Generalized Modified Ratio Estimator for Estimation of Finite Population Mean

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Generalized Modified Ratio Estimator for Estimation of Finite Population Mean"

Transcript

1 Jourl of Moder Appled Sttstcl Methods Volume Issue Artcle Geerlzed Modfed Rto Estmtor for Estmto of Fte Populto Me Jmbulgm Subrm Podcherr Uverst, Puducherr, Id, drjsubrm@hoo.co. Follow ths d ddtol works t: Prt of the Appled Sttstcs ommos, Socl d Behvorl Sceces ommos, d the Sttstcl Theor ommos Recommeded tto Subrm, Jmbulgm (03) "Geerlzed Modfed Rto Estmtor for Estmto of Fte Populto Me," Jourl of Moder Appled Sttstcl Methods: Vol. : Iss., Artcle 7. DOI: 0.37/jmsm/ Avlble t: Ths Regulr Artcle s brought to ou for free d ope ccess b the Ope Access Jourls t Dgtlommos@WeStte. It hs bee ccepted for cluso Jourl of Moder Appled Sttstcl Methods b uthorzed edtor of Dgtlommos@WeStte.

2 Geerlzed Modfed Rto Estmtor for Estmto of Fte Populto Me over Pge Footote The uthor wshes to record hs grttude d thks to Uverst Grts ommsso (UG) for the fcl ssstce through UG-Mjor Reserch Project. Ths regulr rtcle s vlble Jourl of Moder Appled Sttstcl Methods: ss/7

3 Jourl of Moder Appled Sttstcl Methods November 03, Vol., No., -55. oprght 03 JMASM, Ic. ISSN Geerlzed Modfed Rto Estmtor for Estmto of Fte Populto Me Jmbulgm Subrm Podcherr Uverst Puducherr, Id A geerlzed modfed rto estmtor s proposed for estmtg the populto me usg the kow populto prmeters. It s show tht the smple rdom smplg wthout replcemet smple me, the usul rto estmtor, the ler regresso estmtor d ll the estg modfed rto estmtors re the prtculr cses of the proposed estmtor. The bs d the me squred error of the proposed estmtor re derved d re compred wth tht of estg estmtors. The codtos for whch the proposed estmtor performs better th the estg estmtors re lso derved. The performce of the proposed estmtor s ssessed wth tht of the estg estmtors for cert turl popultos Kewords: prmeters Aulr vrble, bses, turl populto, me squred error, Itroducto osder fte populto U { U, U,, U N } of N dstct d detfble uts. Let be stud vrble wth vlue mesured o U,,, 3,, N gvg vector {,,, N }. The problem s to estmte the populto N me o the bss of rdom smple selected from the N populto U. The smple rdom smple me s the smplest estmtor for estmtg the populto me. If ulr vrble, closel relted to the stud vrble, s vlble the oe c mprove the performce of the estmtor of the stud vrble b usg the kow vlues of the populto prmeters of the ulr vrble. Tht s, whe the populto prmeters of the ulr vrble such s populto me, coeffcet of vrto, coeffcet of kurtoss, coeffcet of skewess etc., re kow, the umber of estmtors vlble the lterture (such s rto, product d ler regresso Dr. Subrm s Assocte Professor d Hed of the Deprtmet of Sttstcs. Eml hm t: drjsubrm@hoo.co..

4 MODIFIED RATIO FOR ESTIMATION OF FINITE POPULATION MEAN estmtors d ther modfctos) perform better th the usul smple rdom smple me uder cert codtos. Amog these estmtors, m reserchers hve used the rto estmtor d ts modfctos for the estmto of the me of the stud vrble (see for emple Ssod d Dwved (98), Kdlr d g (006, 006b), d T (00) d Subrm d Kumrpd (0, 0c)). Before dscussg further the estg estmtors d the proposed estmtors, the ottos to be used ths rtcle re descrbed below: N f /N,, S, S, ρ β β M d B(.) MSE(.) p j Populto sze Smple sze Smplg frcto Stud vrble Aulr vrble Populto mes Smple mes Populto stdrd devtos o-effcet of vrtos o-effcet of correlto betwee d o-effcet of skewess of the ulr vrble o-effcet of kurtoss of the ulr vrble Med of the ulr vrble Bs of the estmtor Me squred error of the estmtor th estg (jth proposed) modfed rto estmtor of I cse of smple rdom smplg wthout replcemet (SRSWOR), the smple me srs s used to estmte populto me, whch s ubsed estmtor, d ts vrce s gve below: V srs S () The rto estmtor for estmtg the populto me of the stud vrble s defed s:

5 JAMBULINGAM SUBRAMANI where R R R () The bs d me squred error of the rto estmtor to the frst degree of ppromto re gve below: ( ρ ) B R (3) ( ρ ) MSE R + (4) The usul ler regresso estmtor together wth ts vrce s gve below: lr + β (5) ( lr ) V ( ρ ) S (6) Ssod d Dwved (98) hve suggested modfed rto estmtor usg the co-effcet of vrto of ulr vrble for estmtg. Whe the coeffcet of kurtoss of ulr vrble s kow, Sgh et l. (004) hs developed modfed rto estmtor. Sgh d Tlor (003) proposed other estmtor for estmtg whe the populto correlto co-effcet betwee d s kow. B usg the populto vrce of ulr vrble, Sgh (003) proposed other modfed rto estmtor for estmtg populto me. More recetl, d T (00) hs suggested other modfed rto estmtor usg the co-effcet of skewess of the ulr vrble, d Subrm d Kumrpd (03) suggested ew modfed rto estmtor usg kow populto med of ulr vrble. Updh d Sgh (999) suggested other modfed rto estmtor usg the ler combto of co-effcet of vrto d co-effcet of kurtoss. Sgh (003) used the ler combto of co-effcet of kurtoss d stdrd devto d co-effcet of skewess d stdrd devto for estmtg the popultos me. Motvted b Sgh (003), d T (00) used the ler combto of co-effcet of kurtoss d co-effcet of 3

6 MODIFIED RATIO FOR ESTIMATION OF FINITE POPULATION MEAN skewess d co-effcet of vrto d co-effcet of skewess. Subrm d Kumrpd (0, 0b, 0c d 03b) suggested modfed rto estmtors usg kow med d co-effcet of kurtoss, med d coeffcet of skewess, med d co-effcet of vrto d med d coeffcet of correlto. More detled dscusso bout the rto estmtor d ts modfcto c be foud Abd d Shhbz (006), Ahmd et l. (009), Al-Jrrh d Al- Hj Ebrhem (0), Bhush (0), ochr (977), Dlbeher d Shoo (994), Dvd d Sukhtme (974), Goodm d Hrtle (958), Gupt d Shbbr (008), Jhjj et l. (006), Kdlr d g (003, 004), Khoshevs et l. (007), Koucu d Kdlr (009), Kulkr (978), Murth (967), Nk d Gupt (99), Olk (958), Pthk (964), Perr (007), R d Sh (980), Redd (973), Robso (987), Se (993), Shbbr d b (003), Shrm d Tlor (00), Sgh d hudhr (986), Sgh (003), Sgh d Espejo (003), Sgh d Aghotr (008), Sgh d Solk (0), Sgh d Tlor (003, 005), Sgh et l. (004, 008), Ssod d Dwved (98), Solk et l. (0), Srvektrm (980), Tlor d Shrm (009), T (965), Updh d Sgh (999) d d T (00). The followg tble cots ll modfed rto estmtors usg kow populto prmeters of the ulr vrble whch some of the estmtors re lred suggested the lterture. The remg estmtors re troduced ths rtcle: Tble. Modfed Rto estmtors wth the costt, the bs, d the me squred errors. Estmtor ostt Bs B(.) Me squred error MSE(.) + + Ssod d Dwved (98) + ( ρ ) + ρ ) + β + β Sgh et l. (004) + β ( ρ ) + ρ ) + β 3 + β d T (00) 3 + β ( 3 ρ 3 ) + 3 ρ 3 ) + ρ 4 + ρ Sgh d Tlor (003) 4 + ρ ( 4 ρ 4 ) + 4 ρ 4 ) 4

7 JAMBULINGAM SUBRAMANI Tble otued Estmtor ostt Bs B(.) Me squred error MSE(.) + S 5 + S Sgh (003) 5 + S ( 5 ρ 5 ) + 5 ρ 5 ) + M d 6 + Md Subrm d Kumrpd (03) 6 + M d ( 6 ρ 6 ) + 6 ρ 6 ) β + 7 β + Updh d Sgh (999) β 7 β + ( 7 ρ 7 ) + 7 ρ 7 ) + β 8 + β Updh d Sgh (999) 8 + β ( 8 ρ 8 ) + 8 ρ 8 ) β + 9 β + β 9 β + ( 9 ρ 9 ) + 9 ρ 9 ) + β 0 + β d T (00) 0 + β ( 0 0ρ ) + 0 0ρ ) ρ + ρ + ρ ρ + ( ρ ) + ρ ) + ρ + ρ + ρ ( ρ ) + ρ ) S + 3 S + S 3 S+ ( 3 3ρ ) + ρ ) + S 4 + S 4 + S ( 4 4ρ ) + 4 4ρ ) Md + 5 M d + Md 5 M + d ( 5 5ρ ) + 5 5ρ ) + M d 6 + M d Subrm d Kumrpd (0c) 6 + M d ( 6 6ρ ) + 6 6ρ ) β + β 7 β + β d T (00) β 7 β + β ( 7 7ρ ) + 7 7ρ ) 5

