Hartree-Fock Theory. Solving electronic structure problem on computers

Σχετικά έγγραφα
Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz

Review: Molecules = + + = + + Start with the full Hamiltonian. Use the Born-Oppenheimer approximation

ψ ( 1,2,...N ) = Aϕ ˆ σ j σ i χ j ψ ( 1,2,!N ) ψ ( 1,2,!N ) = 1 General Equations

The Hartree-Fock Equations

Variational Wavefunction for the Helium Atom

Τίτλος: Eνεργά δυναμικά στη θεωρία συναρτησιακών του πρώτου πίνακα πυκνότητας

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Matrices and Determinants

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Numerical Analysis FMN011

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Αρχές Κβαντικής Χημείας και Φασματοσκοπίας

( ) 2 and compare to M.

( ) = a(1)b( 2 ) c( N ) is a product of N orthonormal spatial

Electronic structure and spectroscopy of HBr and HBr +

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Srednicki Chapter 55

Quadratic Expressions

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Concrete Mathematics Exercises from 30 September 2016

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Jordan Form of a Square Matrix

1 String with massive end-points

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Derivation of Quadratic Response Time Dependent Hartree-Fock (TDHF) Equations

Œ ˆ Œ Ÿ Œˆ Ÿ ˆŸŒˆ Œˆ Ÿ ˆ œ, Ä ÞŒ Å Š ˆ ˆ Œ Œ ˆˆ

Example Sheet 3 Solutions

FORMULAS FOR STATISTICS 1

Module 5. February 14, h 0min

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1

Reminders: linear functions

Math 6 SL Probability Distributions Practice Test Mark Scheme

Exercise 1.1. Verify that if we apply GS to the coordinate basis Gauss form ds 2 = E(u, v)du 2 + 2F (u, v)dudv + G(u, v)dv 2

6.3 Forecasting ARMA processes

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

EE512: Error Control Coding

Η απωστική αυτή ενέργεια αίρει τον εκφυλισµό ως προς l σε σηµαντικό βαθµό. Αµελωντας το απωστικό δυναµικό, προκύπτει ενέργεια συνδεσης ίση µε

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

4.6 Autoregressive Moving Average Model ARMA(1,1)

Quantum Statistical Mechanics (equilibrium) solid state, magnetism black body radiation neutron stars molecules lasers, superuids, superconductors

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

Section 8.3 Trigonometric Equations

If we restrict the domain of y = sin x to [ π 2, π 2

Second Order Partial Differential Equations

On the Einstein-Euler Equations

= {{D α, D α }, D α }. = [D α, 4iσ µ α α D α µ ] = 4iσ µ α α [Dα, D α ] µ.

Differential equations

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

The Simply Typed Lambda Calculus

Inverse trigonometric functions & General Solution of Trigonometric Equations

Matrices and vectors. Matrix and vector. a 11 a 12 a 1n a 21 a 22 a 2n A = b 1 b 2. b m. R m n, b = = ( a ij. a m1 a m2 a mn. def

Matrix Hartree-Fock Equations for a Closed Shell System

Orbital angular momentum and the spherical harmonics

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Ομοιοπολικός Δεσμός. Ασκήσεις

Congruence Classes of Invertible Matrices of Order 3 over F 2

vibrational Supplementary density of the Beyer-

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

derivation of the Laplacian from rectangular to spherical coordinates

Wavelet based matrix compression for boundary integral equations on complex geometries

D Alembert s Solution to the Wave Equation

Solutions to Exercise Sheet 5

Θεωρητική Επιστήμη Υλικών

HW 3 Solutions 1. a) I use the auto.arima R function to search over models using AIC and decide on an ARMA(3,1)

Ó³ Ÿ , º 2(186).. 177Ä Œ. Š Ö,.. Ì Ö,.. ± Ö,, 1,.. ƒê, 2. μ ±μ- ³Ö ± ( ² Ö ± ) Ê É É, ± μ Ê É Ò Ê É É, Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

Section 7.6 Double and Half Angle Formulas

1 Lorentz transformation of the Maxwell equations

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

Supporting Information. Evaluation of spin-orbit couplings with. linear-response TDDFT, TDA, and TD-DFTB

Homework 3 Solutions

Introduction to the ML Estimation of ARMA processes

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

α & β spatial orbitals in

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81

The Standard Model. Antonio Pich. IFIC, CSIC Univ. Valencia

Areas and Lengths in Polar Coordinates

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King

Fermion anticommutation relations

Physics 554: HW#1 Solutions

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

Forced Pendulum Numerical approach

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Econ Spring 2004 Instructor: Prof. Kiefer Solution to Problem set # 5. γ (0)

