sample n-bit adder RCA CSKA CSEL CSUM CLA CSA RBA normalized area delay product

Σχετικά έγγραφα
CORDIC Background (4A)

CMOS Technology for Computer Architects

CORDIC Background (2A)

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

Instruction Execution Times

is like multiplying by the conversion factor of. Dividing by 2π gives you the

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

EE434 ASIC & Digital Systems Arithmetic Circuits

GPGPU. Grover. On Large Scale Simulation of Grover s Algorithm by Using GPGPU

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

CRASH COURSE IN PRECALCULUS

ΔΙΑΚΡΙΤΟΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER - Discrete Fourier Transform - DFT -

Κεφάλαιο 3. Αριθμητική Υπολογιστών Review. Hardware implementation of simple ALU Multiply/Divide Real Numbers

Αρχιτεκτονική Σχεδίαση Ασαφούς Ελεγκτή σε VHDL και Υλοποίηση σε FPGA ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

EE512: Error Control Coding

Biodiesel quality and EN 14214:2012

Section 8.3 Trigonometric Equations

Partial Trace and Partial Transpose

Sampling Basics (1B) Young Won Lim 9/21/13

ΑΝΙΧΝΕΥΣΗ ΓΕΓΟΝΟΤΩΝ ΒΗΜΑΤΙΣΜΟΥ ΜΕ ΧΡΗΣΗ ΕΠΙΤΑΧΥΝΣΙΟΜΕΤΡΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Section 7.6 Double and Half Angle Formulas

ΕΡΓΑΣΤΗΡΙΟ ΜΙΚΡΟΫΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ : Κ. ΠΕΚΜΕΣΤΖΗ

Approximation of distance between locations on earth given by latitude and longitude

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

Wavelet based matrix compression for boundary integral equations on complex geometries

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review

PARTIAL NOTES for 6.1 Trigonometric Identities

Areas and Lengths in Polar Coordinates

ΙΕΥΘΥΝΤΗΣ: Καθηγητής Γ. ΧΡΥΣΟΛΟΥΡΗΣ Ι ΑΚΤΟΡΙΚΗ ΙΑΤΡΙΒΗ

Matrices and Determinants

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Study on Re-adhesion control by monitoring excessive angular momentum in electric railway traction

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Capacitors - Capacitance, Charge and Potential Difference

the total number of electrons passing through the lamp.

Concrete Mathematics Exercises from 30 September 2016

Assalamu `alaikum wr. wb.

Vol. 31,No JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb

ΑΚΑ ΗΜΙΑ ΕΜΠΟΡΙΚΟΥ ΝΑΥΤΙΚΟΥ ΜΑΚΕ ΟΝΙΑΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

1. Αφετηρία από στάση χωρίς κριτή (self start όπου πινακίδα εκκίνησης) 5 λεπτά µετά την αφετηρία σας από το TC1B KALO LIVADI OUT

Smaller. 6.3 to 100 After 1 minute's application of rated voltage at 20 C, leakage current is. not more than 0.03CV or 4 (µa), whichever is greater.

ΤΕΧΝΟΛΟΓΙΕΣ ΥΛΟΠΟΙΗΣΗΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

Numerical Analysis FMN011

Strain gauge and rosettes

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

Μικροηλεκτρονική - VLSI

1) Abstract (To be organized as: background, aim, workpackages, expected results) (300 words max) Το όριο λέξεων θα είναι ελαστικό.

Areas and Lengths in Polar Coordinates

Right Rear Door. Let's now finish the door hinge saga with the right rear door

Graded Refractive-Index

Figure 3 Three observations (Vp, Vs and density isosurfaces) intersecting in the PLF space. Solutions exist at the two indicated points.

Ψηφιακά Συστήματα VLSI

Computing the Macdonald function for complex orders

Tunable Diode Lasers. Turning Laser Diodes into Diode Lasers. Mode selection. Laser diodes

Fractional Colorings and Zykov Products of graphs

Contents. 1 Introduction. 2 Shape of the Earth. 3 NAD 27 vs NAD 83

Math 6 SL Probability Distributions Practice Test Mark Scheme

GPU. CUDA GPU GeForce GTX 580 GPU 2.67GHz Intel Core 2 Duo CPU E7300 CUDA. Parallelizing the Number Partitioning Problem for GPUs

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Ψηφιακή Λογική Σχεδίαση

LMNQ. A Structural Analysis of Learning Motivation and Negative Learning Motivation Questionnaire (LMNQ) and a Trial of Standardization

MECHANICAL PROPERTIES OF MATERIALS

Ηλεκτρονικοί Υπολογιστές IV

ΣΗΜΑΤΑ ΔΙΑΚΡΙΤΟΥ ΧΡΟΝΟΥ

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

Dr. D. Dinev, Department of Structural Mechanics, UACEG

Aluminum Electrolytic Capacitors (Large Can Type)

Coupling of a Jet-Slot Oscillator With the Flow-Supply Duct: Flow-Acoustic Interaction Modeling

