The Laplacian in Spherical Polar Coordinates

Σχετικά έγγραφα
Laplace s Equation in Spherical Polar Coördinates

e t e r Cylindrical and Spherical Coordinate Representation of grad, div, curl and 2

derivation of the Laplacian from rectangular to spherical coordinates

21. Stresses Around a Hole (I) 21. Stresses Around a Hole (I) I Main Topics

4.2 Differential Equations in Polar Coordinates

ANTENNAS and WAVE PROPAGATION. Solution Manual

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines

Areas and Lengths in Polar Coordinates

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Areas and Lengths in Polar Coordinates

Curvilinear Systems of Coordinates

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

dx x ψ, we should find a similar expression for rθφ L ψ. From L = R P and our knowledge of momentum operators, it follows that + e y z d

Example 1: THE ELECTRIC DIPOLE

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Fundamental Equations of Fluid Mechanics

Orbital angular momentum and the spherical harmonics

Section 8.3 Trigonometric Equations

Section 9.2 Polar Equations and Graphs

Homework 8 Model Solution Section

Matrix Hartree-Fock Equations for a Closed Shell System

Tutorial Note - Week 09 - Solution

Analytical Expression for Hessian

Answer sheet: Third Midterm for Math 2339

Solutions Ph 236a Week 2

Spherical Coordinates

(a,b) Let s review the general definitions of trig functions first. (See back cover of your book) sin θ = b/r cos θ = a/r tan θ = b/a, a 0

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Example Sheet 3 Solutions

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Second Order Partial Differential Equations

VEKTORANALYS. CURVILINEAR COORDINATES (kroklinjiga koordinatsytem) Kursvecka 4. Kapitel 10 Sidor

2 Composition. Invertible Mappings

Orbital angular momentum and the spherical harmonics

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Approximation of distance between locations on earth given by latitude and longitude

Differential equations

Section 7.6 Double and Half Angle Formulas

Section 8.2 Graphs of Polar Equations

Oscillating dipole system Suppose we have two small spheres separated by a distance s. The charge on one sphere changes with time and is described by

Math221: HW# 1 solutions

Homework 3 Solutions

1 String with massive end-points

Statistical Inference I Locally most powerful tests

Solutions to Exercise Sheet 5

Course Reader for CHEN 7100/7106. Transport Phenomena I

Strain and stress tensors in spherical coordinates

Variational Wavefunction for the Helium Atom

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Matrices and Determinants

r = x 2 + y 2 and h = z y = r sin sin ϕ

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

The Simply Typed Lambda Calculus

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Problem 1.1 For y = a + bx, y = 4 when x = 0, hence a = 4. When x increases by 4, y increases by 4b, hence b = 5 and y = 4 + 5x.

PARTIAL NOTES for 6.1 Trigonometric Identities

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Srednicki Chapter 55

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Inverse trigonometric functions & General Solution of Trigonometric Equations

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

D Alembert s Solution to the Wave Equation

6.3 Forecasting ARMA processes

Parametrized Surfaces

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

Lecture 26: Circular domains

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

CRASH COURSE IN PRECALCULUS

MathCity.org Merging man and maths

(As on April 16, 2002 no changes since Dec 24.)

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

1 3D Helmholtz Equation

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

AREAS AND LENGTHS IN POLAR COORDINATES. 25. Find the area inside the larger loop and outside the smaller loop

4.6 Autoregressive Moving Average Model ARMA(1,1)

( y) Partial Differential Equations

Forced Pendulum Numerical approach

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

General Relativity (225A) Fall 2013 Assignment 5 Solutions

Geodesic Equations for the Wormhole Metric

Problems in curvilinear coordinates

On a four-dimensional hyperbolic manifold with finite volume

Chapter 7a. Elements of Elasticity, Thermal Stresses

Similarly, we may define hyperbolic functions cosh α and sinh α from the unit hyperbola

Tutorial problem set 6,

Uniform Convergence of Fourier Series Michael Taylor

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

Derivation of Optical-Bloch Equations

EE512: Error Control Coding

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

Theoretical Competition: 12 July 2011 Question 1 Page 1 of 2

Reminders: linear functions

Transcript:

Univesity of Connecticut DigitalCommons@UConn Chemisty Education Mateials Depatment of Chemisty -6-007 The Laplacian in Spheical Pola Coodinates Cal W. David Univesity of Connecticut, Cal.David@uconn.edu Recommended Citation David, Cal W., "The Laplacian in Spheical Pola Coodinates" 007. Chemisty Education Mateials. Pape 34. http://digitalcommons.uconn.edu/chem_educ/34 This Aticle is bought to you fo fee open access by the Depatment of Chemisty at DigitalCommons@UConn. It has been accepted fo inclusion in Chemisty Education Mateials by an authoized administato of DigitalCommons@UConn. Fo moe infomation, please contact digitalcommons@uconn.edu.

The Laplacian in Spheical Pola Coödinates C. W. David Depatment of Chemisty Univesity of Connecticut Stos, Connecticut 0669-3060 Dated: Febuay 6, 007 I. SYNOPSIS In teating the Hydogen Atom s electon quantum mechanically, we nomally convet the Hamiltonian fom its Catesian to its Spheical Pola fom, since the poblem is vaiable sepaable in the latte s coödinate system. This eading teats the bute-foce method of effecting the tansfomation of the kinetic enegy opeato, nomally called the Laplacian, fom one to the othe coödinate systems. II. PRELIMINARY DEFINITIONS We stat with the pimitive definitions x = sin θ cos φ z = cos θ thei inveses = x y z θ = cos 1 z = z cos1 x y z φ = tan 1 y x y = sin θ sin φ attempt to wite using the chain ule x = x θ,φ θ x θ,φ φ x φ,θ y = z = y θ,φ z θ,φ θ y θ,φ θ z θ,φ φ y φ,θ φ z φ,θ III. PRELIMINARY PARTIAL DERIVATIVES The needed above patial deivatives ae: = sin θ cos φ 3.1 x Typeset by REVTEX = sin θ sin φ 3. y = cos θ 3.3 z we have as a stating point fo doing the θ tems,

d cos θ = sin θdθ = dz 1 z d = dz 1 z d = dz z 1 xdx ydy zdz 3.4 so that, fo example when dy = dz = 0 we have which is sin θdθ = cos θ so that sin θdθ = z x dx sin θ cos φdx = 1 cos ϑ 3 dz θ cos θ cos φ = x θ cos θ sin φ = y but, fo the z-equation, we have which is so one has sin θdθ = sin θdθ = sin θdθ = dz z 1 zdz 1 z 3 dz = z 3 dz 1 z 3 dz = sin θ 3 dz θ = sin θ z Next, we have as an example tan φ = sin φ cos φ = tan1 y x 3.5 3.6 3.7 taking the patial deivatives on both sides, we obtain so 1 dsin φ sin φ cos ϑ cos dcos φ φ 1 sin φ cos dφ = dy φ x y x dx o 1 cos dφ = dy φ x y x dx so, afte multiplying acoss by cos φ leads to at constant x at constant y IV. φ = cos φ y sin θ φ = sin φ x sin θ 3.8 3.9 φ = 0 3.10 z THE FIRST PARTIAL DERIVATIVE TERMS Given these esults above we wite z = cos θ y = sin θ sin φ x = sin θ cos φ sin θ cos θ sin φ cos θ cos φ θ 4.1 cos φ θ sin θ φ 4. θ sin φ sin θ φ 4.3 V. GATHERING TERMS TO FORM THE LAPLACIAN Fom Equation 4.1 we fom