Lifting Entry 2. Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYLAND U N I V E R S I T Y O F

SUPPLEMENTARY INFORMATION

The challenges of non-stable predicates

Partial Trace and Partial Transpose

Electronic Supplementary Information

Πανεπιζηήμιο Πειπαιώρ Τμήμα Πληποθοπικήρ

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Space-Time Symmetries

Areas and Lengths in Polar Coordinates

( y) Partial Differential Equations

Transcript:

Hartree-Foc Theory Solving electronic structure problem on computers Hartree product of non-interacting electrons mean field molecular orbitals expectations values one and two electron operators Pauli Principle slater determinant of molecular orbitals expectations values of one and two electron operators energy of slater determinant variation principle optimizing the orbitals in slater determinant one-particle mean-field foc operator self-consistent-field linear combinations atomic orbitals & basissets Roothaan Hall equations

Hartree-Foc Theory for n electrons mean-field approach H = i atomic units 2 2m e 2 i A e 2 Z A 4π 0 r i R A + vmf i (r i ) h i (r i )= 2 i + A independent electrons H = h i (r i ) i Z A r ia + v mf i (r i ) one-electron wavefunctions (molecular orbitals) h i (r) i (r) = i i (r) orthonormal i (r) j (r)dr = δ ij Hartree product of n distinghuisable electrons Ψ(r 1, r 2,...,r n )= 1 (r 1 ) 2 (r 2 )... n (r n )

Hartree-Foc Theory for n electrons indistinguishable electrons fermions with 3 spatial and 1 spin coordinate (4D) {x} = {r,s} Pauli principle Ψ(r 1, x 2,..,x i, x j,...,x n )= Ψ(x 1, x 2,..,x j, x i,...,x n ) spin orbitals ϕ i (x) = i (r)α(s) i (r)β(s) spin functions α(s)β(s)ds = δ αβ

Hartree-Foc Theory for n electrons anitsymmetric linear combination of Hartree products: i.e. 2 electrons Ψ(x 1, x 2 )= 1 2 [ϕ 1 (x 1 )ϕ 2 (x 2 ) ϕ 2 (x 1 )ϕ 1 (x 2 )] n electrons: Slater determinant Ψ(x 1, x 2,..,x n )= 1 n ϕ 1 (x 1 ) ϕ 1 (x 2 ).. ϕ 1 (x n ) ϕ 2 (x 1 ) ϕ 2 (x 2 ).. ϕ 2 (x n ) ϕ n (x 1 ) ϕ n (x 2 ).. ϕ n (x n )

Hartree-Foc Theory for n electrons anitsymmetric linear combination of Hartree products: i.e. 2 electrons Ψ(x 1, x 2 )= 1 2 [ϕ 1 (x 1 )ϕ 2 (x 2 ) ϕ 2 (x 1 )ϕ 1 (x 2 )] n electrons: Slater determinant Ψ(x 1, x 2,..,x n )= 1 n ϕ 1 (x 1 ) ϕ 1 (x 2 ).. ϕ 1 (x n ) ϕ 2 (x 1 ) ϕ 2 (x 2 ).. ϕ 2 (x n ) ϕ n (x 1 ) ϕ n (x 2 ).. ϕ n (x n )

Hartree-Foc Theory for n electrons Expectations values for one and two electron operators Hartree product (no spin) Ô1 = a a (x 1 )ô(r 1 ) a (r 1 )dr 1 Ô2 = 1 2 a b a (r 1 ) b (r 2)ô(r 1, r 2 ) a (r 1 ) b (r 2 )dr 1 dr 2 Slater determinant (spin, Pauli principle) Ô1 = a a (x 1 )ô(r 1 ) a (x 1 )dx 1 Ô2 = 1 2 1 2 a a b a (x 1 ) b (x 2)ô(r 1, r 2 ) a (x 1 ) b (x 2 )dx 1 dx 2 b a (x 1 ) b (x 2)ô(r 1, r 2 ) b (x 1 ) a (x 2 )dx 1 dx 2 Ô2 = 1 2 a b a (x 1 ) b (x 2)ô(r 1, r 2 )(1 ˆp 12 ) a (x 1 ) b (x 2 )dx 1 dx 2

Wassermoleül 2 H + 1 O 8+ 10 Eletronen 10 Moleülorbitale

Wassermoleül 2 H+ 1 O8+ 10 Eletronen 10 Moleülorbitale

2 H+ 1 O8+ 10 Eletronen 10 Moleülorbitale Energie Wassermoleül

Hartree-Foc theory mean field approach vary orbitals until until self-consistency (SCF)

