC FIELD ON MICROSTRUCTURES OF PURE Mg

EXPERIMENTAL RESEARCH ON MELTING SURFACE BEHAVIOR IN MOLD UNDER COMPOUND MAGNETIC FIELD

MnZn. MnZn Ferrites with Low Loss and High Flux Density for Power Supply Transformer. Abstract:

49 Ö 6 Đ Vol.49 No ACTA METALLURGICA SINICA Jun pp

High order interpolation function for surface contact problem

DISCONTINUOUS YIELDING BEHAVIOR OF β PHASE CONTAINING TiAl ALLOY DURING HIGH TEMPERATURE DEFORMATION PROCESS

ER-Tree (Extended R*-Tree)

Preparation of Hydroxyapatite Coatings on Enamel by Electrochemical Technique

Θεωρία Συνόλων. Ενότητα: Διατακτικοί αριθμοί. Γιάννης Μοσχοβάκης. Τμήμα Μαθηματικών

EFFECT OF PRECURSOR MICROSTRUCTURE ON MORPHOLOGY FEATURE AND MECHANICAL PROPERTY OF C Mn Si STEEL

Ηυλοποίησ ητηςπαραπάνωκατηγορίαςβρίσ κεταισ τοναλγόριθμο º¾ºΗγραμμή

Quick algorithm f or computing core attribute

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

LUO, Hong2Qun LIU, Shao2Pu Ξ LI, Nian2Bing

AN INVESTIGATION ON THE CREEP BEHAVIOR OF PURE Mg

Protective Effect of Surface Coatings on Concrete

Recent advances in coal to chemicals technology developed by SINOPEC

A NEW ONE PARAMETER KINETICS MODEL OF DYNAMIC RECRYSTALLIZATION AND GRAIN SIZE PREDICATION

P Ë ³μ,.. μ μ³μ²μ,.. ŠμÎ μ,.. μ μ,.. Š μ. ˆ œ ˆ Š Œˆ ŠˆŒ ƒ Œ Ÿ ˆŸ Š ˆ ˆ -ˆ ˆŠ

Αλγόριθμοι Δικτύων και Πολυπλοκότητα Προσεγγιστικοί Αλγόριθμοι. Άρης Παγουρτζής

{:=, :, goto, if, else} ß ß LB {beg, end, l 1, l 2,..., }.

Supporting Information. Enhanced energy storage density and high efficiency of lead-free

STRUCTURE AND MAGNETIC BEHAVIOR OF Zn 1 x Co x O CRYSTAL POWDERS PREPARED BY SOL GEL TECHNIQUE

P É Ô Ô² 1,2,.. Ò± 1,.. ±μ 1,. ƒ. ±μ μ 1,.Š. ±μ μ 1, ˆ.. Ê Ò 1,.. Ê Ò 1 Œˆ ˆŸ. ² μ Ê ² μ Ì μ ÉÓ. É μ ±, Ì μé μ Ò É μ Ò ² μ Ö

2?nom. Bacc. 2 nom. acc. S <u. >nom. 7acc. acc >nom < <

, Litrrow. Maxwell. Helmholtz Fredholm, . 40 Maystre [4 ], Goray [5 ], Kleemann [6 ] PACC: 4210, 4110H

MODEL RESEARCH BASED ON LIQUID/SOLID TWO PHANSE FLOWS IN METALLURGY STIRRED TUBULAR REACTOR

Δυναμική διαχείριση μνήμης

ΜΔΛΔΣΖ ΔΝΓΟΣΡΑΥΤΝΖ Δ ΥΑΛΤΒΔ ΘΔΡΜΖ ΔΛΑΖ

ACTA ASTRONOMICA SINICA Mar., 2014 : P148; ÞÁ : A. ³ ÚÇ, Re Os Ir Mo Ru Pt Rh Â.