8 MODIFIED RATIO FOR ESTIMATION OF FINITE POPULATION MEAN Tble otued Estmtor ostt Bs B(.) Me squred error MSE(.) β + β 8 β + β d T (00) β 8 β + β ( 8 8ρ ) + 8 8ρ ) ρ + β 9 ρ + β ρ 9 ρ + β ( 9 9ρ ) + 9 9ρ ) β + ρ 0 β + ρ β 0 β + ρ ( 0 0ρ ) + 0 0ρ ) + β S + β S S S+ β ( ρ ) + ρ ) β + S β + S Sgh (003) β β + S ( ρ ) + ρ ) d + β Md + β 3 M Md 3 M + β d ( 3 3ρ ) + 3 3ρ ) β + M d 4 β + Md Subrm d Kumrpd (0) β 4 β + M d ( 4 4ρ ) + 4 4ρ ) ρ + β 5 ρ + β ρ 5 ρ + β ( 5 5ρ ) + 5 5ρ ) β + ρ 6 β + ρ β 6 β + ρ ( 6 6ρ ) + 6 6ρ ) S + β + β 7 S S 7 S+ β ( 7 7ρ ) + 7 7ρ ) β + S 8 β + S Sgh (003) β 8 β + S ( 8 8ρ ) + 8 8ρ ) d + β Md + β 9 M Md 9 M + β d ( 9 9ρ ) + 9 9ρ ) β + M d 30 β + Md Subrm d Kumrpd (0b) β 30 β + M d ( 30 30ρ ) ρ ) 6

9 JAMBULINGAM SUBRAMANI Tble otued Estmtor ostt Bs B(.) Me squred error MSE(.) S + ρ 3 S + ρ S 3 S+ ρ ( 3 3ρ ) + 3 3ρ ) ρ + S 3 ρ + S ρ 3 ρ + S ( 3 3ρ ) + 3 3ρ ) Md + ρ 33 M d + ρ Md 33 M + ρ d ( 33 33ρ ) ρ ) ρ + M d 34 ρ + Md Subrm d Kumrpd (03b) ρ 34 ρ + M d ( 34 34ρ ) ρ ) Md + S 35 M d + S S + M d 36 S + M d Md 35 M + S S 36 S+ M d d ( 35 35ρ ) ( 36 36ρ ) f ρ ) ρ ) Proposed geerlzed rto estmtor As stted erler, the performce of the estmtor of the stud vrble c be mproved b usg the kow populto prmeters of the ulr vrble, whch re postvel correlted wth tht of stud vrble. The proposed geerlzed modfed rto estmtor for estmtg the populto me s defed s: ( ) ( ) + + α λ p ;,,3,,36 (7) + + α λ The bs d me squred error of the proposed estmtor p hve bee derved (see Apped A) d re gve below: ( ρ ) B p ;,,3,,36 p p (8) 7

10 MODIFIED RATIO FOR ESTIMATION OF FINITE POPULATION MEAN ( ρ ) MSE p ; + p p where p ;,,3,,36 + α λ ( ) (9) where λ, λ β, λ β, 3 λ4 ρ, λ 5 S, λ 6 M d, λ7 / β, λ /, 8 β λ9 / β, λ /, 0 β λ / ρ, λ ρ /, λ 3 / S, λ 4 S /, λ 5 / Md, λ 6 Md /, λ7 β / β, λ8 β / β, λ β / ρ, 9 λ0 ρ / β, λ /, β S λ S / β, λ /, 3 β M d λ4 M d / β, λ β / ρ, 5 λ6 ρ / β, λ /, 7 β S λ8 S / β, λ /, 9 β M d λ30 M d / β, λ3 ρ / S, λ3 S / ρ, λ33 ρ / M d, λ34 M d / ρ, λ 35 S / Md, d λ 36 M / S d Effcec of the proposed estmtor The vrce of SRSWOR smple me srs s gve below: V srs S (0) The bs d me squred error of the usul rto estmtor R to the frst degree of ppromto re gve below: ( ρ ) B R ( ρ ) MSE + R () The bs d the me squred error of the modfed rto estmtors to 36 lsted the Tble re represeted sgle clss s gve below: 8

11 JAMBULINGAM SUBRAMANI + λ ;,,3,,36 + λ ( ρ ) B ;,,3,,36 MSE ( + ρ) where ;,,3,,36 + λ () As dscussed erler, the bs, the me squred error d the costt of the proposed modfed rto estmtor p re gve below: ( ρ ) B p ;,,3,,36 p p ( ) ( ρ ) MSE + where p ;,,3,, α λ p p p (3) where λ, λ β, λ β, 3 λ4 ρ, λ 5 S, λ 6 M d, λ7 / β, λ /, 8 β λ9 / β, λ /, 0 β λ / ρ, λ ρ /, λ 3 / S, λ 4 S /, λ 5 / Md, λ 6 Md /, λ7 β / β, λ8 β / β, λ β / ρ, 9 λ0 ρ / β, λ /, β S λ S / β, λ /, 3 β M d λ4 M d / β, λ β / ρ, 5 λ6 ρ / β, λ /, 7 β S λ8 S / β, λ /, 9 β M d λ30 M d / β, λ3 ρ / S, λ3 S / ρ, λ33 ρ / M d, λ34 M d / ρ, λ 35 S / Md, d λ 36 Md / S From the epressos gve (0) d (3), the codtos (see Apped B ) for whch the proposed estmtor p re more effcet th the smple rdom smplg wthout replcemet (SRSWOR) smple me srs were derved d re: MSE p V r f p ρ (4) 9

12 MODIFIED RATIO FOR ESTIMATION OF FINITE POPULATION MEAN From the epressos gve () d (3), the codtos (see Apped ) for whch the proposed estmtors p re more effcet th the usul rto estmtor R were derved d re: MSE MSE ( ) ρ ρ ether (or) (5) p R p p From the epressos gve () d (3), the codtos (see Apped D) for whch the proposed estmtors p j ; j,,, 5 re more effcet th the estg modfed rto estmtors gve lss, ;,, 3,, were derved d re: MSE MSE ( ) ρ ρ ether (or) (6) pj pj pj The codtos terms of α whch proposed estmtor p performs better th the smple rdom smplg wthout replcemet (SRSWOR) smple me srs were obted d re: λ MSE p V r f α ρ λ (7) From the epresso gve (5), the rge of α whch proposed estmtor p performs better th the usul rto estmtor R s determed d s: MSE MSE ( ) λ ether α ρ λ (or) p R λ ρ α ;,,3,,36 λ (8) 30

13 JAMBULINGAM SUBRAMANI From the epresso gve (6), the rge of α whch proposed estmtor p performs better th the estg modfed rto estmtors lsted Tble s: MSE MSE ( ) λ ether 0 α ρ λ (or) p λ ρ α 0;,,3,,36 λ (9) Prtculr cse: λ ) At α ρ ;,,3,,36, the me squred λ error of the proposed estmtor p ;,,3,,36 equl to the vrce of the SRSWOR smple me srs. λ ) At lmt pot α ρ or the me λ squred error of the proposed estmtor p ;,,3,,36 equl to the me squred error of the usul rto estmtor R λ 3) At lmt pot ρ or 0 the me squred λ error of the proposed estmtor p ;,,3,,36 the me squred error of the estg modfed rto estmtors ;,,3,,36 4) At α ρ ;,,3,,36, the mes squred λ error of the proposed estmtor p ;,,3,,36 equl to the vrce of the usul ler regresso estmtor r 3

14 MODIFIED RATIO FOR ESTIMATION OF FINITE POPULATION MEAN Numercl Stud The performce of the proposed geerlzed modfed rto estmtor s ssessed wth tht of the SRSWOR smple me, the usul rto estmtor d the estg modfed rto estmtors lsted Tble for cert turl popultos. I ths coecto, four turl popultos for the ssessmet of the performce of the proposed estmtors wth tht of estg estmtors were cosdered. Populto s tke from Sgh d hudhr (986) gve pge 08; populto d populto 3 re tke from Sgh d hudhr (986) gve pge 77; populto 4 s tke from ochr (977) gve pge 5. The populto prmeters d the costts computed from the bove popultos re gve below Tble, wheres the rge of α whch proposed estmtor performs better th the estg estmtors, the costts, the bses d the me squred errors of the estg d proposed estmtors for the bove popultos re respectvel gve from the Tbles 3 to 8. Tble. Prmeters d costts of the populto Prmeters Populto Populto Populto 3 Populto 4 N ρ S S β () β () M d

15 JAMBULINGAM SUBRAMANI Tble 3. Rge of α whch proposed estmtor performs better th the usul rto estmtor α rge (α L, α u) Estmtor Populto Populto Populto 3 Populto 4 (-, ) (-, ) (-, ) (-, ) p (-, 57.60) (-, ) (-, ) (-,.0738) p (-, ) (-, ) (-, ) (-, ) p3 (-, ) (-, ) (-, ) (-, ) p4 (-, 6.979) (-, 8.65) (-, 06.77) (-, ) p5 (-, 8.40) (-, 8.330) (-,.0853) (-, ) p6 (-, ) (-, ) (-, ) (-, ) p7 (-, 6.95) (-, ) (-, ) (-,.099) p8 (-, ) (-, ) (-, 58.50) (-, ) p9 (-, ) (-, ) (-, ) (-, 5.994) p0 (-, ) (-, ) (-, ) (-, 4.076) p (-, ) (-, ) (-, ) (-, ) p (-, ) (-, ) (-, ) (-, ) p3 (-, ) (-,.88) (-, 79.80) (-, ) p4 (-, ) (-, ) (-, ) (-, ) p5 (-, 6.478) (-,.979) (-, ) (-, ) p6 (-, ) (-, ) (-, ) (-, ) p7 (-, ) (-, ) (-, ) (-, ) p8 (-, 4.405) (-, ) (-, 9.604) (-,.0359) p9 (-, ) (-, ) (-, ) (-, 8.797) p0 (-, ) (-, ) (-, ) (-, 5.509) p 33

16 MODIFIED RATIO FOR ESTIMATION OF FINITE POPULATION MEAN Tble 3 cotued. α rge (α L, α u) Estmtor Populto Populto Populto 3 Populto 4 (-, ) (-, ) (-, ) (-, 0.07) p (-, ) (-, ) (-, ) (-, 3.705) p3 (-, ) (-, ) (-, 40.38) (-, 0.88) p4 (-, 48.84) (-, ) (-, ) (-, ) p5 (-, ) (-, ) (-, ) (-, ) p ) (-, ) (-, ) (-, ) p7 (-, ) (-, ) (-, ) (-, ) p8 (-, ) (-, ) (-, ) (-, ) p9 (-, 7.083) (-, 7.908) (-, ) (-, -0.45) p30 (-, ) (-, ) (-, ) (-, ) p3 (-, 4.839) (-, 7.654) (-, ) (-, ) p3 (-, ) (-, ) (-, ) (-, ) p33 (-, 5.740) (-, 7.686) (-, ) (-, -0.76) p34 (-, ) (-, ) (-, ) (-, ) p35 (-, ) (-, ) (-, ) (-, 4.409) p36 34

