Estimators when the Correlation Coefficient. is Negative

Σχετικά έγγραφα
CS 1675 Introduction to Machine Learning Lecture 7. Density estimation. Milos Hauskrecht 5329 Sennott Square

Homework for 1/27 Due 2/5

Exam Statistics 6 th September 2017 Solution

Discrete Fourier Transform { } ( ) sin( ) Discrete Sine Transformation. n, n= 0,1,2,, when the function is odd, f (x) = f ( x) L L L N N.

α & β spatial orbitals in

1. For each of the following power series, find the interval of convergence and the radius of convergence:

One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF

On Generating Relations of Some Triple. Hypergeometric Functions

Απλή Παλινδρόμηση και Συσχέτιση

Article Multivariate Extended Gamma Distribution

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.

C.S. 430 Assignment 6, Sample Solutions

ΝΕΑ ΑΠΟΤΕΛΕΣΜΑΤΑ ΣΧΕΤΙΚΑ ΜΕ ΤΗΝ ΥΠΑΡΞΗ ΕΚΤΙΜΗΤΩΝ ΜΕΓΙΣΤΗΣ ΠΙΘΑΝΟΦΑΝΕΙΑΣ ΓΙΑ ΤΗΝ 3-ΠΑΡΑΜΕΤΡΙΚΗ ΓΑΜΜΑ ΚΑΤΑΝΟΜΗ

Homework 3 Solutions

Cytotoxicity of ionic liquids and precursor compounds towards human cell line HeLa

n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1)

On Inclusion Relation of Absolute Summability

Multi-dimensional Central Limit Theorem

Other Test Constructions: Likelihood Ratio & Bayes Tests

Examples of Cost and Production Functions

Latent variable models Variational approximations.

8.1 The Nature of Heteroskedasticity 8.2 Using the Least Squares Estimator 8.3 The Generalized Least Squares Estimator 8.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Generalized Fibonacci-Like Polynomial and its. Determinantal Identities

Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing.

Ψηφιακή Επεξεργασία Εικόνας

New bounds for spherical two-distance sets and equiangular lines

ST5224: Advanced Statistical Theory II

Solve the difference equation

EE512: Error Control Coding

Second Order Partial Differential Equations

Variance of Trait in an Inbred Population. Variance of Trait in an Inbred Population

Homework 4.1 Solutions Math 5110/6830

Multi-dimensional Central Limit Theorem

Finite Field Problems: Solutions

Statistical Inference I Locally most powerful tests

LECTURE 4 : ARMA PROCESSES

Latent variable models Variational approximations.

Areas and Lengths in Polar Coordinates

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Partial Trace and Partial Transpose

Degenerate Perturbation Theory

Solutions: Homework 3

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Estimation for ARMA Processes with Stable Noise. Matt Calder & Richard A. Davis Colorado State University

Lecture 17: Minimum Variance Unbiased (MVUB) Estimators

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6

Areas and Lengths in Polar Coordinates

4.6 Autoregressive Moving Average Model ARMA(1,1)

The Simply Typed Lambda Calculus

CRASH COURSE IN PRECALCULUS

derivation of the Laplacian from rectangular to spherical coordinates

t. Neymann-Fisher factorization: where g and h are non-negative function. = is a sufficient statistic. : t( y)

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Strain gauge and rosettes

1 Complete Set of Grassmann States

Congruence Classes of Invertible Matrices of Order 3 over F 2

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Example Sheet 3 Solutions

Post Graduate Diploma in Applied Statistics (PGDAST)

Commutative Monoids in Intuitionistic Fuzzy Sets

Markov Processes and Applications

Solutions to Exercise Sheet 5

IIT JEE (2013) (Trigonomtery 1) Solutions

Studies on Properties and Estimation Problems for Modified Extension of Exponential Distribution

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

ΠΤΥΧΙΑΚΗ/ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Solution Series 9. i=1 x i and i=1 x i.