while fom Equation 4. we obtain z = cos θ [ cos θ sin θ θ sin θ cos θ sin θ θ θ y = sin θ sin φ cos θ sin φ [ sin θ sin φ cos θ sin φ [sin θ sin φ cos θ sin φ θ cos φ [sin θ sin φ cos θ sin φ sin θ φ fom Equation 4.3 we obtain [ sin θ cos φ x = sin θ cos φ cos θ cos φ cos θ cos φ [sin θ cos φ cos θ cos φ θ sin φ [sin θ cos φ cos θ cos φ sin θ φ θ cos φ sin θ φ θ cos φ sin θ θ cos φ sin θ θ sin φ sin θ θ sin φ sin θ θ sin φ sin θ φ φ φ φ φ 5.1 5. 5.3 Exping, we have while fo the y-equation we have z = cos θ cos θ sin θ sin θ cos θ θ θ sin θ sin θ cos θ sin θ cos θ sin θ θ θ θ 5.4 y = sin θ sin φ 5.5 [ cos θ sin φ cos θ sin φ sin θ sin φ θ 5.6 θ [ sin θ sin φ cos φ cos φ sin θ φ 5.7 sin θ φ cos θ sin φ [cos θ sin φ sin θ sin φ 5.8 θ [ cos θ sin φ sin θ sin φ cos θ sin φ θ θ 5.9 [ cos θ sin φ cos φ cos θ cos φ sin θ φ 5.10 sin θ φθ cos φ [sin θ cos φ sin θ sin φ 5.11 sin θ φ [ cos φ cos θ cos φ cos θ sin φ sin θ θ 5.1 θφ [ cos φ sin φ cos φ cos φ sin θ sin θ φ sin θ φ 5.13

finally = sin θ cos φ sin θ cos φ x [ cos θ cos φ cos θ cos φ sin θ cos φ θ θ [ sin φ sin φ sin θ cos φ sin θ φ sin θ φ cos θ cos φ [cos θ cos φ sin θ cos φ θ [ cos θ cos φ sin θ cos φ cos θ cos φ θ θ [ cos θ cos φ sin φ sin φ sin θ φ sin θ φθ sin φ [sin θ sin φ sin θ cos φ sin θ φ [ sin φ cos θ sin φ cos θ cos φ sin θ θ θφ [ sin φ cos φ sin φ sin θ sin θ φ sin θ φ 5.14 5.15 5.16 5.17 5.18 5.19 5.0 5.1 Now, one by one, we exp completely each of these thee tems. We have, fo the y-equation: z = cos θ 5. cos θ sin θ 5.3 θ sin θ cos θ 5.4 θ sin θ 5.5 sin θ cos θ 5.6 θ sin θ cos θ 5.7 θ sin θ θ 5.8 y = sin θ sin φ 5.9 sin θ cos θ sin φ 5.6 5.30 θ cos θ sin θ sin φ 5.31 θ sin φ cos φ 5.7 5.3 φ cos φ sin φ 5.33 φ cos θ sin φ 5.8 5.34 cos θ sin θ sin φ 5.35 θ sin θ cos θ sin φ 5.36 θ cos θ sin φ 5.9 θ 5.37 cos θ cos φ sin φ sin 5.38 θ φ cos θ cos φ sin φ 5.39 sin θ φθ cos φ 5.10 5.40 cos φ sin φ 5.41 φ cos φ cos θ 5.4 sin θ θ cos θ cos φ sin φ 5.1 5.43 sin θ θφ cos φ sin φ 5.13 sin 5.44 θ φ cos φ sin θ φ 5.45

finally, fo the x-equation, we have x = sin θ cos φ 5.46 sin θ cos θ cos φ 5.14 5.47 θ sin θ cos θ cos φ 5.14 5.48 θ cos φ sin φ φ 5.49 sin φ cos φ 5.50 φ cos θ cos φ 5.15 5.51 sin θ cos θ cos φ 5.5 θ sin θ cos θ cos φ 5.15 5.53 θ cos θ cos φ θ 5.54 cos θ cos φ cos φ sin φ 5.16 sin θ φ 5.55 sin φ cos φ cos θ 5.56 sin θ φθ sin φ 5.17 5.57 sin φ cos φ φ 5.58 cos θ sin φ 5.19 5.59 sin θ θ cos θ sin φ cos φ sin θ θφ 5.60 sin φ cos φ 5.0 sin θ φ 5.61 sin φ sin θ φ 5.6 Gatheing tems as coefficients of patial deivatives, we obtain fom Equations 5., 5.9 5.46 cos θ sin θ sin φ sin θ cos φ fom Equations 5.3, 5.6, 5.30, 5.36, 5.4, 5.47, 5.53, 5.59 cos θ sin θ sin θ cos θ θ sin θ cos θ sin φ sin θ cos θ sin φ cos φ cos θ sin θ while we obtain fom Equations 5.8, 5.37, 5.54: sin θ cos θ cos φ sin θ cos θ cos φ cos θ sin φ sin θ cos θ sin θ θ 5.63 θ sin θ Fom Equations 5.5, 5.34, 5.40, 5.51, 5.57, cos θ sin φ sin θ cos θ sin φ cos φ cos θ cos φ sin φ cos θ cos φ 1 θ 5.64 5.65 Fom Equations 5.3, 5.38, 5.44, 5.49, 5.55 5.61 we obtain sin φ cos φ φ cos θ cos φ sin φ sin cos θ cos φ sin φ cos φ sin φ cos θ cos φ θ sin θ cos θ cos φ sin φ sin φ cos φ sin θ sin 0 5.66 θ Fom Equations 5.45 5.6 we obtain φ cos φ sin θ sin φ sin θ 1 sin θ φ 5.67

