22 5 2010 5 PROGRESS IN CHEMISTRY Vol. 22 No. 5 May2010 * PKA balanol 315211 A PKA X PKA PKA C R C balanol QM / MM A PKA balanol Q555. 7 O643. 1 QM / MM A 1005-281X 2010 05-0993-09 Computational Chemistry of Protein Kinase A and Its Inhibitor Balanol Jin Haixiao Yan Xiaojun Zhu Peng Key Laboratory of Marine BiotechnologyNingbo UniversityNingbo 315211China Abstract Protein kinases regulate the signal transduction pathways in cell by phosphorylating the protein kinase substrateand they are important targets in drug design. Protein kinase A PKA is the first kinase that was obtained X-ray structure of its catalytic domainand is regarded as prototype for protein kinase superfamily. The progress in computational chemistry study of protein kinase A has been reviewed including the molecular dynamics simulation study of PKA holoenzyme and its C subunit and R subunit in aqueous solutionphosphoryl transfer mechanismthe binding free energy predicting and flexible docking of C subunit with its inhibitor balanol. Various computational approaches are applied to this systemincluding molecular dynamics simulationdockhomology modelingqm / MM. Key words protein kinase A PKA balanol molecular dynamics simulation dock QM / MM Contents 1 Introduction 2 Molecular dynamics simulation study on PKA 2. 1 Molecular dynamics simulation study on C subunit 2. 2 Modeling of the complex of C subunit and R subunit 2. 3 Molecular dynamics simulation study on R subunit 3 Phosphoryl transfer mechanism 4 Balanol 4. 1 Prediction of binding free energy 4. 2 Flexible protein-flexible ligand docking 4. 3 Mechanism of high selectivity of balanol analogue BD2 4. 4 Functional role of structure water molecules in the recognition of C subunit and BD2 2009 8 2009 9 * No. 20903058 No. RCL2008004 Corresponding author e-mail yanxiaojun@ nbu. edu. cn
994 22 5 Conclusion and outlook 1 1 ATP 4 PKA γ 2 4 5 G 60 1 PKA camp Fig. 1 The active catalytic subunits are released from the inactive PKA holoenzyme by binding to camp PKA A protein kinase A PKA 6 PKA PKA PKA 7 3 5 - camp campdependent protein kinase / PKA C 2 β small lobe camp α large lobe N 1 39 C 301 350 camp camp ATP camp ATP camp protein kinase substrate PKS PKA PKA C 2 R 2 2 protein kinase inhibitor PKI C 2 R 1 loop activation PKA loop Thr197 C Ser338 RⅠ RⅠα RⅠβ RⅡ RⅡα RⅡβ R loop Thr197 PKA-ⅠPKA-Ⅱ PKA-Ⅰ PKA-Ⅱ 2 R C PKA 2 R A domain A B domain B 4 camp 2 R R C / C loop glycine-rich loop ATP C R 3 8 dimerization / docking C RⅠα AKAP A kinase anchoring 4 9 R protein PKA PKA camp A domain A B C 3 R 2 B / C helix R / camp nucleotide binding domainnbd R / C A B R / camp