Homework 8 Model Solution Section

Matrices and Determinants

Galatia SIL Keyboard Information

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Empirical best prediction under area-level Poisson mixed models

ECON 381 SC ASSIGNMENT 2

Section 8.3 Trigonometric Equations

Minimum density power divergence estimator for diffusion processes

6. MAXIMUM LIKELIHOOD ESTIMATION

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

On Hypersurface of Special Finsler Spaces. Admitting Metric Like Tensor Field

Η ΨΥΧΙΑΤΡΙΚΗ - ΨΥΧΟΛΟΓΙΚΗ ΠΡΑΓΜΑΤΟΓΝΩΜΟΣΥΝΗ ΣΤΗΝ ΠΟΙΝΙΚΗ ΔΙΚΗ

A Class of Orthohomological Triangles

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1


George S. A. Shaker ECE477 Understanding Reflections in Media. Reflection in Media

w o = R 1 p. (1) R = p =. = 1

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

Homomorphism in Intuitionistic Fuzzy Automata

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Generalized Modified Ratio Estimator for Estimation of Finite Population Mean

Boundary-Fitted Coordinates!

Lecture 2. Soundness and completeness of propositional logic

Lecture 34 Bootstrap confidence intervals

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review

( ) 2 and compare to M.

Inverse trigonometric functions & General Solution of Trigonometric Equations

The Heisenberg Uncertainty Principle

6.3 Forecasting ARMA processes

Μηχανισμοί πρόβλεψης προσήμων σε προσημασμένα μοντέλα κοινωνικών δικτύων ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Transcript:

It J Cotemp Math Sceces, Vol 5, 00, o 3, 45-50 Estmators whe the Correlato Coeffcet s Negatve Sad Al Al-Hadhram College of Appled Sceces, Nzwa, Oma abur97@ahoocouk Abstract Rato estmators for the mea of Y use avalable formato o a aular varable X to mprove the estmato Whe the correlato coeffcet betwee X ad Y s egatve, the the product estmator s used I ths paper two geeral tpes of estmators based o aular varable are suggested ad vestgated to reach the optmalt of these estmators Kewords: Rato estmator, product estmator; Mea square error, Aular varable INTRODUCTION Assumg that the populato mea μ of a aular varable X s kow, the product estmators for the populato mea are = ( ) / μ = μ = Where = (/ ) X, = (/ ) Y Murth( 963) showed that the = = Bas ( ) = Bas ( ) The he combed the two estmators ad proposed the followg ubased estmator 3 = Two product-tpe estmators for the populato mea were suggested Upadhaa & Sgh (999) ( + V ) 4 = μ + V ( )

46 S A Al-Hadhram 5 = ( + K ) ( μ + K ) where V ad K are the coeffcet of varato ad the coeffcet of kurtoss of X, respectvel Upadhaa & Sgh (999) also suggested the two product- tpe estmators ( K + V ) 6 = ( μ K + V ) ad [ V + K ] 7 = [ μv + K ] I ths artcle we provde two geeral forms of estmators ad compared them wth the tradtoal product estmators FIRST FORM OF PRODUCT TYPE ESTIMATOR The estmators 4, 5, 6 ad 7 metoed above are actuall specal cases of the geeral form α ˆ μ = () αμ wth α ad γ are costats wth α 0 or γ 0 The epectato of ths estmator s α γ E( ˆ μ ) = E(XY) + E(Y) αμ αμ ασ XY = + μ ( αμ ) αμ ασ XY E ( ˆ μ ) = μ + ( αμ The estmator s based ad the amout of bas s Bas ( ˆ μ ) = ασ XY / ( αμ ) () If / μ > α /( αμ, the we get Bas ( ˆ μ ) < Bas ( ) It s clear that f α = 0, the the estmator () s reduced to mea per ut,, whch s ubased The bas ca be also reduced b creasg sample sze or/ad choose αμ to be large used Let To stud the MSE of the estmator, oe degree of Talor epaso s ( ) ˆ μ μ + ( μ ) + D μ