Hartree-Foc Theory for n electrons Hartree-Foc eigenvalue equations ˆf(x 1 )ϕ i (r 1 )= i ϕ(r 1 ) solving non-linear eigenvalues equations numerically step 1: get rid of spin and express in real spatial orbitals step 2: expand spatial orbitals in basis functions restricted Hartree Foc electron pair with opposite spin in same spatial orbital ϕ i (x) = j (r)α(s) ϕ i+1 (x) = j (r)β(s)

Hartree-Foc Theory for n electrons solving non-linear eigenvalues equations numerically step 1: get rid of spin and express in real spatial orbitals ˆf(x 1 ) i (r 1 )α(s 1 ) = ĥ0 (r 1 ) i (r 1 )α(s 1 ) + n/2 + n/2 n/2 n/2 (r 2 )α (s 2 ) 1 (r 2 )α(s 2 ) i (r 1 )α(s 1 )dr 2 ds 2 (r 2 )β (s 2 ) 1 (r 2 )β(s 2 ) i (r 1 )α(s 1 )dr 2 ds 2 (r 2 )α (s 2 ) 1 i (r 2 )α(s 2 ) (r 1 )α(s 1 )dr 2 ds 2 (r 2 )β (s 2 ) 1 i (r 2 )α(s 2 ) (r 1 )β(s 1 )dr 2 ds 2

Hartree-Foc Theory for n electrons solving non-linear eigenvalues equations numerically step 1: get rid of spin and express in real spatial orbitals ˆf(x 1 ) i (r 1 )α(s 1 ) = ĥ0 (r 1 ) i (r 1 )α(s 1 ) + n/2 + n/2 n/2 n/2 (r 2 )α (s 2 ) 1 (r 2 )α(s 2 ) i (r 1 )α(s 1 )dr 2 ds 2 (r 2 )β (s 2 ) 1 (r 2 )β(s 2 ) i (r 1 )α(s 1 )dr 2 ds 2 (r 2 )α (s 2 ) 1 i (r 2 )α(s 2 ) (r 1 )α(s 1 )dr 2 ds 2 (r 2 )β (s 2 ) 1 i (r 2 )α(s 2 ) (r 1 )β(s 1 )dr 2 ds 2

Hartree-Foc Theory for n electrons solving non-linear eigenvalues equations numerically step 1: get rid of spin and express in real spatial orbitals ˆf(x 1 ) i (r 1 )α(s 1 ) = ĥ0 (r 1 ) i (r 1 )α(s 1 ) + n/2 + n/2 n/2 (r 2 ) 1 (r 2 ) i (r 1 )α(s 1 )dr 2 (r 2 ) 1 (r 2 ) i (r 1 )α(s 1 )dr 2 (r 2 ) 1 i (r 2 ) (r 1 )α(s 1 )dr 2

Hartree-Foc Theory for n electrons solving non-linear eigenvalues equations numerically step 1: get rid of spin and express in real spatial orbitals α (s 1 ) ˆf(x 1 )α(s 1 )ds 1 i (r 1 ) = α (s 1 )ĥ0 (r 1 )(r 1 )α(s 1 )ds 1 + n/2 + n/2 n/2 α (s 1 ) (r 2) 1 (r 2 ) i (r 1 )α(s 1 )dr 2 ds 1 α (s 1 ) (r 2) 1 (r 2 ) i (r 1 )α(s 1 )dr 2 ds 1 α (s 1 ) (r 2) 1 i (r 2 ) (r 1 )α(s 1 )dr 2 ds 1 Hartree-Foc eigenvalue equation for spatial orbitals ˆf(r 1 ) i (r 1 ) = ĥ0 (r 1 )(r 1 ) +2 n/2 (r 2 ) 1 (r 2 ) i (r 1 )dr 2 n/2 (r 2 ) 1 i (r 2 ) (r 1 )dr = i i (r 1 )

Hartree-Foc Theory for n electrons solving non-linear eigenvalues equations numerically step 1: get rid of spin and express in real spatial orbitals ˆf(r 1 ) i (r 1 ) = ĥ0 (r 1 )(r 1 ) +2 n/2 (r 2 ) 1 (r 2 ) i (r 1 )dr 2 n/2 (r 2 ) 1 i (r 2 ) (r 1 )dr = i i (r 1 ) step 2: expand spatial orbitals in basis functions (basisset) i (r) = j c ij γ j (r R j )

Hartree-Foc Theory for n electrons linear combination of atomic orbitals i (r) = j c ij γ j (r R j ) hydrogen-lie orbitals (one possibility out of many...) γ 1 = ψ 1s (ζ 1 ) γ 2 = ψ 2s (ζ 2 ) γ 3 = ψ 2p (ζ 3 ) γ 4 =...