( ) , ) , ; kg 1) 80 % kg. Vol. 28,No. 1 Jan.,2006 RESOURCES SCIENCE : (2006) ,2 ,,,, ; ;

MICROSEGREGATION OF SOLUTE ELEMENTS IN SOLIDIFYING MUSHY ZONE OF STEEL AND ITS EFFECT ON LONGITUDINAL SURFACE CRACKS OF CONTINUOUS CASTING STRAND

GF GF 3 1,2) KP PP KP Photo 1 GF PP GF PP 3) KP ULultra-light 2.KP 2.1KP KP Fig. 1 PET GF PP 4) 2.2KP KP GF 2 3 KP Olefin film Stampable sheet

Synthesis of Imines from Amines in Aliphatic Alcohols on Pd/ZrO 2 Catalyst at Ambient Conditions

SIMULATION OF SCALE DEPENDENCY ON TENSILE MECHANICAL PROPERTIES OF SINGLE CRYSTAL COPPER NANO ROD

ÅÊ NEAR (Near-Earth Asteroid Rendezvous) Hayabusa

SIZE EFFECT OF MECHANICAL BEHAVIOR OF MINIA- TURE SOLDER JOINT INTERCONNECTIONS IN ELECTRONIC PACKAGING

Supporting Information. Generation Response. Physics & Chemistry of CAS, 40-1 South Beijing Road, Urumqi , China. China , USA

Optimizing Microwave-assisted Extraction Process for Paprika Red Pigments Using Response Surface Methodology

v w = v = pr w v = v cos(v,w) = v w

College of Life Science, Dalian Nationalities University, Dalian , PR China.

Evolution of Novel Studies on Thermofluid Dynamics with Combustion

ˆ Œ ˆŸ Š ˆˆ ƒ Šˆ ƒ ƒ ˆ Šˆ ˆ ˆ Œ ˆ

ØÖÓÒÓÑ ÈÖ Ø ÙÑ Ù Ò Ö Ò Ë Ð ØÛ ØØ Ö¹ ØÖÓÒÓÑ Íº Ù ÍÒ Ú Ö ØØ Ù ÙÖ ¹ Ò Ö ËÓÒÒ ÒÐ Ù Ñ Î ÖÐ Ù Ò Â Ö Ð ÙÒ ½ Û ÙÒ Ö ËÓÒÒ Ö Ò À ÑÑ Ð ÞÙ Ï ÒØ Ö Ò Ò Ö Ð Ò Ò Ò ÙÒ

SYNTHESIS KINETICS OF (Y, Gd) 2 O 3 Eu 3+ NANO POWDERS DURING PROCESS OF PREPARATION

Θεωρία Συνόλων. Ενότητα: Επιλογής επόμενα. Γιάννης Μοσχοβάκης. Τμήμα Μαθηματικών

NUMERICAL SIMULATION OF WELDING RESIDUAL STRESSES IN A MULTI PASS BUTT WELDED JOINT OF AUSTENITIC STAINLESS STEEL USING VARIABLE LENGTH HEAT SOURCE

Transcript:

46 6 Vol.46 No.6 2010 6 687 694 ACTA METALLURGICA SINICA Jun. 2010 pp.687 694 1500 MPa Í Ç Æ É Æ ( ß Ó ĐÃ Æ ÅÚ, ß 100083) Ì Ä ØÝ 1500 MPa Si Mn Cr Ni Mo ¹ÏÍ ÖË Ó, ¾± Ä + (TMCP) + + Ü + Ü +250 ² 4 ³ º¾ Ú¹ Æ Đ.»Ù: Ü ¼», 1890 MPa,»Ã 1280 MPa, Î 13%; 250 ² 30 min ¼ 1820 MPa,»Ã 1350 MPa, É Ñß Á Ó ²Ç É Ã Ô Ô É ε Ç ± ½ ; É TMCP º¹ Ô + Ô + ÇÂ Ã Ô Ç ¹, Ô Ô Đ, ÀÅ «Đ. Ô Þ C., ² Ù Ã Ô, C Ô» Ô Ô. ÚÙÄ Ó É Ô «ß, Ç Ù, Ô» Ô Â É Û. È ÖË, Ü, Ô, Ô, Ã Ô ÅÕÃÅ Ì TG142.1 ÙÝ A Ù Ì 0412 1961(2010)06 0687 08 MICROSTRUCTURE AND MECHANICAL PROPERTIES OF 1500 MPa GRADE ULTRA HIGH STRENGTH LOW ALLOY STEEL WANG Lijun, CAI Qingwu, YU Wei, WU Huibin, LEI Aidi National Engineering Research Center for Advanced Rolling Technology, University of Science and Technology Beijing, Beijing 100083 Correspondent: WANG Lijun, Tel: 13581975476, E-mail: wangljustb@126.com Supported by Project of Scientific and Technical Supporting Program of China during the 11th Five Year Plan (No.2006BAE03A06) Manuscript received 2009 12 23, in revised form 2010 03 19 ABSTRACT A novel sort of 1500 MPa grade ultra high strength low alloy structural steel with multi element of Si Mn Cr Ni Mo was designed. Effects of four different processes of TMCP (thermo mechanical controlled processing), controlled rolling+air cooled, controlled rolling + direct quenching and controlled rolling+direct quenching+tempering at 250 on the microstructure and mechanical properties were investigated. The results indicate that the directly quenched steel has a maximum tensile strength of 1890 MPa, yield strength of 1280 MPa and elongation of 13%. After tempered at 250 for 30 min, the tensile strength of the steel decreased to 1820 MPa, while the yield strength increased to 1350 MPa, which is ascribed to the comprehensive effect of the softening mechanism due to the recovery of dislocation sub structure and the strengthening mechanism due to the decomposition of retained austenite and ε carbide precipitation. Duplex phase microstructure involving lath bainite, martensite segmented by bainite, and retained austenite was obtained by the process of air cooling and TMCP, so that it has excellent strength and plasticity. Carbon diffusion phenomenon exists in the quenching process of low carbon steel. Both the decomposition of retained austenite and the carbon partitioning into austenite from martensite or bainite were found during tempering process. The paper demonstrates that the precipitation particles of cubic structure nucleated in austenite, growing up * Æ Ä ÝÏ 2006BAE03A06 Ù : 2009 12 23, Ù Ì : 2010 03 19 ½ÐÉÒ :,, 1981, Ñ DOI: 10.3724/SP.J.1037.2009.00855