The mixed deivatives yield, fist, fom Equations 5.33, 5.41, 5.50, 5.58 leading to cos φ sin φ cos φ sin φ sin φ cos φ sin φ cos φ 0 5.68 φ Fom Equations 5.4, 5.7, 5.35, 5.31 5.5, 5.48 θ sin θ cos θ cos φ sin θ cos θ sin θ cos θ cos θ sin θ sin φ cos θ sin θ sin φ sin θ cos θ cos φ 0 5.69 Fom Equations 5.39 5.43 5.56 5.60 cos θ cos φ sin φ cos φ sin φ φθ sin θ sin θ sin φ cos φ cos θ cos θ sin φ cos φ sin θ 0 5.70 sin θ Gatheing togethe the non-vanishing tems, we obtain 1 θ cos θ sin θ θ 1 sin θ φ VI. MAPLE EQUIVALENT A. Example 1 which is one of the two classic foms fo. The othe is 1 1 sin θ sin θ sin θ θ θ φ Hee is a set of Maple instuctions adjusted fom the -dimensional code [1 fo ou 3-dimensional case, which will get you the same esult: estat; f:=g,theta,phi; tx := sintheta*cosphi*difff,costheta*cosphi/*difff,theta -sinphi/*sintheta*difff,phi; tx:=exp sintheta*cosphi*difftx,costheta*cosphi/*difftx,theta -sinphi/*sintheta*difftx,phi; ty := sintheta*sinphi*difff,costheta*sinphi/*difff,theta cosphi/*sintheta*difff,phi; ty:=expsintheta*sinphi*diffty,costheta*sinphi/ *diffty,thetacosphi/*sintheta*diffty,phi; tz := costheta*difff, -sintheta/*difff,theta; tz := expcostheta*difftz,-sintheta/*difftz,theta; del := txtytz: del := algsubs costheta^=1-sintheta^, del : del := expalgsubs cosphi^=1-sinphi^, del ; Hee is anothe vesion of the same thing: B. Example

> #CARTESIAN TO SPHERICAL POLAR > estat; > withplots: Waning, the name changecoods has been edefined > uu:=usqtx^y^z^,accosz/sqtx^y^z^,actany,x; uu := u x y z z, accos, actany, x x y z > ux:=diffuu,x: > uy:=diffuu,y: > uz:=diffuu,z: > uxx:=diffux,x: > uyy:=diffuy,y: > uzz:=diffuz,z: > Lapu:=simplifyuxxuyyuzz: > assume,positive; > Lapu:=simplifysubsx=*sintheta*cosphi, > y=*sintheta*sinphi, > z = *costheta, > actansintheta*sinphi,sintheta*cosphi=phi, > accoscostheta=theta, > Lapu,tig: > Lapu := subsactansintheta*sinphi,sintheta*cosphi=phi, > accoscostheta=theta, > Lapu: > Lapu := algsubs-1costheta^=-sintheta^,lapu: > Lapu:=expLapu; Lapu := D u, θ, φ sinθ cosθ D, u, θ, φ D 3, 3u, θ, φ sinθ 3/ sinθ D 1u, θ, φ D 1, 1 u, θ, φ It takes some getting used to Maple notation to see that this is the expected esult. ae bette ways to cay out the tansfomation fom Catesian to Spheical Pola indeed any othogonal coödinate system. VII. COMMENTS The eade should be awae that the bute foce methods used hee ae pimitive in the exteme, that thee [1 Mathias Kawski, http://math.la.asu.edu/ kawski/maple/maple.html