17 JAMBULINGAM SUBRAMANI Tble 4. Rge of α whch proposed estmtor performs better th the estg modfed rto estmtors α rge (α L, α u) Estmtor Populto Populto Populto 3 Populto 4 w.r.t. (0, ) (0, 383.0) (0, ) (0, 3.09) p w.r.t. (0, 6.33) (0, ) (0, 5.048) (-0.077, 0) p w.r.t. (0, ) (0, ) (0, 9.584) (0, 4.645) p3 3 w.r.t. (0, ) (0, ) (0, ) (0, 3.568) p4 4 w.r.t. (-0.0, 0) (0, ) (0, ) (-.678, 0) p5 5 w.r.t. (0, 0.07) (0, ) (0, 0.863) (-.34, 0) p6 6 w.r.t. (0, ) (0, ) (0, ) (0, 3.68) p7 7 w.r.t. (0, ) (0, 7.47) (0, 4.080) (-0.048, 0) p8 8 w.r.t. (0, ) (0, ) (0, ) (0, 3.398) p9 9 w.r.t. (0, 4.500) (0, ) (0, ) (0, 4.753) p0 0 w.r.t. (0, ) (0, ) (0, ) (0,.806) p w.r.t. (0, ) (0, ) (0, ) (0, 3.76) p w.r.t. (0, ) (0, ) (0, ) (0, ) p3 3 w.r.t. (-0.45, 0) (-0.370, 0) ( , 0) (-.694, 0) p4 4 w.r.t. (0, ) (0, ) (0, ) (0, ) p5 5 w.r.t. (-0.0, 0) (-0.37, 0) (0, 0.058) (-.350, 0) p6 6 w.r.t. (0, 6.005) (0, ) (0, 35.48) (0,.438) p7 7 w.r.t. (0, ) (0, 6.788) (0, 89.86) (0, ) p8 8 w.r.t. (0, ) (0, ) (0, 4.368) (-0.066, 0) p9 9 w.r.t. (0, ) (0, ) (0, ) (0, ) p0 0 w.r.t. (0, ) (0, ) (0, ) (0, 4.880) p 35

18 MODIFIED RATIO FOR ESTIMATION OF FINITE POPULATION MEAN Tble 4 cotued. α rge (α L, α u) Estmtor Populto Populto Populto 3 Populto 4 w.r.t. (0, ) (-0.996, 0) (0,.4756) ( , 0) p w.r.t. (0, 973.9) (0, ) (0, 954.0) (0, ) p3 3 w.r.t. (0, ) (-0.995, 0) (0, 3.903) (-0.968, 0) p4 4 w.r.t. (0, ) (0, ) (0, ) (0, 4.565) p5 5 w.r.t. (0, ) (0, ) (0, ) (0, ) p6 6 w.r.t. (0, ) (0, ) (0, ) (0, ) p7 7 w.r.t. (0,.599) (0, ) (0,.34) (-.3376, 0) p8 8 w.r.t. (0, ) (0, ) (0, ) (0, ) p9 9 w.r.t. (0, 3.704) (0, 0.446) (0,.6000) (-.834, 0) p30 30 w.r.t. (0, ) (0, ) (0, ) (0, ) p3 3 w.r.t. (-0.530, 0) (-0.70, 0) ( , 0) (-.65, 0) p3 3 w.r.t. (0, ) (0, ) (0, ) (0, 03.35) p33 33 w.r.t. (-0.366, 0) ( , 0) (-0.633, 0) (-.35, 0) p34 34 w.r.t. (0, 95.66) (0, ) (0, ) (0, 7.673) p35 35 w.r.t. (0, 48.86) (0, ) (0, ) (0, 3.08) p

19 JAMBULINGAM SUBRAMANI Tble 5. ostt, Bs d Me squred error of the Estg d Proposed estmtors for Populto Estmtor B ( (.) ) (.) MSE MSE ( ) ( ) p t α & α L u Bs α ( ) p t t α p MSE t α srs R p p p p p p p p p p p p p p p p p p p9 p 37

20 MODIFIED RATIO FOR ESTIMATION OF FINITE POPULATION MEAN Tble 5 cotued. Estmtor p0 ( ) B (.) (.) ( MSE MSE ) ( ) p t α & α L u Bs p t α ( p ) t α MSE t α p p p p p p p p p p p p p p p p36 p 38

21 JAMBULINGAM SUBRAMANI Tble 6. ostt, Bs d Me squred error of the Estg d Proposed estmtors for Populto Estmtor ( ) B MSE MSE ( ) ( ) p t α & α L u Bs α ( ) p t t α p MSE t α srs R p p p p p p p p p p p p p p p p p p p9 p 39

22 MODIFIED RATIO FOR ESTIMATION OF FINITE POPULATION MEAN Tble 6 cotued Estmtor p0 ( ) B MSE MSE ( ) ( ) p t α & α L u Bs α ( ) p t t α p MSE t α p p p p p p p p p p p p p p p p36 p 40

23 JAMBULINGAM SUBRAMANI Tble 7. ostt, Bs d Me squred error of the Estg d Proposed estmtors for Populto 3 Estmtor ( ) B MSE MSE ( ) ( ) p t α & α L u Bs α ( ) p t t α p MSE t α srs R p p p p p p p p p p p p p p p p p p p0 p 4

24 MODIFIED RATIO FOR ESTIMATION OF FINITE POPULATION MEAN Tble 7 cotued Estmtor p ( ) B MSE MSE ( ) ( ) p t α & α L u Bs α ( ) p t t α p MSE t α p p p p p p p p p p p p p p p36 p 4

25 JAMBULINGAM SUBRAMANI Tble 8. ostt, Bs d Me squred error of the Estg d Proposed estmtors for Populto 4 Estmtor ( ) B MSE MSE ( ) ( ) p t α & α L u Bs α ( ) p t t α p MSE t α srs R p p p p p p p p p p p p p p p p p p p9 p 43

26 MODIFIED RATIO FOR ESTIMATION OF FINITE POPULATION MEAN Tble 8 cotued Estmtor p0 ( ) B MSE MSE ( ) ( ) p t α & α L u Bs α ( ) p t t α p MSE t α p p p p p p p p p p p p p p p p36 p From the vlues of Tble 5 Tble 8, t s observed tht the bs of the proposed modfed rto estmtor p j ; j,,, 36 s less th the bs of the usul rto estmtor d the estg modfed rto estmtors ;,,3,,36. Smlrl, the me squred error of the proposed modfed rto estmtor p j ; j,,, 36 44

27 JAMBULINGAM SUBRAMANI s less th the vrce of SRSWOR smple me, the me squred error of the usul rto estmtor d the estg modfed rto estmtors p j ; j,,, 36 for ll four popultos. ocluso I ths rtcle, geerlzed modfed rto estmtor hs bee suggested usg the kow populto prmeters of the ulr vrble. Moreover, m modfed rto estmtors hve bee troduced ths rtcle, d hve ot bee dscussed erler the lterture. The bs d me squred error of the proposed geerlzed modfed rto estmtor re obted. Furthermore, the codtos hve bee derved for whch the proposed estmtor s more effcet th the estg estmtors, d t s show tht the SRSWOR smple me, the usul rto estmtor, the ler regresso d the estg modfed rto estmtors re prtculr cses of the proposed estmtor. The performces of the proposed estmtor re lso ssessed for some kow popultos. It s observed tht the bs d the me squred errors of the proposed estmtors re less th the bs d the me squred error of the estg estmtors. Moreover, the proposed estmtor wll be geerlzed modfed rto estmtor for estmtg the populto me of the stud vrble usg the kow populto prmeters of the ulr vrble. Ackowledgemets The uthor wshes to record hs grttude d thks to Uverst Grts ommsso (UG) for the fcl ssstce through UG-Mjor Reserch Project. Refereces Abd,. Z., & Shhbz, M. Q. (006). A comprtve stud of geerlzed rto d regresso estmtors wth ther clsscl couterprts. Pkst Jourl of Sttstcs d Operto Reserch, (), Ahmd, Z., Hf, M., & Ahmd, M. (009). Geerlzed regresso-cumrto estmtors for two-phse smplg usg mult-ulr vrbles. Pkst Jourl of Sttstcs, 5(),

28 MODIFIED RATIO FOR ESTIMATION OF FINITE POPULATION MEAN Al-jrrh, J., & Al-Hj Ebrhem, M. (0). A rto estmtor uder geerl smplg desg. Austr Jourl of Sttstcs, 4(), Bhush, S. (0). Some effcet smplg strteges bsed o rto-tpe estmtor. Electroc Jourl of Appled Sttstcl Alss, 5(), ochr, W. G. (977). Smplg Techques. Thrd Edto, Wle Ester Lmted. Dlbeher, M. & Shoo, L. N. (994). omprso of s lmost ubsed rto estmtors. QUESTIIO, 8(3), Dvd, I. P., & Sukhtme, B.V. (974). O the bs d me squre error of the rto estmtor. Jourl of the Amerc Sttstcl Assocto, Theor d Methods Secto, 69(346): Goodm, L. A., & Hrtle, H. O. (958). The precso of ubsed rtotpe estmtors. Jourl of the Amerc Sttstcl Assocto, 53(8): Gupt, S., & Shbbr, J. (008). O mprovemet estmtg the populto me smple rdom smplg. Jourl of Appled Sttstcs, 35(5), Jhjj, H.S., Shrm, M. K., & Grover, L.K. (006). Dul of rto estmtors of fte populto me obted o usg ler trsformto to ulr vrble. Jourl of Jp Sttstcl Socet, 36(), Kdlr,., & g, H. (003). A stud o the ch rto tpe estmtor. Hcettepe Jourl of Mthemtcs d Sttstcs, Vol. 3, Kdlr,., & g, H. (004). Rto estmtors smple rdom smplg. Appled Mthemtcs d omputto, 5, Kdlr,., & g, H. (006). A mprovemet estmtg the populto me b usg the correlto co-effcet. Hcettepe Jourl of Mthemtcs d Sttstcs, 35(), Kdlr,., & g, H. (006b). Improvemet estmtg the populto me smple rdom smplg. Appled Mthemtcs Letters, 9, Khoshevs, M., Sgh, R., huh, P., Sw, N., & Smrdche, F. (007). A geerl fml of estmtors for estmtg populto me usg kow vlue of some populto prmeter(s). Fr Est Jourl of Theoretcl Sttstcs,, 8-9. Koucu, N., & Kdlr,. (009). Effcet Estmtors for the Populto Me. Hcettepe Jourl of Mthemtcs d Sttstcs, 38(),