688 Ô Ý 46 and coarsening during the whole cooling process. Futhermore, the emergence of a large number of second phase precipitation cores was not found in martensite or bainite after phase transformation. KEY WORDS ultra high strength low alloy steel, direct quenching, martensite, bainite, retained austenite Ü ¾, Å Ð, Ç, Ì ± ( ½± Ƽ Ü 1500 MPa ¹Å) Ý Â Â Ò ± ÎÍ, ¾ µ ÛÅ ¼½ ± Á [1,2]. ÓµÌ ± AF1410, HY180, AerMet100 [3 6], Ã Å Đ»È,  ² Ã. Ì ± 300M 4340 [7 9] 1.8%( Ã, )Ni, Ð,  ÞÛ. Ü ¾, [10] ³Ç [11]» 1500 MPa 0.2C 2Mn 1Si 0.5Cr ( Ã, %) Ä È Õ / Õ È, È [12] 4340 ¾ÐÅ» 2200 MPa Ì ±, ¹ ± [13,14] ¼Ù Si Mn Ni Cr Î 1400 MPa Æ º«Þ»,» È, Đ¹Ê» à ± ². Ö, Í Åµ 1500 MPa Þ Ì ±, ¾ Í : (1) µõý Û,, C ÃÒ 0.4%; (2) Å Â 1% ¼ Ê Si, ÍÃ, ±Ý ; (3) ² È Å Mn, Ni, Cr Mo ±, È ¾  µ Ô, ÅÝ, Õ M s, Mo  Íó Û, ¹ ÆÕ º Mn Ni Å ÄÆÕ Ã Á±, Â, Å Nb, ¾ÂÊ Ó È, ÆÕ Þ È, Ûµ ± ; (4) È Ò, º Õ Õ ÄÆÕ È ºÐ, ¹ Ì ± Ê. Ö, ± ² Ã, ² É ÃÌ ±», ½ + (TMCP) + (CR+AC) + Đ Ý (CR+DQ) + Đ Ý +250 ³ 30 min(cr+dq+t)4» ۺРÅ, ¹ ¼Â». 1 ÄÂ Í ( Ã, %) : C 0.24, Si 1.8, Mn 1.5, Cr 1.0, Ni 0.7, Mo 0.35, Nb 0.05, V 0.04, Ti 0.017, B 0.004, Fe ÄÃ. 50 kg Ó Î, Ó, º 90 mm 90 mm 120 mm, 1230 Å Á», 12 mm. Þ ºÆ  1000, È, Þº 950. º «Ã  60%, Æ 850. ½¹ Đ Ý Ö 3» ÛÐ. Å 17 /s, Æ 460, Þ Ö ; Ï Đ Ý 250 ³ 30 min. 4» ¹ 1 Ð. ½Ï GB/T228 2002 CMT 4105 Þ Ø ÅÛÐ, Ø ÐÈ 42 mm, º«½ 30 mm, ¹ 2 Ð. ½ Å GB/T229 1994 JB 30B Þ ½Ø ÅÛÐ, Charpy V Þ Ø, Ø Þ 10 mm 10 mm 55 mm, 20. LEO 1450 ÞÀ (SEM) Û ÀØ ºÐ ½½ Ñ. SEM Ø Ý «Ü 4% РгÝ. JEM 2000FX ÊÞ É (TEM) ÛÀØ Ð ºÐ Ñ. TEM Ø Æ Ë, ³ 9% г, Æ «15 20 V, 40. Ê ½ ÈÞ Ð, JEM 2010 Þ ¹ É ÛÐÛÀ. Ö 1 ³ º Fig.1 Schmatic diagram of processes of thermo mechanical controlled processing (TMCP), controlled rolling+ air cooled (CR+AC), controlled rolling+direct quenching (CR+DQ) and controlled rolling+direct quenching+tempering at 250 (CR+DQ+T) Ö 2 ¼Î Fig.2 Dimension of tensile sample (unit: mm)