Estmators whe the correlato coeffcet s egatve 47 where D = αμ /( αμ The a appromated MSE of the estmator s MSE V ar D V ar DCov [ ] ( ) ( ˆ μ ) (Y) + (X) + X,Y = Var(Y) + DVar(X) D + I order to get α ad γ that mmze the MSE, we take the partal dervatves wth respect to α ad γ These gve the followg two equatos ( γμ) αμ MSE ( ˆ μ) = Var (X) + α ( αμ ( αμ αμ αμ MSE ( ˆ μ) = Var (X) + γ ( αμ ( αμ MSE ( ˆ μ) MSE ( ˆ μ) Settg = 0 ad = 0 wll gve γ = ( α) μ / + μ α γ Whch ca be wrtte as γ = ( αμ) [ V X /( ρvy ) + ] where V X ad VY are the coeffcet of varatos ad ρ s the correlato coeffcet ad α 0, ad the mmum MSE s MSEm ( ˆ μ) Var (Y) Var (X) = Var(Y) ρ The costat γ cludes the parameter of terest, μ, whch s ukow However, we ma use a good estmate for μ Let cosder the choce ˆ μ = = (/ ) = So ˆ γ = ( α) + μ Substtute ths the ma estmator () gves ˆ μ = + ( μ ) (3) whch s the regresso estmator The appromated MSE of the estmator (3) s MSE ( ˆ μ ) Var (Y) Var (X) ( σy / )( ρ ) = Let ow use the trasformato u = α whereα ad γ are a arbtrar costats wthα 0 or γ 0 Ad let also u = (/ ) u ad U = αμ The, we defe a ew estmator ) ) ˆ μ = ) ) where = (u / U) ad = (/ U ) u = = (4)

48 S A Al-Hadhram Lemma(): The estmator [ ] Proof ) ) ˆ μ = /( ) s ubased estmator for ˆ μ = u / U ( / U ) ( ) α = = ( / ) ( / ) ( ) U α α γ = = = ( α / ) ( ) γ ( ) U + = = = = {( α / ) + ( ) γ j ( ) U } Takg the epectato we get E( ˆ μ) = {( α / ) μ μ μ } U = μ μ 3 THE SECOND FORM OF PRODUCT TYPE ESTIMATOR Let cosder estmators the form + ( μ ) ˆ μ = ( α (5) αμ wth = σxy / σx, α ad γ are costats whereα 0 or γ 0 + ( μ ) Lemma( ): The estmator ˆ μ = ( α s ubased estmator for αμ μ Proof Let us wrte ˆSRS μ as ( α ) ( μ )( α ˆ μ = + αμ αμ α ˆ μ = + αμ μ α γ αμ αμ The the epectato of ˆμ s

Estmators whe the correlato coeffcet s egatve 49 E ˆ E E ( μ) = α (XY) μ + αμ α (X ) αμ αμ = α( Cov + μ μ ) μ + αμ α + μ αμ αμ (X,Y) ( Var (X) ) After smplfcato we get E( ˆ μ) = α Cov(X,Y) Var( X ) μ ( αμ γ) αμ γ + + + Sce = Cov ( X, Y )/ V ( X ), we get E ( ˆ μ ) = μ To vestgate the MSE of ˆSRS μ, we used frst order of appromato from Talor epaso Ths gves αμ ˆ μ μ + ( μ) + ( )( μ) αμ wth appromated MSE s MSE ( ˆSRS ) Var (Y) αμ αμ μ + Var (X) + Cov (X, Y) αμ αμ To compare the MSE of ths form of estmators wth the tradtoal product tpe, αμ = ( )/ μ, let state R = μ / μ, ad D = αμ The we got MSE ( μ ) < MSE (Y) f ad ol f ˆ D Var + DCov < R Var + RCov (X) (X, Y) (X) (X, Y) whch ca be wrtte as Var(X) D R < Co v(x, Y) [ R D] Provded that R D 0, we got Var(X) [ D + R] < Co v(x, Y) Therefore, [ D + R] < / where = σxy / σx That s MSE ( ˆ μ ) < MSE (Y) f [ D + R] < / I order to get the costats α ad γ that mmze the MSE, we take the partal dervatves of the MSE wth respect to α ad γ These gve the followg two equatos ( γμ) αμ MSE ( ˆ μ) = Var (X)( ) Cov (X, Y) + α ( αμ αμ

50 S A Al-Hadhram αμ αμ MSE ( ˆ μ) = Var (X)( ) Cov (X, Y) + γ ( αμ αμ MSE ( ˆ μ) MSE ( ˆ μ) Settg = 0 ad = 0 we get that ether γ = 0 or α = 0 α γ provded that μ 0 Therefore, the geeral estmator, ˆμ, has mmum varace f we wrte t as ˆ μ = + ( μ ) whch s the regresso estmator Refereces [] SLLohr, Samplg: Desg ad Aalss, Dubur Press, 999 [] MN Murth, Product method of estmato, Sakha, A6(963), 69-74 [3] LNUpadhaa, HP Sgh, Use of trasformed aular varable estmatg the fte populato mea, Bometrcal Joural 4(999), 67-636 Receved: November, 009