29 JAMBULINGAM SUBRAMANI Kulkr, S. P. (978). A ote o modfed rto estmtor usg trsformto. Jourl of the Id Socet of Agrculturl Sttstcs, 30(), 5 8. Murth, M. N. (967). Smplg Theor d Methods. lcutt, Id: Sttstcl Publshg Socet. Nk, V. D., & Gupt, P.. (99): A geerl clss of estmtors for estmtg populto me usg ulr formto. Metrk, 38, 7. Olk, I. (958). Multvrte rto estmto for fte popultos. Bometrk, 45, Pthk, P.K. (964). O smplg schemes provdg ubsed rto estmtors. The Als of Mthemtcl Sttstcs, 35(), -3. Perr, P. F. (007). Improved rto-cum-product tpe estmtors. Sttstcs Trsto, 8(), R, S. K., & Sh, A. (980). Effcet fmles of rto d product-tpe estmtors. Bometrk, 67, 5. Redd, V. N. (973). O rto d product methods of estmto. Skh B, 35(3), Robso, J. (987). odtog rto estmtes uder smple rdom smplg. Jourl of the Amerc Sttstcl Assocto, 8 (399), Se, A. R. (993). Some erl developmets rto estmto. Bometrcl Jourl, 35(), 3-3. Shbbr, J., & b, M. Z. (003). Improvemet over trsformed ulr vrble estmtg the fte popultos me. Bometrcl Jourl, 45(6), Shrm, B., & Tlor, R. (00). A ew rto-cum-dul to rto estmtor of fte populto me smple rdom smplg. Globl Jourl of Scece Froter Reserch, 0(), 7-3. Sgh, D., & hudhr, F. S. (986). Theor d lss of smple surve desgs. New Delh: New Age Itertol Publsher. Sgh, G. N. (003). O the mprovemet of product method of estmto smple surves. Jourl of the Id Socet of Agrculturl Sttstcs, 56(3), Sgh, H. P. & Espejo, M. R. (003). O ler regresso d rto-product estmto of fte populto me. The Sttstc, 5,

30 MODIFIED RATIO FOR ESTIMATION OF FINITE POPULATION MEAN Sgh, H. P., & Aghotr, N. (008). A geerl procedure of estmtg populto me usg ulr formto smple surves. Sttstcs Trsto, 9(), Sgh, H. P., & Solk, R. S. (0). A ltertve procedure for estmtg the populto me smple rdom smplg. Pkst Jourl of Sttstcs d Operto Reserch, 8(), 3-3. Sgh, H. P., & Tlor, R. (003). Use of kow correlto co-effcet estmtg the fte populto mes. Sttstcs Trsto, 6 (4), Sgh, H. P., & Tlor, R. (005). Estmto of fte populto me wth kow co-effcet of vrto of ulr. Sttstc, o LV,.3, pp Sgh, H. P., Tlor, R., Sgh. S., & Km, J. M. (008). A modfed estmtor of populto me usg power trsformto. Sttstcl Ppers, 49, Sgh, H. P., Tlor, R., Tlor, R. d Kkr, M. S. (004): A Improved Estmtor of Populto Me Usg Power Trsformto. Jourl of the Id Socet of Agrculturl Sttstcs, 58(), Ssod, B. V. S., & Dwved, V. K. (98). A modfed rto estmtor usg co-effcet of vrto of ulr vrble. Jourl of the Id Socet of Agrculturl Sttstcs, 33(), 3-8. Solk, R. S., Sgh, H. P., & Rthour, A. (0). A ltertve estmtor for estmtg the fte populto me usg ulr formto smple surves. ISRN Probblt d Sttstcs, Artcle ID 65768, 4 pp. Srvektrm, T. (980). A dul to rto estmtor smple surves. Bometrk, 37, Subrm, J., & Kumrpd, G. (0). Modfed rto estmtors usg kow med d co-effcet of kurtoss. Amerc Jourl of Mthemtcs d Sttstcs, (4), Subrm, J., & Kumrpd, G. (0b). Estmto of populto me usg kow med d co-effcet of skewess. Amerc Jourl of Mthemtcs d Sttstcs. (5), Subrm, J., & Kumrpd, G. (0c). Estmto of populto me usg co-effcet of vrto d med of ulr vrble, Itertol Jourl of Probblt d Sttstcs, (4), -8. Subrm, J., & Kumrpd, G. (03). A ew modfed rto estmtor for estmto of populto me whe med of the ulr 48

31 JAMBULINGAM SUBRAMANI vrble s kow. Pkst Jourl of Sttstcs d Operto Reserch, 9(), Subrm, J., & Kumrpd, G. (03b). Estmto of Populto Me Usg Kow orrelto o-effcet d Med. Jourl of Sttstcl Theor d Applctos (to pper). Tlor, R., & Shrm, B. (009). A modfed rto-cum-product estmtor of fte populto me usg kow coeffcet of vrto d coeffcet of kurtoss. Sttstcs Trsto-New Seres, 0(), 5-4. T, M. (965). omprso of some rto estmtors. Jourl of the Amerc Sttstcl Assocto, 60, Updh, L. N., & Sgh, H.P. (999). Use of trsformed ulr vrble estmtg the fte populto me. Bometrcl Jourl, V4(5), , Z., & T, B. (00). Rto method to the me estmto usg coeffcet of skewess of ulr vrble. IIA 00, Prt II, IS 06, pp

32 JAMBULINGAM SUBRAMANI Apped A A epresso for the bs d me squred error of the proposed estmtors p j ;,,3,,36 ws derved to frst order of ppromto wth the followg ottos: Let us defe e 0 d e. Further, ( + e0 ) d + e d from the defto of e 0 d e : Ee 0 ( ) [ 0] Ee [ ] E e 0 E e S S S E[ ee 0 ] ρ where, d ρ SS The bs of clss of proposed estmtors p ;,,3,,36 s derved d s: p ( + ( + α) λ );,,3,, α λ ( ) + + p ( + e + ( + α) λ ) ( ( α) λ) p + + e ( + ( + α) λ ) + ( + ( + α) λ ) p where p + e + + α λ ( p ) ( ) p 3 3 ( ) + e p e + e e + p p p p Neglectg the terms more th d order, results ( ( α) λ) 50

33 JAMBULINGAM SUBRAMANI ( ) ( ( 0) )( ) ( 0)( ) e + e p p p + e e + e p p p + e e + e p p p p + e 0 pe pe 0e+ pe + pe 0e Neglectg the terms more th 3 rd order, results p + e0 pe pe 0e+ pe p e 0 pe pe 0e+ pe Tkg epectto o both sdes, results E E e E e E e e + E e ( p ) 0 p p 0 p Bs ( p ) p E e p E e e 0 Bs( p ) p p ρ ( Bs p p p ρ ) Bs ( p ) ( ) where p p ρ p + + α λ ( ) The me squred error of the proposed estmtor p ;,,3,,36 to frst order of ppromto s derved d s: p ( + ( + α) λ );,,3,, α λ ( ) + + p ( + e + ( + α) λ ) ( ( α) λ) p + + e ( + ( + α) λ ) + ( + ( + α) λ ) p where p + e + + α λ ( p ) ( ( α) λ) 5

34 MODIFIED RATIO FOR ESTIMATION OF FINITE POPULATION MEAN + e p ( ) p 3 3 ( ) e + e e + p p p p Neglectg the terms more th st order, results e p ( p ) ( ( 0) )( p ) ( 0)( p ) + e e p + e e p + e e e e e e e e p 0 p p 0 p 0 p p 0 Squrg both sdes ( p ) ( e0 0 ) pe pe e Neglectg the terms more th d order, results e e e e p 0 p p 0 Tkg epectto o both sdes results : ( p ) + 0 p p 0 f ( ) ρ E E e E e E e e MSE p + p p ;,,3,,36 where p + + α λ Apped B ( ) The codtos for whch proposed estmtor p perform better th the SRSWOR smple me re derved d re gve below: MSE V For pj r 5

35 JAMBULINGAM SUBRAMANI ( ( ( + p ) ρ p S ( + ρ ) ( + p ) ρ p ρ p p p p ρ p ρ p ρ Tht s, MSE ( ) V ) Apped p p f ρ p r p The codtos for whch proposed estmtor p perform better th the usul rto estmtor re derved d re gve below: MSE MSE For ( pj ) ( R) ( ( + p ) ( ) ρ p + ρ ( + p ρ p ) ( + ρ ) ρ ρ p p ρ + ρ 0 p p ( p ) ρ p ( ) ( ) ρ odto : 0 ( ) + 0 p p 0 d + ρ 0 p p 53

36 MODIFIED RATIO FOR ESTIMATION OF FINITE POPULATION MEAN d + ρ p p ρ p d p ρ p odto : d ( + ) ρ ( ) 0 d + ρ 0 p p p p ρ p d p ρ p Tht s, MSE ( p ) MSE ( R) Apped D ether ρ (or) ρ p p The codtos for whch proposed estmtor p perform better th the estg modfed rto estmtors (lss ) re derved d re gve below: MSE MSE ;,,3,,36 For pj ( ( + p ) ( ) ρ p + ρ ( + p ρ p ) ( + ρ ) ρ ρ p p ρ + ρ 0 p p ( p ) 0 ρp p ( p )( ) 0 p + ρ odto : ( p ) ( ) p ρ 0 d

37 JAMBULINGAM SUBRAMANI d + ρ p p ρ p d p ρ p odto : d ( + ) ρ ( ) 0 d + ρ 0 p p p p ρ p d p ρ p MSE MSE ether Tht s, ( p ) ρ ρ p (or) p 55

Estimators when the Correlation Coefficient. is Negative

Estimators when the Correlation Coefficient. is Negative It J Cotemp Math Sceces, Vol 5, 00, o 3, 45-50 Estmators whe the Correlato Coeffcet s Negatve Sad Al Al-Hadhram College of Appled Sceces, Nzwa, Oma abur97@ahoocouk Abstract Rato estmators for the mea of

Διαβάστε περισσότερα

Vidyamandir Classes. Solutions to Revision Test Series - 2/ ACEG / IITJEE (Mathematics) = 2 centre = r. a

Vidyamandir Classes. Solutions to Revision Test Series - 2/ ACEG / IITJEE (Mathematics) = 2 centre = r. a Per -.(D).() Vdymndr lsses Solutons to evson est Seres - / EG / JEE - (Mthemtcs) Let nd re dmetrcl ends of crcle Let nd D re dmetrcl ends of crcle Hence mnmum dstnce s. y + 4 + 4 6 Let verte (h, k) then

Διαβάστε περισσότερα

Fourier Series. constant. The ;east value of T>0 is called the period of f(x). f(x) is well defined and single valued periodic function

Fourier Series. constant. The ;east value of T>0 is called the period of f(x). f(x) is well defined and single valued periodic function Fourier Series Periodic uctio A uctio is sid to hve period T i, T where T is ve costt. The ;est vlue o T> is clled the period o. Eg:- Cosider we kow tht, si si si si si... Etc > si hs the periods,,6,..