Wasserstoffmoleül Lineare Kombination von einzelne Wasserstoff-Orbitale - = 2(1 + S12 ) atomorbital moleülorbital + = 2(1 + S12 )

Hartree-Foc Theory for n electrons solving non-linear eigenvalues equations numerically step 2: expand spatial orbitals in basis functions ˆf(r 1 ) i (r 1 )= i i (r 1 ) i (r) = j c ij γ j (r R j ) ν ˆf(r 1 ) ν c νi γ ν (r 1 )= i c νi γ ν (r 1 ) c νi γµ(r 1 ) ˆf(r 1 )γ ν (r 1 )dr 1 = i c νi ν ν γ µ (r 1 )γ ν (r 1 )dr 1

Hartree-Foc Theory for n electrons solving non-linear eigenvalues equations numerically step 2: expand spatial orbitals in basis functions (basisset) c νi γµ(r 1 ) ˆf(r 1 )γ ν (r 1 )dr 1 = i c νi ν ν γ µ (r 1 )γ ν (r 1 )dr 1 express in terms of matrices F µν c νi = i ν ν S µν c νi solution if, and only if FC = SC F i S =0

Hartree-Foc Theory for n electrons solving non-linear eigenvalues equations numerically non-linear: F depends on C F µν = γ µ(r 1 )ĥ0 (r 1 )γ ν (r 1 )dr 1 +2 a γ µ (r 1 ) a(r 2 ) 1 a (r 2 )γ ν (r 1 )dr 1 dr a γ µ (r 1 ) a(r 2 ) 1 γ ν (r 2 ) a (r 1 )dr 1 dr F µν = h 0 µν +2 a a κ κ λ c κac λa λ c κac λa γ µ (r 1 )γ κ(r 2 ) 1 γ λ (r 2 )γ ν (r 1 )dr 1 dr γ µ (r 1 )γ κ(r 2 ) 1 γ ν (r 2 )γ a (r 1 )dr 1 dr

Hartree-Foc Roothaan-Hall equations non-linear eigenvalue problem Fc = i Sc practical algorithm iterate until self-consistency pre-compute integrals of basisset F µν = γ µ ˆf γ ν S µν = γ µ γ ν

Basissets minimal basis (1 function per shell) H-He: 1s (1) Li-Ne: 1s, 2s, 2px, 2py, 2pz (5) Na-Ar: 1s, 2s, 2px, 2py, 2pz, 3s, 3px, 3py, 3pz (9) Slater-type orbitals computationally demanding f 1s (ζ, r) =exp[ ζr] Gaussian-type orbitals computationally convenient g 1s (α, r) = (8α 3 /π 3 ) 1/4 exp[ αr 2 ] g (α, r) 2px = (128α 5 /π 3 ) 1/4 x exp[ αr 2 ] g (α, r) 3dxy = (2048α 7 /π 3 ) 1/4 xy exp[ αr 2 ]

Basissets Gaussian-type orbitals computationally convenient, but not as accurate as Slater-type orbitals linear combination (contraction) of several gaussians (primitives) STO-3G CGF 1s = 3 i d i,1sg 1s (α i,1s ) CGF 2s = 3 i d i,2sg 1s (α i,2sp ) CGF 2p = 3 i d i,2pg 2p (α i,2sp ) least-square fit to Slater orbitals min SF 1s (r) CGF 1s (r))dr] 2 min SF 2s (r) CGF 2s (r) dr SF 2p (r) CGF 2p (r) dr 2

Basissets Double-Zeta basis two basisfunctions (contractions) per valence orbital 3-21G, 4-31G, 6-31G H-He: 1s = 2 i d i,1sg 1s (α i,1s ) 1s = g 1s (α i,1s ) Li-Ne: 1s = 3 i d i,1sg 1s (α i,1s ) 2s = 2 i d i,2s g 1s(α i,2sp ) 2s = g 1s (α i,2sp ) 2p = 2 i d i,2p g 2p(α i,2sp ) 2p = g 2p (α i,2sp )

Basissets Double-Zeta basis with polarization functions two basisfunctions (contractions) per valence orbital Li-Ne: 3d functions (*) H-He: 2p functions (**) 3-21G*, 4-31G*, 6-31G*, 6-31G**