6 : 1500 MPa ÕÊ Ù ßÈ 689 Ø» Å½Đ 15 mm 10 mm Ø, Ý «Ü 10% ³ Ý ¾, D5000 X É É (XRD) Ã ÄÆÕ. XRD ± ɹ ¹ 3 Ð. ÄÆÕ ÃÅ Æ [15] : V γ = 1.4I γ /(I α + 1.4I γ ) (1), V γ Ó ÄÆÕ ; I γ Ó fcc ÆÕ γ {200}, {220} {311}ÞÖ ÉÀ Æ ± ; I α Ó bcc α( Õ ± Õ ) {211}Þ Ö ÉÀ ±. 2 Ë Ò 2.1 ĐÐ ¼ 1 Å TMCP, CR+AC, CR+DQ CR+DQ+T 4» Å. Í, Å, ½± ¼Ä± Æ,. CR+DQ ½± ¼, 1890 MPa, ½ Ï ¼, Ú 13.0%; 250 ³ 30 min ± 1820 MPa, Ï 15.0%. CR+AC ½± ¼, Ú 1460 MPa, TMCP ÓÂ Đ Ý ÞÈ, 1510 MPa. ¼Ä± Å ¹Ò ½±. Ö ¹, CR+DQ 250 ³ 30 min ½±, ¼Ä± 1280 MPa 1320 MPa, ¼ ¹Ò, Ú Ê ½± ß µ± Ø, ʼı ÄĐ Î. Intensity, a.u. 200 220 211 311 40 50 60 70 80 90 100 2, deg Ö 3 XRD Fig.3 XRD spectrum of the tested steel 1 ³ º Đ Table 1 Mechanical properties of the tested steel at various process Process σ b, MPa σ s, MPa HB δ, % A kv, J TMCP 1510 980 440 16.0 22 CR+AC 1460 910 420 17.5 26 CR+DQ 1890 1280 490 13.0 18 CR+DQ+T 1820 1320 475 15.0 20 2.2 ØÊ Ó ¹ 4 5 ½ 4» SEM TEM. ¹, TMCP»º ºÐ Õ Õ ÄÆÕ È ºÐ. Õ ÐÞØ È, ÄÆÕ ¹Ü Â Õ Ð, Þ ½ º Ô,, Đ ÂÞ, ÅÞ. ع 5a TEM ¹ Æ, Õ ² 0.2 µm, ÄÆÕ Ü² 0.05 0.1 µm. SEM Ð TMCP ºÐ Î ÅÍ, ÒÓ Â Õ Ê ÄÆÕ, ¼ C à Â, 4% Ð Ð³Ý ¼ Æ Ð. Ý Æ Ó Ð ÞÐ º., Õ Ð ÄÆÕ Æ, Á; Õ Â C Ã, Á. ع 4a, ÆÕ ÞÐ Ë ¹, Ú TMCP» Å 17 /s, ² Þ, Õ. Ò Ë Â Si, Mn, Ni, Mo ¾, ÅÝ, Ź Þ ±. TMCP» ÆÕ «ÆÕ ß Â Õ ¼ Õ È, Ò Â ÛÌ ±. ¹ 4b 5b Ð CR+AC» ºÐ Ô ± Õ ÄÆÕ. Gregg Bhadeshia [16] Ô ± Þ Õ ±, Ë ± ÜÆÌÜ Õ ÜÆ ¹ È,., ¹ ź CR+AC» ºÐ µ ¾ Õ Ê ÄÆÕ ºÐ. ÂÔ ±, Þ Õ ºÐ Æ ¾, Õ È, źÐ. ÊÅ TMCP» Ó, CR+AC» ºÐ ³, C ¹ Ù, ºÐ., ¹ 4b ºÐ µ, C ¹ ²», 0.3 µm, Ð Û, ºÐ ÅÆ. Ö, CR+AC» ² TMCP» ÍÃ, ±. ¹ 4c ¼Ú CR+DQ» ºÐ È Õ ÈÃ ÄÆÕ. Õ Ê ÄÆÕ Ü Î «, ¾¹½, Õ Ð º Û, ÒÓ Â Õ ßÂĹ Þ, ÊÆÕ, Õ ÐÖÊÞ Â Ò, ¾ Æ Ë. ÅÓ, Ì ¹ÛÀÆ Õ ÎÍ Õ È Þ ½ Ô, ÔÈ Đ, Ô Ð È. ¹ 5c Ð ² 0.15 µm, Ü ÄÆÕ È, ³

690 p y 46 r 4 8'j."VYe Z SEM f Fig.4 SEM images of the tested steel at various processes of TMCP (a), CR+AC (b), CR+DQ (c) and CR+DQ+T (d) r 5 8'j."VYe Z TEM f Fig.5 TEM images of the tested steel at various processes of TMCP (a), CR+AC (b), CR+DQ (c) and CR+DQ+T (d) a, [ 0.05 µm. 7 8, CR+DQ k / [ w 0 ^ i %, 0 ^, : 0. t - 4d - i, d y, ~ 250 E ', 30 min, < G i q # =['P 5 * ". C iq a E ', ~ C 9PWX - G 7 ug:, C p,, #*l Xm^. - 5d \l #&, n9 ), <G # 5 &, [ 0.2 0.3 µm. SEM g\ l', i q b l rr z V, b 3 y, v\, v ', ^ P WX - Gh b l z Z G J 9 ). r 4, R- 4c b &, - 4d Y Æ q zlh =+ i, 5 ' i q Yf D i, #\ ^ +. ",.} h =Æ, 0 ^= ^, 1 %,. J ', 0L%, ^, n 7J ', ^ C L Æq Gk =i q ' R i " P %"4 2B. - 6 =', #iq Ri "Pj, Ev L b L b 5 i. Q \ l R1 = R2, H` = 60, bz [uvw]=[001], zr (h1k1 l1)= (11 0), (h2 k2 l2 )=(100), 0 v # " P=[ Dip, := ε "P, 8Eu^Vip Fe3 C w b, n3 : ag G<. H {e - 7 = TMCP, CR+AC CR+DQ 3 9(k /Zf [ f11 # SEM g. E- 7a U, TMCP k / [ 1 # a, - k 8 1 Q=, 5 G P K : K {a, :Ka", # a&. - 7b \l CR+AC k/[ 1 Q= k 8 : 1 Q P q "1 Q 4, 1 r 3 2.3