Διαβάστε περισσότερα

FORMULAE SHEET for STATISTICS II

FORMULAE SHEET for STATISTICS II Síscs II Degrees Ecoomcs d Mgeme FOMULAE SHEET for STATISTICS II EPECTED VALUE MOMENTS AND PAAMETES - Vr ( E( E( - Cov( E{ ( ( } E( E( E( µ ρ Cov( - E ( b E( be( Vr( b Vr( b Vr( bcov( THEOETICAL DISTIBUTIONS

Διαβάστε περισσότερα

Oscillatory integrals

Oscillatory integrals Oscilltory integrls Jordn Bell jordn.bell@gmil.com Deprtment of Mthemtics, University of Toronto August, 0 Oscilltory integrls Suppose tht Φ C R d ), ψ DR d ), nd tht Φ is rel-vlued. I : 0, ) C by Iλ)

Διαβάστε περισσότερα

PID.

PID. - :... PID. PID...PID :. [ ].[].. []. [] []......... // //. hrf.mehd@gml.com rfee@du.c.r ... [].... PID. ().... () u v (,, u (, (,, v (, (,, w (, w Z Z Z w w Z eor ctutor : ().. -.. [].. [] -. []. [] [].

Διαβάστε περισσότερα

Discrete Fourier Transform { } ( ) sin( ) Discrete Sine Transformation. n, n= 0,1,2,, when the function is odd, f (x) = f ( x) L L L N N.

Discrete Fourier Transform { } ( ) sin( ) Discrete Sine Transformation. n, n= 0,1,2,, when the function is odd, f (x) = f ( x) L L L N N. Dscrete Fourer Trasform Refereces:. umercal Aalyss of Spectral Methods: Theory ad Applcatos, Davd Gottleb ad S.A. Orszag, Soc. for Idust. App. Math. 977.. umercal smulato of compressble flows wth smple

Διαβάστε περισσότερα

SOME IDENTITIES FOR GENERALIZED FIBONACCI AND LUCAS SEQUENCES

SOME IDENTITIES FOR GENERALIZED FIBONACCI AND LUCAS SEQUENCES Hcettepe Jourl of Mthemtics d Sttistics Volume 4 4 013, 331 338 SOME IDENTITIES FOR GENERALIZED FIBONACCI AND LUCAS SEQUENCES Nuretti IRMAK, Murt ALP Received 14 : 06 : 01 : Accepted 18 : 0 : 013 Keywords:

Διαβάστε περισσότερα

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΗΜΥ ΔΙΑΚΡΙΤΗ ΑΝΑΛΥΣΗ ΚΑΙ ΔΟΜΕΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΗΜΥ Διακριτή Ανάλυση και Δομές Χειμερινό Εξάμηνο 6 Σειρά Ασκήσεων Ακέραιοι και Διαίρεση, Πρώτοι Αριθμοί, GCD/LC, Συστήματα

Διαβάστε περισσότερα

One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF

One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF One and two partcle densty matrces for sngle determnant HF wavefunctons One partcle densty matrx Gven the Hartree-Fock wavefuncton ψ (,,3,!, = Âϕ (ϕ (ϕ (3!ϕ ( 3 The electronc energy s ψ H ψ = ϕ ( f ( ϕ

Διαβάστε περισσότερα

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων. Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 2015 ιδάσκων : Α. Μουχτάρης εύτερη Σειρά Ασκήσεων Λύσεις Ασκηση 1. 1. Consder the gven expresson for R 1/2 : R 1/2

Διαβάστε περισσότερα

GCE Edexcel GCE in Mathematics Mathematical Formulae and Statistical Tables

GCE Edexcel GCE in Mathematics Mathematical Formulae and Statistical Tables GCE Edecel GCE Mthemtcs Mthemtcl Fomule d Sttstcl Tles Fo use Edecel Advced Susd GCE d Advced GCE emtos Coe Mthemtcs C C4 Futhe Pue Mthemtcs FP FP Mechcs M M5 Sttstcs S S4 Fo use fom Jue 009 Ths cop s

Διαβάστε περισσότερα

Theoretical Competition: 12 July 2011 Question 2 Page 1 of 2

Theoretical Competition: 12 July 2011 Question 2 Page 1 of 2 Theoretcl Competton: July Queston ge of. Ηλεκτρισμένη Σαπουνόφουσκα Θεωρήστε μια σφαιρική σαπουνόφουσκα ακτίνας. Ο αέρας στο εσωτερικό της σαπουνόφουσκας έχει πυκνότητα ρ και θερμοκρασία T. Η σαπουνόφουσκα

Διαβάστε περισσότερα

Homework for 1/27 Due 2/5

Homework for 1/27 Due 2/5 Name: ID: Homework for /7 Due /5. [ 8-3] I Example D of Sectio 8.4, the pdf of the populatio distributio is + αx x f(x α) =, α, otherwise ad the method of momets estimate was foud to be ˆα = 3X (where

Διαβάστε περισσότερα

Solutions 3. February 2, Apply composite Simpson s rule with m = 1, 2, 4 panels to approximate the integrals:

Solutions 3. February 2, Apply composite Simpson s rule with m = 1, 2, 4 panels to approximate the integrals: s Februry 2, 216 1 Exercise 5.2. Apply composite Simpson s rule with m = 1, 2, 4 pnels to pproximte the integrls: () x 2 dx = 1 π/2, (b) cos(x) dx = 1, (c) e x dx = e 1, nd report the errors. () f(x) =

Διαβάστε περισσότερα

Cytotoxicity of ionic liquids and precursor compounds towards human cell line HeLa

Cytotoxicity of ionic liquids and precursor compounds towards human cell line HeLa Cytotoxcty of oc lqud ad precuror compoud toward huma cell le HeLa Xuefeg Wag, a,b C. Adré Ohl, a Qghua Lu,* a Zhaofu Fe, c Ju Hu, b ad Paul J. Dyo c a School of Chemtry ad Chemcal Techology, Shagha Jao

Διαβάστε περισσότερα

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0. DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec

Διαβάστε περισσότερα

SHORT REVISION. FREE Download Study Package from website: 2 5π (c)sin 15 or sin = = cos 75 or cos ; 12

SHORT REVISION. FREE Download Study Package from website:  2 5π (c)sin 15 or sin = = cos 75 or cos ; 12 SHORT REVISION Trigoometric Rtios & Idetities BASIC TRIGONOMETRIC IDENTITIES : ()si θ + cos θ ; si θ ; cos θ θ R (b)sec θ t θ ; sec θ θ R (c)cosec θ cot θ ; cosec θ θ R IMPORTANT T RATIOS: ()si π 0 ; cos

Διαβάστε περισσότερα

Generalized Fibonacci-Like Polynomial and its. Determinantal Identities

Generalized Fibonacci-Like Polynomial and its. Determinantal Identities Int. J. Contemp. Math. Scences, Vol. 7, 01, no. 9, 1415-140 Generalzed Fbonacc-Le Polynomal and ts Determnantal Identtes V. K. Gupta 1, Yashwant K. Panwar and Ompraash Shwal 3 1 Department of Mathematcs,

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

On Hypersurface of Special Finsler Spaces. Admitting Metric Like Tensor Field

On Hypersurface of Special Finsler Spaces. Admitting Metric Like Tensor Field It J otem Mat Sceces Vo 7 0 o 9 99-98 O Hyersurface of Seca Fser Saces Admttg Metrc Lke Tesor Fed H Wosoug Deartmet of Matematcs Isamc Azad Uversty Babo Brac Ira md_vosog@yaoocom Abstract I te reset work

Διαβάστε περισσότερα

Multi-dimensional Central Limit Theorem

Multi-dimensional Central Limit Theorem Mult-dmensonal Central Lmt heorem Outlne () () () t as () + () + + () () () Consder a sequence of ndependent random proceses t, t, dentcal to some ( t). Assume t 0. Defne the sum process t t t t () t ();

Διαβάστε περισσότερα

Multi-dimensional Central Limit Theorem

Multi-dimensional Central Limit Theorem Mult-dmensonal Central Lmt heorem Outlne () () () t as () + () + + () () () Consder a sequence of ndependent random proceses t, t, dentcal to some ( t). Assume t 0. Defne the sum process t t t t () t tme

Διαβάστε περισσότερα

Quadruple Simultaneous Fourier series Equations Involving Heat Polynomials

Quadruple Simultaneous Fourier series Equations Involving Heat Polynomials Itertiol Jourl of Siee Reserh (IJSR ISSN (Olie: 39-764 Ie Coperius Vlue (3: 6.4 Ipt Ftor (3: 4.438 Quruple Siulteous Fourier series Equtios Ivolvig Het Poloils Guj Shukl, K.C. Tripthi. Dr. Aekr Istitute

Διαβάστε περισσότερα

A Class of Modified Ratio Estimators for Estimation of Population Variance

A Class of Modified Ratio Estimators for Estimation of Population Variance JAMSI, 11 (015, No. 1 91 A Class of Modified Ratio Estimators for Estimation of Population Variance J. SUBRAMANI AND G. KUMARAPANDIYAN Abstract In this paper we have proposed a class of modified ratio