5 PKA balanol 995 2 C ATP PKI PDB ID 1ATP C loop 3 R camp PDB ID 1RGS A B camp R PKI A B A ATP / Mg 2 + B / C camp pthr197 pser338 pthr197 phosphate-binding cassettepbc Trp260 Tyr371 α Glu261 Arg366 Glu200 Fig. 2 The crystal structure of C subunit binding to ATP and PKI PDB ID 1ATP. The small lobe is colored in magentathe glycine-rich loop within small lobe is shown in yellowthe large lobe is colored in brownand the dark green one is the protein kinase inhibitor. The ATP / Mg 2 + in the active site is in red ball and stick representation. pthr197 and pser338 is described as ball and stick and these residues formed hydrogen bond or salt bridge with pthr197 is represented in green ball and stick. The Cα atoms of main catalytic residues in phosphoryl transfer region are labeled in yellow ball model Arg241 Asp140 Lys240 Fig. 3 The crystal structure of R subunit binding to camp PDB ID 1RGS. The camp in domain A and B is in ball and stick representationthe domain A and domain B of R subunit is represented as dark teal and cyanrespectively the B / C helix within domain A is shown as redphosphatebinding cassette within the two domain is described as yellowtrp260and Tyr371 are labeled as green stick and van der Waals surfaceglu261 and Arg366 is shown as yellow stickglu200 and Arg241 is shown as magenta stick and Asp140 and Lys240 is shown as cyan stick R / C R / camp Glu200 Arg241 B / C Trp260 Tyr371 A B camp 4 R / C Glu200 Arg241 Glu261 Arg366 Asp140 Lys240 B / C Trp260 Tyr371 4 C RⅠα PDB ID camp camp PKA- 2QCS C R 3 Ⅰ B A Fig. 4 The crystal structure of C subunit and RⅠα subunit 10 camp B complex PDB ID 2QCS. C subunit is labeled as purple Glu261-Arg366 RⅠ ribbon and a van der Waals surfacethe R subunit is shown as that in figure 3 100 PKA
996 22 R / C InRK 2 CDK2 C ADP AlF 3 loop C ATP PKA PKA PKA loop Thr197 C C C ATP C Thr197 pthr197 6 pthr197 C Cheng 12 balanol PKA C QM / MM balanol PKA Thr197 loop C / balanol pthr197 C C C balanol ATP C / ATP C balanol C / ppks amber 8 5 nm PKA 13 pthr197 C C His87 Lys189 Thr195 Arg165 balanol 2 2 PKA Thr197 loop 2. 1 C C PKA C ATP 14 C ATP PKI C / ATP / PKI C loop loop Tsigelny 11 amber 4. 1 C ATP C / ATP / PKI loop Thr197 PKA / Mg 2 ATP / substrate T197A Thr197 His87 C ATP ATP PKI amber 2. 2 C R - C ATP PKI ATP C R C 15 16 Anand 15 loop C DOT R / C DOT loop R C PDB
5 PKA balanol 997 1RGS R 113-376 1ATP R 113-244 C R C 245-376 Ⅰ 100 000 / A C R / C A camp 2 R / C 3 4 C R / C R Glu200 Arg241 Asp140 DOT R Lys240 3 4 C R / camp Glu200 C R Arg241 R / C 17 C loop R A loop Ⅱ RⅠα camp C R 2 camp RⅠα 18 B C RⅠα A C Ⅱ 19 2005 R / C RⅠα R / camp R loop C R RⅠ C 20 Ⅱ 2. 3 R C Glu200 Arg241 2005 RⅠα C A R RⅠα 91 244 C camp RⅠα PKA 2 3 RⅠα 91-376 C RⅠα A R / C Ⅰ Ⅱ A R / R / camp C R B / C A B R / R A B / C C C B / C C R C Ⅰ C B / C R A R R / B R C 3 R C PKA C C ADP PKS C / ADP / AlF 3 / PKS 21 PDB ID 1L3R 23 ATP γ Gullingsrud 22 ADP RⅠα 110-242 Ⅰ RⅠα 109-376 Ⅱ R 91-376 C Ⅲ 3 R R R / C Asp140 Lys240 ⅢRⅠα 91-242 C