6= : 1500 MPa ; qr\#y 9u,{PB ~ 691 9, {a)%:k, R TMCP k/[b&, <G:Ka aev, -G' hxc %K Heb.}p X, # a n, v 1 Qm h5 f 1l. - 7c \ l Z. * o, }!A}v/ -a.} M% K "T CR+DQ k / [ 1 Q= k 8 4, 1 r ^ 9, 1 1(= bcc!q Riq, 3J9(z ip γ #QH =G, v { a) % ;D 7, n o EJ y,[ br α b -m XRD A}w}G%. {acl;d,.}9æ ; '1#R&q&/ ", AB XRD A}5i j (1) DÆek/Z C L Æ?? 1 Q m f 1 K0. q K ( 6G ), i U0 2. 0 2 \l, CR+AC k / [ C L Æ q K0 ^, 26.5%. - 8 = C L Æ 2.4 = 8lpDGb>GWhvG} SEM TEM.} w H0 v, 9 ( k /# W ZÆ { q TEM g. U, C L Æ q - x Æ G : J a# bcc b α( +iq!q % ) fcc bæq γ. [ D Reb.} 9 Kp & b t. 78, vg M~% G R e b.} 3 = d, N 6blek/Z.}, 4 9 RD 6 r 7 8'j.e Z 0"{l Fig.7 Fracture morphology of the tested steel at at various processes of TMCP (a), CR+AC (b) and CR+ DQ (c) ; 8'j.Ye Z BK p 5F 8 J 2 C Table 2 Volume fraction and carbon content of retained austenite in the tested steel at various processes r6 &+ 30 min "hp Qh ε!o{l Morphology of ε carbide precipitations in lath martensite tempered at 250 for 30 min 250 Fig.6 (a) bright field (b) dark field (c) SAD pattern and index (%) Process Volume fraction TMCP 23.1 Carbon content 0.96 CR+AC 26.5 0.84 CR+DQ 4.2 0.57 CR+DQ+T 3.0 1.02