Διαβάστε περισσότερα

α & β spatial orbitals in

α & β spatial orbitals in The atrx Hartree-Fock equatons The most common method of solvng the Hartree-Fock equatons f the spatal btals s to expand them n terms of known functons, { χ µ } µ= consder the spn-unrestrcted case. We

Διαβάστε περισσότερα

Self and Mutual Inductances for Fundamental Harmonic in Synchronous Machine with Round Rotor (Cont.) Double Layer Lap Winding on Stator

Self and Mutual Inductances for Fundamental Harmonic in Synchronous Machine with Round Rotor (Cont.) Double Layer Lap Winding on Stator Sel nd Mutul Inductnces or Fundmentl Hrmonc n Synchronous Mchne wth Round Rotor (Cont.) Double yer p Wndng on Sttor Round Rotor Feld Wndng (1) d xs s r n even r Dene S r s the number o rotor slots. Dene

Διαβάστε περισσότερα

On Inclusion Relation of Absolute Summability

On Inclusion Relation of Absolute Summability It. J. Cotemp. Math. Scieces, Vol. 5, 2010, o. 53, 2641-2646 O Iclusio Relatio of Absolute Summability Aradhaa Dutt Jauhari A/66 Suresh Sharma Nagar Bareilly UP) Idia-243006 aditya jauhari@rediffmail.com

Διαβάστε περισσότερα

[ ] ( l) ( ) Option 2. Option 3. Option 4. Correct Answer 1. Explanation n. Q. No to n terms = ( 10-1 ) 3

[ ] ( l) ( ) Option 2. Option 3. Option 4. Correct Answer 1. Explanation n. Q. No to n terms = ( 10-1 ) 3 Q. No. The fist d lst tem of A. P. e d l espetively. If s be the sum of ll tems of the A. P., the ommo diffeee is Optio l - s- l+ Optio Optio Optio 4 Coet Aswe ( ) l - s- - ( l ) l + s+ + ( l ) l + s-

Διαβάστε περισσότερα

ΠΤΥΧΙΑΚΗ/ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

ΠΤΥΧΙΑΚΗ/ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΤΥΧΙΑΚΗ/ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ «ΚΛΑ ΕΜΑ ΟΜΑ ΑΣ ΚΑΤΑ ΠΕΡΙΠΤΩΣΗ ΜΕΣΩ ΤΑΞΙΝΟΜΗΣΗΣ ΠΟΛΛΑΠΛΩΝ ΕΤΙΚΕΤΩΝ» (Instance-Based Ensemble

Διαβάστε περισσότερα

«Βιοδοκιμές αποτελεσματικότητας ουσιών φυτικής προέλευσης επί του δορυφόρου της πατάτας Leptinotarsa decemlineata (Say) (Coleoptera: Chrysomelidae)»

«Βιοδοκιμές αποτελεσματικότητας ουσιών φυτικής προέλευσης επί του δορυφόρου της πατάτας Leptinotarsa decemlineata (Say) (Coleoptera: Chrysomelidae)» ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΣΧΟΛΗ ΑΓΡΟΤΙΚΗΣ ΠΑΡΑΓΩΓΗΣ ΥΠΟΔΟΜΩΝ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΦΥΤΙΚΗΣ ΠΑΡΑΓΩΓΗΣ Εργαστήριο Γεωργικής Ζωολογίας & Εντομολογίας Αθήνα 2015 «Βιοδοκιμές αποτελεσματικότητας

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΕΚΘΕΤΙΚΗ ΟΙΚΟΓΕΝΕΙΑ ΚΑΤΑΝΟΜΩΝ ΛΕΜΟΝΙΑ ΓΕΩΡ. ΜΠΟΥΤΣΚΟΥ ΕΡΓΑΣΙΑ Που υποβλήθηκε στο Τμήμα Στατιστικής του Οικονομικού Πανεπιστημίου ΑΘηνών ως μέρος των απαιτήσεων

Διαβάστε περισσότερα

Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών. Εθνικό Μετσόβιο Πολυτεχνείο. Thales Workshop, 1-3 July 2015.

Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών. Εθνικό Μετσόβιο Πολυτεχνείο. Thales Workshop, 1-3 July 2015. Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μετσόβιο Πολυτεχνείο Thles Worksho, 1-3 July 015 The isomorhism function from S3(L(,1)) to the free module Boštjn Gbrovšek Άδεια Χρήσης Το παρόν

Διαβάστε περισσότερα

GCE Edexcel GCE in Mathematics Mathematical Formulae and Statistical Tables

GCE Edexcel GCE in Mathematics Mathematical Formulae and Statistical Tables GCE Edecel GCE Mthemtcs Mthemtcl Fomule d Sttstcl Tles Fo use Edecel Advced Susd GCE d Advced GCE emtos Coe Mthemtcs C C4 Futhe Pue Mthemtcs FP FP Mechcs M M5 Sttstcs S S4 Fo use fom Ju 009 UA08598 TABLE

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

Solutions_3. 1 Exercise Exercise January 26, 2017

Solutions_3. 1 Exercise Exercise January 26, 2017 s_3 Jnury 26, 217 1 Exercise 5.2.3 Apply composite Simpson s rule with m = 1, 2, 4 pnels to pproximte the integrls: () x 2 dx = 1 π/2 3, (b) cos(x) dx = 1, (c) e x dx = e 1, nd report the errors. () f(x)

Διαβάστε περισσότερα

( )( ) La Salle College Form Six Mock Examination 2013 Mathematics Compulsory Part Paper 2 Solution

( )( ) La Salle College Form Six Mock Examination 2013 Mathematics Compulsory Part Paper 2 Solution L Slle ollege Form Si Mock Emintion 0 Mthemtics ompulsor Prt Pper Solution 6 D 6 D 6 6 D D 7 D 7 7 7 8 8 8 8 D 9 9 D 9 D 9 D 5 0 5 0 5 0 5 0 D 5. = + + = + = = = + = =. D The selling price = $ ( 5 + 00)

Διαβάστε περισσότερα

Variance of Trait in an Inbred Population. Variance of Trait in an Inbred Population

Variance of Trait in an Inbred Population. Variance of Trait in an Inbred Population Varance of Trat n an Inbred Populaton Varance of Trat n an Inbred Populaton Varance of Trat n an Inbred Populaton Revew of Mean Trat Value n Inbred Populatons We showed n the last lecture that for a populaton

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

Examples of Cost and Production Functions

Examples of Cost and Production Functions Dvso of the Humates ad Socal Sceces Examples of Cost ad Producto Fuctos KC Border October 200 v 20605::004 These otes sho ho you ca use the frst order codtos for cost mmzato to actually solve for cost

Διαβάστε περισσότερα

INTEGRAL INEQUALITY REGARDING r-convex AND

INTEGRAL INEQUALITY REGARDING r-convex AND J Koren Mth Soc 47, No, pp 373 383 DOI 434/JKMS47373 INTEGRAL INEQUALITY REGARDING r-convex AND r-concave FUNCTIONS WdAllh T Sulimn Astrct New integrl inequlities concerning r-conve nd r-concve functions

Διαβάστε περισσότερα

Μέθοδος Προσδιορισμού του Ισοδύναμου Ατομικού, από το Λόγο των Εντάσεων σύμφωνα και ασύμφωνα Σκεδαζόμενων Ακτινών-γ

Μέθοδος Προσδιορισμού του Ισοδύναμου Ατομικού, από το Λόγο των Εντάσεων σύμφωνα και ασύμφωνα Σκεδαζόμενων Ακτινών-γ Τεχν. Χρον. Επιστ. Έκδ. ΤΕΕ, V, τεύχ. - 4, Tech. hro. Sc. J. TG, V, No - 9 Μέθοδος Προσδιορισμού του Ισοδύναμου Ατομικού Αριθμού, από το Λόγο των Εντάσεων σύμφωνα και ασύμφωνα Σκεδαζόμενων Ακτινών-γ Κ.

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΔΙΑΣΠΟΡΑΣ,

ΑΝΑΛΥΣΗ ΔΙΑΣΠΟΡΑΣ, ΑΝΑΛΥΣΗ ΔΙΑΣΠΟΡΑΣ, --0 Άσκηση. Τα παρακάτω δεδομένα προέρχονται από μετρήσεις του δείκτη του σακχάρου στο αίμα 0 ποντικών που εξετάσθηκαν: ) υπό κανονικές συνθήκες, ) μετά από ένεση ptre, ) μετά από ένεση

Διαβάστε περισσότερα

CS 1675 Introduction to Machine Learning Lecture 7. Density estimation. Milos Hauskrecht 5329 Sennott Square

CS 1675 Introduction to Machine Learning Lecture 7. Density estimation. Milos Hauskrecht 5329 Sennott Square CS 675 Itroducto to Mache Learg Lecture 7 esty estmato Mlos Hausrecht mlos@cs.tt.edu 539 Seott Square ata: esty estmato {.. } a vector of attrbute values Objectve: estmate the model of the uderlyg robablty

Διαβάστε περισσότερα

Polynomial. Nature of roots. Types of quadratic equation. Relations between roots and coefficients. Solution of quadratic equation

Polynomial. Nature of roots. Types of quadratic equation. Relations between roots and coefficients. Solution of quadratic equation Qudrti Equtios d Iequtios Polyomil Algeri epressio otiig my terms of the form, eig o-egtive iteger is lled polyomil ie, f ( + + + + + +, where is vrile,,,, re ostts d Emple : + 7 + 5 +, + + 5 () Rel polyomil

Διαβάστε περισσότερα

If ABC is any oblique triangle with sides a, b, and c, the following equations are valid. 2bc. (a) a 2 b 2 c 2 2bc cos A or cos A b2 c 2 a 2.

If ABC is any oblique triangle with sides a, b, and c, the following equations are valid. 2bc. (a) a 2 b 2 c 2 2bc cos A or cos A b2 c 2 a 2. etion 6. Lw of osines 59 etion 6. Lw of osines If is ny oblique tringle with sides, b, nd, the following equtions re vlid. () b b os or os b b (b) b os or os b () b b os or os b b You should be ble to

Διαβάστε περισσότερα

To find the relationships between the coefficients in the original equation and the roots, we have to use a different technique.