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

FX10 SIMD SIMD. [3] Dekker [4] IEEE754. a.lo. (SpMV Sparse matrix and vector product) IEEE754 IEEE754 [5] Double-Double Knuth FMA FMA FX10 FMA SIMD

Block Ciphers Modes. Ramki Thurimella

Nov Journal of Zhengzhou University Engineering Science Vol. 36 No FCM. A doi /j. issn

10 MERCHIA. 10. Starting from standing position (where the SIGN START ) without marshal (self start) 5 minutes after TC4 KALO LIVADI OUT

Bayesian modeling of inseparable space-time variation in disease risk

Παράλληλος προγραμματισμός περιστροφικών αλγορίθμων εξωτερικών σημείων τύπου simplex ΠΛΟΣΚΑΣ ΝΙΚΟΛΑΟΣ

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Cite as: Pol Antras, course materials for International Economics I, Spring MIT OpenCourseWare ( Massachusetts

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

derivation of the Laplacian from rectangular to spherical coordinates

Ηλεκτρονικοί Υπολογιστές IV

Quick algorithm f or computing core attribute

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων. Εξάμηνο 7 ο

Inverse trigonometric functions & General Solution of Trigonometric Equations

ΣΥΓΚΡΙΣΗ ΑΝΑΛΥΤΙΚΩΝ ΚΑΙ ΑΡΙΘΜΗΤΙΚΩΝ ΜΕΘΟ ΩΝ ΓΙΑ ΤΗ

Μικροηλεκτρονική - VLSI

Example Sheet 3 Solutions

ΠΣΤΥΙΑΚΗ ΔΡΓΑΙΑ. Μειέηε Υξόλνπ Απνζηείξσζεο Κνλζέξβαο κε Τπνινγηζηηθή Ρεπζηνδπλακηθή. Αζαλαζηάδνπ Βαξβάξα

Aluminum Electrolytic Capacitors

Tridiagonal matrices. Gérard MEURANT. October, 2008

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ. Πτυχιακή εργασία

VBA Microsoft Excel. J. Comput. Chem. Jpn., Vol. 5, No. 1, pp (2006)

CEMENT FIXED RESISTORS

MPSoCs για εφαρμογές Video

ΜΕΛΕΤΗ ΤΗΣ ΗΛΕΚΤΡΟΝΙΚΗΣ ΣΥΝΤΑΓΟΓΡΑΦΗΣΗΣ ΚΑΙ Η ΔΙΕΡΕΥΝΗΣΗ ΤΗΣ ΕΦΑΡΜΟΓΗΣ ΤΗΣ ΣΤΗΝ ΕΛΛΑΔΑ: Ο.Α.Ε.Ε. ΠΕΡΙΦΕΡΕΙΑ ΠΕΛΟΠΟΝΝΗΣΟΥ ΚΑΣΚΑΦΕΤΟΥ ΣΩΤΗΡΙΑ

Συστήματα Διαχείρισης Βάσεων Δεδομένων

"ΦΟΡΟΛΟΓΙΑ ΕΙΣΟΔΗΜΑΤΟΣ ΕΤΑΙΡΕΙΩΝ ΣΥΓΚΡΙΤΙΚΑ ΓΙΑ ΤΑ ΟΙΚΟΝΟΜΙΚΑ ΕΤΗ "

(Mechanical Properties)

Transcript:

Minimization of Redundant CORDIC Area Architectures Pipeline Rostock, Germany 1 A.Wassatsch, S.Dolling, D.Timmermann Austin,Texas(USA) October 5, 1998

Rostock, Germany 2 Outline Motivation Introduction to CORDIC algorithm Previous approaches Area reduction method for add&shift algorithms Application for CORDIC Benets of area reduction Conclusion

Rostock, Germany fast, delay independent of { but very chip area wordlength, similarity of result generation to { algorithms (MSD- digit-oline investigation of behavior of { digits in redundant transfer 3 Motivation normalized area delay product 1 0.8 0.6 0.4 0.2 0 sample bit adder RCA CSKA CSEL CSUM CLA CSA RBA 10 20 30 40 50 60 redundant arithmetic consuming observation rst) adder arrays area-delay product vs. wordlength

Rostock, Germany 4 Outline Motivation Introduction to CORDIC algorithm Previous approaches Area reduction method for add&shift algorithms Application to CORDIC Benets of area reduction Conclusion

trigonometric = 1) (m linear = 0) (m hyperbolic =,1) (m Rostock, Germany x n = x 0 x n = x 0 y n = x 0 z 0 + y 0 z n = z 0 + y 0 =x 0 5 Introduction to CORDIC algorithm rotation (z n! 0) vectoring (y n! 0) x n = k 1 (x 0 cos(z 0 ), y 0 sin(z 0 )) x n = k 1 px 2 0 + y2 0 y n = k 1 (y 0 cos(z 0 )+x 0 sin(z 0 )) z n = z 0 + tan,1 (y 0 =x 0 ) p = k,1(x 0 cosh(z 0 )+y 0 sinh(z 0 )) x n = k,1 x 2 0, y2 0 n x y n = k,1(y 0 cosh(z 0 )+x 0 sinh(z 0 )) z n = z 0 + tanh,1 (y 0 =x 0 )