998 22 C / ATP / PKI ATP γ 27 Lys168 PDB ID 1ATP 24 5 Ala K cat 50 PKI loop glycine-rich loop KTLG 50 TG 52 SFG 55 RV Ser 23 loop PKA Asp166 Gly Ala Ser PKA Lys168 loop 5 C / ADP / AlF 3 / PKS PDB ID Diaz 36 1L3R C / ATP / PKI PDB ID 1ATP Asp166 loop loop 10 20kcal / mol Henkelman 37 1ATP 1L3R Mg 2 + Fig. 5 The superposition of X-ray structure of the C / ADP / AlF 3 / PKS complex PDB ID 1L3R and the C / ATP / PKI complex PDB ID 1ATP. Glycine-rich loop and catalytic Cheng 38 Valiev 39 QM / MM loop are represented as line ribbon and flat ribbon C C respectively. The residues from 1ATP are shown as line and these residues from 1L3R are described as ball and QM C stickthe two Mg 2 + are labeled in ball model MM Asp166 Asp166 PKA loop 5 P Ser P Ser Lys168 Asp166 Ala V max 300 ATP ATP γ Lys168 PKS K m 25 Asp166 ATP γ P Ser Ser ATP 26 ph = 6 9 PKA Asp pk a < 5 Ser pk a = 14 28 Ser53 Thr Gly Pro K 29 cat QM AM1 PM3 QM / MM 30 32 Asp166 P Ser ATP γ Hirano 33 Cavalli 34 36 42kcal / mol Valiev 35 loop Ser53 loop Asp166 loop Ser53 Ser53 Lys168 ATP γ PKA
5 PKA balanol 999 Szarek 40 Mg 2 + Ⅱ Mg2 + Ⅰ Lys72 Asp166-32. 36kcal / mol- 15. 15kcal / mol - 22. 71kcal / mol- 13. 26kcal / mol Wong 45 C / balanol Lys168 Ser53Glu91 Asp184 Ser53 glycine- - rich loop - 6. 20kcal / mol QM / MM - Asp166 4 Balanol ATP Asp184 C ATP Thr183 H89 staurosporin balanol Balanol Verticillium balanoides 41 C / balanol 42 balanol balanol ATP 4 6 A ATP B C D loop Balanol PKA Cprotein kinase C PKC 43 Src ATP C / balanol Balanol 18 Wong 47 autodock balanol C C C / balanol C 6 Fig. 6 Balanol BD2 The chemical structures of balanol and BD2 390 Lys72 Asp184 Thr183 C / balanol Lys72 Thr183 Wang Wong 46 QM / MM / PBSA 4. 2 - C C / balanol C C 4. 1 10 Hünenberger 44 balanol ATP C
1000 22 BD2 Kovacs 48 49-5 Zhao Sanner 50 FLIPDock flexible ligand-protein docking flexibility tree data structure PKA X autodock3. 05 C PKA C / adenosine / PKI PDB ID 1FMO PKA balanol - 1FMO C - FLIPDock QM / MM PKA Huang Wong 51 PKA balanol 4. 3 Balanol BD2 ATP Balanol 1993 ATP balanol BD2 6 PKA ATP PKA PKC 2 200 52 BD2 PKA PKC / BD2 PKA / BD2 PKC / BD2 MM-GBSA PKA PKC BD2 53 2242 BD2 B PKA PKC BD2 PKA Thr183 PKC Ala483 4. 4 C BD2 C / BD2 C 3 C / BD2 2. 5 nm 3 3 54 3 C 3 C 35 2934 2942 R camp 1 Johnson L NLewis R J. Chem. Rev. 2001101 2209 2 Naviglio SCaraglia MAbbruzzese Aet al. Expert. Opin. Ther. Targets200913 83 92 3 Murray A J. Sci. Signal. 20081 22 art. no. re4 4 Taylor S SKim CCheng C Yet al. Biochim. Biophys. Acta 20081784 16 26 5 Chiaradonna FBalestrieri CGaglio Det al. Front. Biosci. 200813 5257 5278 6 Yonemoto WMcGlone M LGrant Bet al. 199710 915 925 Protein Eng. 7 Knighton DZheng JTen Eyck Let al. Science1991253 407 414 8 Su YDostmann W RHerberg F Wet al. 269 807 813 9 Kim CCheng C YSaldanha S Aet al. 1032 1043 Science1995 Cell2007130 10Herberg F WTaylor S SDostmann W R. Biochemistry1996