To find the relationships between the coefficients in the original equation and the roots, we have to use a different technique. Further Conepts for Avne Mthemtis - FP1 Unit Ientities n Roots of Equtions Cui, Qurti n Quinti Equtions Cui Equtions The three roots of the ui eqution x + x + x + 0 re lle α, β n γ (lph, et n gmm). The

Διαβάστε περισσότερα

Edexcel FP3. Hyperbolic Functions. PhysicsAndMathsTutor.com

Edexcel FP3. Hyperbolic Functions. PhysicsAndMathsTutor.com Eeel FP Hpeoli Futios PhsisAMthsTuto.om . Solve the equtio Leve lk 7seh th 5 Give ou swes i the fom l whee is tiol ume. 5 7 Sih 5 Cosh osh 7 Sih 5osh's 7 Ee e I E e e 4 e te 5e 55 O 5e 55 te e 4 O Ge 45

Διαβάστε περισσότερα

Μοντζλα ςταθερών και τυχαίων επιδράςεων. Κατςιλζροσ Αναςτάςιοσ

Μοντζλα ςταθερών και τυχαίων επιδράςεων. Κατςιλζροσ Αναςτάςιοσ Μοντζλα ταθρών και τυχαίων πιδράων Κατιλζροσ Ανατάιοσ 08 Ανάλυη μοντζλου ταθρών πιδράων μ ζνα παράγοντα Αν ο ρυνθτισ πιλζγι να χρθιμοποιιι το πίραμα του κάποια υγκκριμζνα πίπδα νόσ παράγοντα και τα υμπράματα

Διαβάστε περισσότερα

Some Geometric Properties of a Class of Univalent. Functions with Negative Coefficients Defined by. Hadamard Product with Fractional Calculus I

Some Geometric Properties of a Class of Univalent. Functions with Negative Coefficients Defined by. Hadamard Product with Fractional Calculus I Itrtol Mthtcl Foru Vol 6 0 o 64 379-388 So otrc Proprts o Clss o Uvlt Fuctos wth Ntv Cocts Dd y Hdrd Product wth Frctol Clculus I Huss Jr Adul Huss Dprtt o Mthtcs d Coputr pplctos Coll o Sccs Uvrsty o

Διαβάστε περισσότερα

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11 Potential Dividers 46 minutes 46 marks Page 1 of 11 Q1. In the circuit shown in the figure below, the battery, of negligible internal resistance, has an emf of 30 V. The pd across the lamp is 6.0 V and

Διαβάστε περισσότερα

n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1)

n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1) 8 Higher Derivative of the Product of Two Fuctios 8. Leibiz Rule about the Higher Order Differetiatio Theorem 8.. (Leibiz) Whe fuctios f ad g f g are times differetiable, the followig epressio holds. r

Διαβάστε περισσότερα

Enzymatic Synthesis of Dithiolopyrrolone Antibiotics Using Cell-Free Extract of Saccharothrix

Enzymatic Synthesis of Dithiolopyrrolone Antibiotics Using Cell-Free Extract of Saccharothrix Enzymatic Synthesis of Dithiolopyrrolone Antibiotics Using Cell-Free Extract of Saccharothrix algeriensis NRRL B-24137 and Biochemical Characterization of Two Pyrrothine N-Acyltransferases in This Extract.

Διαβάστε περισσότερα

Homomorphism of Intuitionistic Fuzzy Groups

Homomorphism of Intuitionistic Fuzzy Groups International Mathematical Forum, Vol. 6, 20, no. 64, 369-378 Homomorphism o Intuitionistic Fuzz Groups P. K. Sharma Department o Mathematics, D..V. College Jalandhar Cit, Punjab, India pksharma@davjalandhar.com

Διαβάστε περισσότερα

1. For each of the following power series, find the interval of convergence and the radius of convergence:

1. For each of the following power series, find the interval of convergence and the radius of convergence: Math 6 Practice Problems Solutios Power Series ad Taylor Series 1. For each of the followig power series, fid the iterval of covergece ad the radius of covergece: (a ( 1 x Notice that = ( 1 +1 ( x +1.

Διαβάστε περισσότερα

Article Multivariate Extended Gamma Distribution

Article Multivariate Extended Gamma Distribution axoms Artcle Multvarate Exteded Gamma Dstrbuto Dhaya P. Joseph Departmet of Statstcs, Kurakose Elas College, Maaam, Kottayam, Kerala 686561, Ida; dhayapj@gmal.com; Tel.: +91-9400-733-065 Academc Edtor:

Διαβάστε περισσότερα

Lens Compatibility Chart 2016

Lens Compatibility Chart 2016 ns patblt hat Md M E gtal L aeas (as f Mach ) L aeas gtal (ens) at x p t p ac a a e n p pt e. P. P P / f f u.. s ds h u u c Mc f l nl t u E E n f un M nn a / Z. / Z.. / U. P U. P P.. / O U. U. / P. / P.

Διαβάστε περισσότερα

1, +,*+* + +-,, -*, * : Key words: global warming, snowfall, snowmelt, snow water equivalent. Ohmura,,**0,**

1, +,*+* + +-,, -*, * : Key words: global warming, snowfall, snowmelt, snow water equivalent. Ohmura,,**0,** 1, +,*+* + +-,, + : /+* m,1+ m, -*, * +3132* : Key words: global warming, snowfall, snowmelt, snow water equivalent + IPCC,,**+ Inoue and,**2 Yokoyama,**- Ohmura,,**0,**0 +331 +332 + +2- **+, ++,* 14 1,

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΤΡΟΦΙΜΩΝ ΚΑΙ ΔΙΑΤΡΟΦΗΣ ΤΟΥ ΑΝΘΡΩΠΟΥ ΤΜΗΜΑ ΦΥΤΙΚΗΣ ΠΑΡΑΓΩΓΗΣ ΔΠΜΣ ΑΜΠΕΛΟΥΡΓΙΑ- ΟΙΝΟΛΟΓΙΑ

ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΤΡΟΦΙΜΩΝ ΚΑΙ ΔΙΑΤΡΟΦΗΣ ΤΟΥ ΑΝΘΡΩΠΟΥ ΤΜΗΜΑ ΦΥΤΙΚΗΣ ΠΑΡΑΓΩΓΗΣ ΔΠΜΣ ΑΜΠΕΛΟΥΡΓΙΑ- ΟΙΝΟΛΟΓΙΑ ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΤΡΟΦΙΜΩΝ ΚΑΙ ΔΙΑΤΡΟΦΗΣ ΤΟΥ ΑΝΘΡΩΠΟΥ ΤΜΗΜΑ ΦΥΤΙΚΗΣ ΠΑΡΑΓΩΓΗΣ ΔΠΜΣ ΑΜΠΕΛΟΥΡΓΙΑ- ΟΙΝΟΛΟΓΙΑ Επίδραση άρδευσης και διαφυλλικής λίπανσης με απενεργοποιημένους ζυμομύκητες

Διαβάστε περισσότερα

Review-2 and Practice problems. sin 2 (x) cos 2 (x)(sin(x)dx) (1 cos 2 (x)) cos 2 (x)(sin(x)dx) let u = cos(x), du = sin(x)dx. = (1 u 2 )u 2 ( du)

Review-2 and Practice problems. sin 2 (x) cos 2 (x)(sin(x)dx) (1 cos 2 (x)) cos 2 (x)(sin(x)dx) let u = cos(x), du = sin(x)dx. = (1 u 2 )u 2 ( du) . Trigonometric Integrls. ( sin m (x cos n (x Cse-: m is odd let u cos(x Exmple: sin 3 (x cos (x Review- nd Prctice problems sin 3 (x cos (x Cse-: n is odd let u sin(x Exmple: cos 5 (x cos 5 (x sin (x

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

. (RCA) 1. Bela, Balassa. 2. Thomas L.Vollrath. 3. Revealed Comparative Advantage.

. (RCA)   1. Bela, Balassa. 2. Thomas L.Vollrath. 3. Revealed Comparative Advantage. - / / / // : // :.... (RCA).. : e-ml: mhdv@ut.c.r 1. Bel, Blss. 2. Thoms L.Vollrth. 3. Reveled Comprtve Advntge. - .................. /.............. :. ( ) ( )..... .. -....... :. :. ) (...... /.. :.

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

Higher Derivative Gravity Theories

Higher Derivative Gravity Theories Higher Derivative Gravity Theories Black Holes in AdS space-times James Mashiyane Supervisor: Prof Kevin Goldstein University of the Witwatersrand Second Mandelstam, 20 January 2018 James Mashiyane WITS)

Διαβάστε περισσότερα

Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03)..

Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03).. Supplemental Material (not for publication) Persistent vs. Permanent Income Shocks in the Buffer-Stock Model Jeppe Druedahl Thomas H. Jørgensen May, A Additional Figures and Tables Figure A.: Wealth and

Διαβάστε περισσότερα

PhysicsAndMathsTutor.com

PhysicsAndMathsTutor.com PhysicsAMthsTuto.com . Leve lk A O c C B Figue The poits A, B C hve positio vectos, c espectively, eltive to fie oigi O, s show i Figue. It is give tht i j, i j k c i j k. Clculte () c, ().( c), (c) the

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΨΥΧΟΛΟΓΙΚΕΣ ΕΠΙΠΤΩΣΕΙΣ ΣΕ ΓΥΝΑΙΚΕΣ ΜΕΤΑ ΑΠΟ ΜΑΣΤΕΚΤΟΜΗ ΓΕΩΡΓΙΑ ΤΡΙΣΟΚΚΑ Λευκωσία 2012 ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ

Διαβάστε περισσότερα

HIV HIV HIV HIV AIDS 3 :.1 /-,**1 +332

HIV HIV HIV HIV AIDS 3 :.1 /-,**1 +332 ,**1 The Japanese Society for AIDS Research The Journal of AIDS Research +,, +,, +,, + -. / 0 1 +, -. / 0 1 : :,**- +,**. 1..+ - : +** 22 HIV AIDS HIV HIV AIDS : HIV AIDS HIV :HIV AIDS 3 :.1 /-,**1 HIV

Διαβάστε περισσότερα

w o = R 1 p. (1) R = p =. = 1

w o = R 1 p. (1) R = p =. = 1 Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