692 Ô Ý 46 Ö 8 CR+AC º Ã Ô TEM Fig.8 TEM morphology of retained austenite at CR+AC process (a) bright field (b) dark field (c) corresponding diffraction pattern and index Õ È, ÄÆÕ 0.1 µm. º ɼÚ, Õ Þ [uvw] α =[111], ÆÕ [uvw] γ =[110], ÛÅ Õ (α ) ÊÆÕ (γ ) Þ Èß {110} α /{111} γ, 111 α / 101 γ ½ ØÎ, Á K S ØÎ. TMCP» ÄÆÕ Ã Â CR+AC», 23.1%. Đ Ý ÄÆ Õ Ã, Ú 4.2%, ³ ÄÆÕ Ã 3.0%, ¼Ú³ ÄÆÕ Õ, Ø ¼Ä±. ¼ 1 2 ¼Ú ÄÆÕ Ê Ø. µ ÄÆÕ Íà [17] : ÉÀÎÆ ÄÆÕ Ü, ÉÀ¹ Đ, ¹ Ð; ÄÆÕ ¾, ÉÀǹ À ; γ Ê α Ò ÐÖ, ÂÉÀ¹. ÄÆÕ ÍÃ, Å Â ÄÆÕ ß Â Á ºÐ, ³ ¼Ü Å ¹Ò, Ö, ± ÄÆÕ Ã, À ÄÆÕ Á±. ÄÆÕ Á± ÄÆÕ C à РÑ, ÄÆÕ C ü. Å ÂÐ Ð Đ¹Ð ± ÄÆÕ C Ã, ÕÆ Ê ÄÆÕ C à ØÎ [18] ÛÐÕÆ: a = 3.571 + 0.044w C (2), w C ÄÆÕ C à ( Ã, %), a Ä ÆÕ ÕÆ, Å {311}ÞÖ Æ a = λ h2 + k 2sin θ 2 + l 2 (3) (2) Ñ, Ð ± È ÄÆÕ C Ã, Å Æ Ê ÄÆ Õ ÉÀÀ, ¹¾» ÄÆ Õ C à ¹Ò. Æ Í¼ 2. ؼ 2 ¹, TMCP» ÄÆÕ C à 0.96%, CR+AC» 0.84%. Í, ÄÆÕ Ê C Á± Ö. Ö, Ò 2» ÄÆÕ Æ Â 20%, ³ C à 0.24%, ¼Ú ÄÆÕ µ Å C Ã. Ö ¹½± TMCP CR+AC» Õ ºÐ C,, Ò 2» ¹ Õ ¾ Õ ±. Ò, ½ Æ Ó, CR+DQ» ÄÆ Õ C à 0.57%,  ³ à (0.24%), Û Å [19] ØÂ C Õ ß C ¹. 250 ³ 30 min, ÄÆÕ C ÃÅ 1.02%, Ú³ Ú ÄÆÕ ( ³ ÄÆÕ ÃËÈű), C Ø Õ ¼ Õ ÆÕ (¹ ). 2.5 ÁÞÑ ÎÛÜ «TMCP, CR+AC CR+DQ+T» ÑÛÐÛÀ, ¹ 9 Ð. Í, 3» Ê Æ Ü, Å Ò. CR+AC» Å, Ê ÈÈ ¹ È, ¼ ¼ Ú, Æ Ð 70 nm; CR+DQ+T» 250 ³ 30 min, C Æ È ¹ Ú, ¾ Ý Ê È Ñ, ¼ Ò, Æ Ð 15 nm; TMCP» Ó CR+AC CR+DQ+T È, 50 nm. [20] ¼Ú, È ÆÕ Ê

6 : 1500 MPa ÕÊ Ù ßÈ 693 Ö 9 ³ º Î É ßÐ Fig.9 Morphology of precipitation particles in the tested steel at various processes of TMCP (a), CR+AC (b) and CR+DQ+T (c), ÊÆÕ ÞÈß Ð ØÎ: 001 M(C,N) /001 γ, [010] M(C,N) /[010] γ. Ò Ð½ ØÎ, Ê Þ ÊÆÕ Þ 3 ÔĐ Å Đ. Ò Ê µ ÆÕ Ê, ³ ¼ 3 ÔĐ Å Æ È. Ö, ÆÕ Ê È ¼Ü. α Fe, Ê È Ê¾ ß Ø [20] : 001 M(C,N) /001 α Fe, [010] M(C,N) /[110] α Fe, Ò ½ ØÎ, Ê Þ Ê α Fe Þ 3 ÔĐ Å Đ, ÖÊ È ¹½ ¼ Þ. ÃÊ È, Ö ¹»½ Ô Ê ¾ ÆÕ, Ø È Ú, Õ ¼ Õ Ã Ê Ü. 3 (1) ² TMCP, CR+AC, CR+DQ CR+ DR+T 4», 2» Å ² Å, Đ Ý ½± 1890 MPa, ¼Ä± 1280 MPa, Ï 13.0%; 250 ³ 30 min ½± 1820 MPa, ¼Ä± 1350 MPa, Ï 15.0%. Ê ½± ß Ø, ʼı ÄĐ Î. (2) TMCP»º ºÐ Õ Õ ÄÆÕ È ºÐ; CR+AC» ºÐ Ô ± Õ ÄÆÕ ; CR+DQ» ºÐ È Õ ÈÃ ÄÆÕ ; CR+DQ+T», Õ ³ÈÊ, Ê Ô ε È. (3) TMCP» ½, ¹ ½É, Èà Ãß, Ã, ²; CR+AC» ½É ½ÉÈ Õ ½É, ½Ö, Ã, Ò; CR+DQ» ½É, ½Ö, ½ ÉÀ, Ê²Õ ²». (4) TMCP CR+AC» Õ ºÐ C, Õ ¾ Õ ±. C Õ ß C ¹., ³ Ú ÄÆÕ, C Ø Õ ¼ Õ ÆÕ (¹ ). ³ ½±, ¼Ä±, Ò Â Đ Ô ³È ÄÆÕ Ê È Ê ± ² ¾. (5) CR+AC» Ê È È Æ Ð 70 nm; CR+DQ+T» 15 nm; TMCP 50 nm. Ô Ê ¾ ÆÕ, Ø È Ú, Õ ¼ Õ Ã Ê Ü. ÙÝ [1] Fan C G, Dong H, Yong Q L, Weng Y Q, Wang M Q, Shi J, Hui W J. Mater Mech Eng, 2006; 30: 1 (ÇÏ,,, Â˵,,,. Ö Æ, 2006; 30: 1) [2] Guo J W, Sun J B, Li H B, Rong S F. J Jiamusi Univ, 2002; 20: 23 (,,, Û. Áß, 2002; 20: 23) [3] Garrison Jr W M, Maloney J L. Mater Sci Eng, 2005; A403: 299 [4] Maloney J L, Garrison Jr W M. Acta Mater, 2005; 53: 533 [5] Ji G L, Li F G, Li Q H, Li H Q, Li Z. Mater Sci Eng, 2010; A527: 1165 [6] Li J, Guo F, Li Z, Wang J L, Yan M G. J Iron Steel Res