5 PKA balanol 1001 11Tsigelny IGreenberg J PCox Set al. 50 513 524 Biopolymers1999 12Cheng Y HZhang Y KMcCammon J A. Protein Sci. 2006 15 672 683 13Jin H XWu T XJiang Y Jet al. J. Mol. Struct. Theochem. 2007805 9 15 14Cheng XMa YMoore Met al. Proc. Natl. Acad. Sci. 199895 9849 9854 15Anand G SLaw DMandell J Get al. Proc. Natl. Acad. Sci. USA2003100 13264 13269 16Tung C SWalsh D ATrewhella J. J. Biol. Chem. 2002 277 12423 12431 17Kim CVigil DAnand Get al. Eur. J. 85 651 654 Cell Biol. 2006 18Taylor S SYang JWu Jet al. Biochim. Biophys. Acta 20041697 259 269 19Iyer G HGarrod SWoods J V Let al. J. Mol. Biol. 2005 351 1110 1122 20Kim CXuong N HTaylor S S. Science2005307 690 696 21Kumar SMa BTsai C Jet al. Protein Sci. 20009 10 19 22Gullingsrud JKim CTaylor S Set al. Structure200614 141 149 23MadhusudanAkamine PXuong N Het al. Nat. Struct. Biol. 20029 273 277 24Zheng JTrafny E AKnighton D Ret al. Acta Crystallogr. D Biol. Crystallogr. 199349 362 365 25Gibbs C SZoller M J. J. Biol. Chem. 1991266 8923 8931 26Zhou JAdams J A. Biochemistry199736 2977 2984 27MadhusudanTrafny E AXuong N Het al. 19943 176 187 Protein Sci. 28Hemmer WMcGlone MTsigelny Iet al. J. Biol. Chem. 1997272 16946 16954 29Aimes R THemmer WTaylor S S. Biochemistry200039 8325 8332 30Hart J CSheppard D WHillier I Het al. Chem. Commun. 199979 80 31Hart J CHillier I HBurton N Aet al. J. Am. Chem. Soc. 1998120 13535 13536 32Hutter M CHelms V. Protein Sci. 19998 2728 2733 33Hirano YHato MHoshino Tet al. J. Phys. Chem. B 2002106 5788 5792 34Cavalli ADe Vivo MRecanatini M. Chem. Commun. 2003 1308 1309 35Valiev MKawai RAdams J Aet al. J. Am. Chem. Soc. 2003125 9926 9927 36Diaz NField M J. J. Am. Chem. Soc. 2004126 529 542 37Henkelman GLaBute M XTung C Set al. Proc. Natl. Acad. Sci. USA2005102 15347 15351 38Cheng YZhang YMcCammon J A. J. Am. Chem. Soc. 2005127 1553 1562 39Valiev MYang JAdams J Aet al. J. Phys. Chem. B 2007111 13455 13464 40Szarek PDyguda-Kazimierowicz ETachibana Aet al. J. Phys. Chem. B2008112 11819 11826 41Kulanthaivel PHallock Y FBoros Cet al. J. Am. Soc. 1993115 6452 6453 Chem. 42Narayana NDiller T CKoide Ket al. Biochemistry1999 38 2367 2376 43Setyawan JKoide KDiller T Cet al. Mol. Pharmacol. 199956 370 376 44Hünenberger P HHelms VNarayana Net al. Biochemistry 199938 2358 2366 45Wong C FHünenberger P HAkamine Pet al. J. Med. Chem. 200144 1530 1539 46Wang MWong C F. J. Chem. Phys. 2007126 art. no. 026101 47Wong C FKua JZhang Yet al. Proteins200561 850 858 48Kovacs J ACavasotto C NAbagyan R J. et al. J. Comput. Theor. Nanosci. 20052 354 361 49Cavasotto C NKovacs J AAbagyan R A. J. Am. Chem. Soc. 2005127 9632 9640 50Zhao YSanner M F. Proteins200768 726 737 51Huang ZWong C FWheeler R A. Proteins200871 440 454 52Akamine PMadhusudanBrunton L Let al. 200443 85 96 Biochemistry 53 Jin H X Wu T X Yan X J. Acta Chimica Sinica 200967 1461 1468 54Jin H XWu T XJiang Y Jet al. J. Mol. Struct. Theochem. 2007809 21 27