MSM Men who have Sex with Men HIV -

MSM Men who have Sex with Men HIV - ,**, The Japanese Society for AIDS Research The Journal of AIDS Research HIV,0 + + + + +,,, +, : HIV : +322,*** HIV,0,, :., n,0,,. + 2 2, CD. +3-ml n,, AIDS 3 ARC 3 +* 1. A, MSM Men who have Sex with Men

Διαβάστε περισσότερα

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018 Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals

Διαβάστε περισσότερα

A Further Generalized Lagrangian Density and Its Special Cases

A Further Generalized Lagrangian Density and Its Special Cases A Furter eerlzed r Desty d Its Specl Cses F-Pe Ce Deprtet of Pyscs Dl Uversty of ecoloy Dl 64 C E-l: cefp@dluteduc Abstrct By surz d eted te r destes of te eerl reltvty d te Kbble s ue teory of rvtto furter

Διαβάστε περισσότερα

Edexcel FP3. Hyperbolic Functions. PhysicsAndMathsTutor.com

Edexcel FP3. Hyperbolic Functions. PhysicsAndMathsTutor.com Eecel FP Hpeolic Fuctios PhsicsAMthsTuto.com . Solve the equtio Leve lk 7sech th 5 Give ou swes i the fom l whee is tiol ume. 5 7 Sih 5 Cosh cosh c 7 Sih 5cosh's 7 Ece e I E e e 4 e te 5e 55 O 5e 55 te

Διαβάστε περισσότερα

«ΑΝΑΠΣΤΞΖ ΓΠ ΚΑΗ ΥΩΡΗΚΖ ΑΝΑΛΤΖ ΜΔΣΔΩΡΟΛΟΓΗΚΩΝ ΓΔΓΟΜΔΝΩΝ ΣΟΝ ΔΛΛΑΓΗΚΟ ΥΩΡΟ»

«ΑΝΑΠΣΤΞΖ ΓΠ ΚΑΗ ΥΩΡΗΚΖ ΑΝΑΛΤΖ ΜΔΣΔΩΡΟΛΟΓΗΚΩΝ ΓΔΓΟΜΔΝΩΝ ΣΟΝ ΔΛΛΑΓΗΚΟ ΥΩΡΟ» ΓΔΩΠΟΝΗΚΟ ΠΑΝΔΠΗΣΖΜΗΟ ΑΘΖΝΩΝ ΣΜΗΜΑ ΑΞΙΟΠΟΙΗΗ ΦΤΙΚΩΝ ΠΟΡΩΝ & ΓΕΩΡΓΙΚΗ ΜΗΥΑΝΙΚΗ ΣΟΜΕΑ ΕΔΑΦΟΛΟΓΙΑ ΚΑΙ ΓΕΩΡΓΙΚΗ ΥΗΜΕΙΑ ΕΙΔΙΚΕΤΗ: ΕΦΑΡΜΟΓΕ ΣΗ ΓΕΩΠΛΗΡΟΦΟΡΙΚΗ ΣΟΤ ΦΤΙΚΟΤ ΠΟΡΟΤ «ΑΝΑΠΣΤΞΖ ΓΠ ΚΑΗ ΥΩΡΗΚΖ ΑΝΑΛΤΖ ΜΔΣΔΩΡΟΛΟΓΗΚΩΝ

Διαβάστε περισσότερα

On Generating Relations of Some Triple. Hypergeometric Functions

On Generating Relations of Some Triple. Hypergeometric Functions It. Joural of Math. Aalysis, Vol. 5,, o., 5 - O Geeratig Relatios of Some Triple Hypergeometric Fuctios Fadhle B. F. Mohse ad Gamal A. Qashash Departmet of Mathematics, Faculty of Educatio Zigibar Ade

Διαβάστε περισσότερα

6.3 Forecasting ARMA processes

6.3 Forecasting ARMA processes 122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear

Διαβάστε περισσότερα

Introduction to Numerical Analysis. Marek Kręglewski

Introduction to Numerical Analysis. Marek Kręglewski Iroduo o Numerl Alss Mre Kręglews Course oe Wee Wee Wee Wee Wee 5 Wee 6 Wee 7 Wee 8 Wee 9 Wee Wee Wee Wee Wee Wee 5 Soluos o oler equos oe vrle: e seo lgorm. Derel lulus. Te Newo-Rpso meod, e se meod.

Διαβάστε περισσότερα

Universal Levenshtein Automata. Building and Properties

Universal Levenshtein Automata. Building and Properties Sofa Uversty St. Klmet Ohrdsk Faculty of Mathematcs ad Iformatcs Departmet of Mathematcal Logc ad Applcatos Uversal Leveshte Automata. Buldg ad Propertes A thess submtted for the degree of Master of Computer

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

VBA Microsoft Excel. J. Comput. Chem. Jpn., Vol. 5, No. 1, pp (2006)

VBA Microsoft Excel. J. Comput. Chem. Jpn., Vol. 5, No. 1, pp (2006) J. Comput. Chem. Jpn., Vol. 5, No. 1, pp. 29 38 (2006) Microsoft Excel, 184-8588 2-24-16 e-mail: yosimura@cc.tuat.ac.jp (Received: July 28, 2005; Accepted for publication: October 24, 2005; Published on

Διαβάστε περισσότερα

Econ Spring 2004 Instructor: Prof. Kiefer Solution to Problem set # 5. γ (0)

Econ Spring 2004 Instructor: Prof. Kiefer Solution to Problem set # 5. γ (0) Cornell University Department of Economics Econ 60 - Spring 004 Instructor: Prof. Kiefer Solution to Problem set # 5. Autocorrelation function is defined as ρ h = γ h γ 0 where γ h =Cov X t,x t h =E[X

Διαβάστε περισσότερα

Exam Statistics 6 th September 2017 Solution

Exam Statistics 6 th September 2017 Solution Exam Statstcs 6 th September 17 Soluto Maura Mezzett Exercse 1 Let (X 1,..., X be a raom sample of... raom varables. Let f θ (x be the esty fucto. Let ˆθ be the MLE of θ, θ be the true parameter, L(θ be

Διαβάστε περισσότερα

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD CHAPTER FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD EXERCISE 36 Page 66. Determine the Fourier series for the periodic function: f(x), when x +, when x which is periodic outside this rge of period.

Διαβάστε περισσότερα

Latent variable models Variational approximations.

Latent variable models Variational approximations. CS 3750 Mache Learg Lectre 9 Latet varable moel Varatoal appromato. Mlo arecht mlo@c.ptt.e 539 Seott Sqare CS 750 Mache Learg Cooperatve vector qatzer Latet varable : meoalty bary var Oberve varable :

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

[1] P Q. Fig. 3.1

[1] P Q. Fig. 3.1 1 (a) Define resistance....... [1] (b) The smallest conductor within a computer processing chip can be represented as a rectangular block that is one atom high, four atoms wide and twenty atoms long. One

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

Computing the Gradient

Computing the Gradient FMIA F. Moukalled L. Mangani M. Darwish An Advanced Introduction with OpenFOAM and Matlab This textbook explores both the theoretical oundation o the Finite Volume Method (FVM) and its applications in

Διαβάστε περισσότερα

Perturbation Series in Light-Cone Diagrams of Green Function of String Field

Perturbation Series in Light-Cone Diagrams of Green Function of String Field Petuto Sees ht-coe Dms of ee Fucto of St Fel Am-l Te-So Km Chol-M So- m Detmet of Eey Scece Km l Su Uvesty Pyoy DPR Koe E-y Km l Su Uvesty Pyoy DPR Koe Detmet of Physcs Km l Su Uvesty Pyoy DPR Koe Astct

Διαβάστε περισσότερα

Προετοιμάζοντας τον μελλοντικό δάσκαλο για το ψηφιακό σχολείο

Προετοιμάζοντας τον μελλοντικό δάσκαλο για το ψηφιακό σχολείο 6 ο Πανελλήνιο Συνέδριο «Διδακτική της Πληροφορικής» Φλώρινα, 20-22 Απριλίου 2012 Προετοιμάζοντας τον μελλοντικό δάσκαλο για το ψηφιακό σχολείο Δ. Πλατή 1, Ι. Μπέλλου 2, Τ. Α. Μικρόπουλος 1 1 Παιδαγωγικό

Διαβάστε περισσότερα

Differential equations

Differential equations Differential equations Differential equations: An equation inoling one dependent ariable and its deriaties w. r. t one or more independent ariables is called a differential equation. Order of differential

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

Poularikas A. D. Distributions, Delta Function The Handbook of Formulas and Tables for Signal Processing. Ed. Alexander D. Poularikas Boca Raton: CRC

Poularikas A. D. Distributions, Delta Function The Handbook of Formulas and Tables for Signal Processing. Ed. Alexander D. Poularikas Boca Raton: CRC Pulrik A. D. Diribui, Del Fuci The Hbk f Frmul Tble fr Sigl Prceig. E. Aleer D. Pulrik Bc R: CRC Pre LLC, 999 5 Diribui, Del Fuci 5. Te Fuci 5. Diribui 5.3 Oe-Dimeil Del Fuci 5.4 Emple 5.5 Tw-Dimeil Del

Διαβάστε περισσότερα

Commutative Monoids in Intuitionistic Fuzzy Sets

Commutative Monoids in Intuitionistic Fuzzy Sets Commutative Monoids in Intuitionistic Fuzzy Sets S K Mala #1, Dr. MM Shanmugapriya *2 1 PhD Scholar in Mathematics, Karpagam University, Coimbatore, Tamilnadu- 641021 Assistant Professor of Mathematics,

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

Οικονοµετρική ιερεύνηση των Ελλειµµάτων της Ελληνικής Οικονοµίας

Οικονοµετρική ιερεύνηση των Ελλειµµάτων της Ελληνικής Οικονοµίας Οικονοµετρική ιερεύνηση των Ελλειµµάτων της Ελληνικής Οικονοµίας του Παντελίδη Παναγιώτη ιδακτορική ιατριβή η οποία υποβλήθηκε στο Τµήµα Εφαρµοσµένης Πληροφορικής του Πανεπιστηµίου Μακεδονίας Οικονοµικών

Διαβάστε περισσότερα