694 Ô Ý 46 Int, 2007; 14: 254 [7] Chang L C, Bhadeshia H K D H. Mater Sci Eng, 1994; A184: 17 [8] Sule Y S, Kahraman S, Erdinc K. Mater Charact, 2008; 59: 351 [9] Zhirafar S, Rezaeian A, Pugha M. J Mater Process Technol, 2007; 186: 298 [10] Fang H S, Liu D Y, Chang K D, Zhang C, Gu J L, Zhang W Z, Bai B Z, Yang Z G. J Iron Steel Res, 2001; 13(3): 31 (, ²Æ, Å,, ÖÄÊ, Ö,, Ï., 2001; 13(3): 31) [11] Liu D Y, Fang H S, Bai B Z. Trans Mater Heat Treat, 2002; 23(4): 57 ( ²Æ,,. Æ Ñ, 2002, 23(4): 57) [12] Fan C G, Dong H, Shi J, Liu Y L, Yong Q L, Hui W J, Wang M Q, Weng Y Q. Ordnance Mater Sci Eng, 2006; 29(2): 31 (ÇÏ,,, Ë,,,, ÂË µ. Æ É ; 2006; 29(2): 31) [13] Wang L D, Ding F C, Wang B M, Zhu M, Zhong Y L, Liang J K. Acta Metall Sin, 2009; 45: 292 (, É, Ø, Ù, À, ص. ÖÞ, 2009; 45: 292) [14] Gao K, Wang L D, Zhu M, Chen J D, Shi Y J, Kang M K. Acta Metall Sin, 2007; 43: 315 ( ±,, Ø, ÍĐ², ½, Þ³. ÖÞ, 2007; 43: 315) [15] Jing C N, Wang Z C, Han F T. Met Heat Treat, 2005; 30: 26 (Đ, ½, Å. ÖÞ Ñ, 2005; 30: 26) [16] Gregg J M, Bhadeshia H K D H. Acta Mater, 1997; 45: 739 [17] Xu Z Y. Shanghai Met, 1995; 17: 1 ( µ. Ä ÖÞ, 1995; 17: 1) [18] Zhou Y, Wu G H.Analysis Methods in Materials Science. 2nd Ed., Harbin: Harbin Institute of Technology Press, 2007: 95 ( Ì, Å ±. Æ É., ¾: ¾ ± Ë, 2007: 95) [19] Xu Z Y. Martensitic Transformation and Martensite. 2nd Ed., Beijing: Science Press, 1999: 84 ( µ. Ô É Ô., : Ë, 1999: 84) [20] Yong Q L. Secondary Phases in Steels. Beijing: Metallurgy Industry Press, 2006: 225, 247 (. Æ«. : Ö ± Ë, 2006: 225, 247)