z i+1 = z i, i m;i Rostock, Germany = xnk,1 m x = ynk,1 m y m;i : rotation angle i : rotation direction 1+m 2 p m;i i p ( mm;i ) tan,1 p m 6 Introduction to CORDIC algorithm (cont') iteration: scaling: x i+1 = x i, m i 2,S(m;i) y i y i+1 = y i + i 2,S(m;i) x i with Y (, ) Xi+1 Yi+1 Y n,1 Y n,1 k m,i 1 k m;i = km = ( X i,y i ) i=0 i=0 a i Xn,1 Xn,1 m = i m;i = X i=0 i=0

of add&shift for CORDIC pipeline principle not shown) (z-datapath Rostock, Germany based on add & shift operations between two of tion three datapaths the 7 Introduction to CORDIC algorithm (cont') iteration 0 X Y shift 0 -> iteration 1 < σ > 0 add/sub register shift 1 -> iteration 2 < σ > 1 build a regular array shift 2 -> < σ > 2 intense communica-

Rostock, Germany 8 Outline Motivation Introduction to CORDIC algorithm Previous approaches Area reduction method for add&shift algorithms Application to CORDIC Benets of area reduction Conclusion

integration of scaling into the iteration; optimization of the { scaling operation [Schmidt, et al., 1986] special { i estimation [Takagi et al., 1991], [Lee and Lang, 1992] reducing the number of iteration repetitions { et al., 1992] [Timmermann booth recoding of i [Timmermann et al., 1992], { et al., 1996] [Antelo Rostock, Germany 9 Previous approaches area reduction by algorithmic modications

nonredundant architectures { and Sundsb, 1992] [Timmermann Rostock, Germany 10 Previous approaches (cont') area reduction on bit-level X s i Y s i P i V i { redundant-zero adder utilizes increasing shifts X s i P i V i X d i Y d i S i s S i d X i d S i s S d i P i-1 V i-1 P i-1 V i-1 Redundant adder-cell (RR)! Redundant zero adder-cell ()

Rostock, Germany 11 0 1 2 3 4 5 6 x 4, 7 Previous approaches (cont') - 4 2 y4,0-4 2 y4,1-4 2 y4, 2-4 2 y 4,3 s 4 Trunc. Trunc. RR RR RR RR - 5 2 y5,0-5 2 y5,1-5 2 y5,2 s 5 Trunc. Trunc. RR RR RR - 6 2 y 6,0-6 2 y6,1 s 6 Trunc. Trunc. RR RR x7,0 x7, 1 x7, 2 x7, 3 x7, 4 x7, 5 x7, 6 x 7, 7 Reducing x-datapath using -cells

Rostock, Germany 12 Outline Motivation Introduction to CORDIC algorithm Previous approaches Area reduction method for add&shift algorithms Application to CORDIC Benets of area reduction Conclusion

A 13!,14 S 14,13 4 6= 0 with recoding 11! 01, 11! 01, 101! 011, 101! 011 s Rostock, Germany 13 add 0 0 0 CAB 0 add X 0000000 1111111 111 A 000000000 1 CAB 0 0 0 0 X 0 0000000 1111111 111 S A 000000000 1 add CAB 0 0 0 0 0 X 0 RR RR 0000000 1111111 111 S 000000000 1 RR shift >=1 shift >=1 shift >=1 00000000 00000000 00000000 00000000 00000000 00000000 000000000 000000000 00000000 00000000 00000000 00000000 S = A + B + c in s i ;a i 2f1;0;1g i =0 b in 2 f1; 0; 1g c i = 0; 1; 2; 3 A closer look at redundant addition f(a 3 ;a 2 ;a 1 );(a 2 ;a 1 ;a 0 )g6=f(111); (111)g results in s 4 = 0 and f(s 3 ;s 2 ;s 1 );(s 2 ;s 1 ;s 0 )g6=f(111); (111)g

s4 s3 s2 s1 s0 s4 s3 s2 s1 s0 Rostock, Germany s4 s3 s2 s1 s0 14 Redundant addition of leading zero's a0;n,1 a0;n,2 a0;n,3 a0;n,4 a0;n,5 a0;n,6 a0;n,7 + 0 0 0 0 b0;n,1 b0;n,2 b0;n,3 a1;n,1 a1;n,2 a1;n,3 a1;n,4 a1;n,5 a1;n,6 a1;n,7 + 0 0 0 0 b1;n,1 b1;n,2 a1;n,1 a2;n,2 a2;n,3 a2;n,4 a2;n,5 a2;n,6 a2;n,7 + 0 0 0 0 b2;n,1 a1;n,1 a2;n,2 a3;n,3 a3;n,4 a3;n,5 a3;n,6 a3;n,7 ( bold face = fixed values)

suppression of pseudooverows Rostock, Germany absorbs any possible stops the ow of carry, 15 New cells for area reduction X i s P i V i X s i P i transfer digits P and V V i d X i-1 d X i S s i S d i X d i S i s S i d P i-1 V i-1 P i-1 V i-1 Redundant zero 0 cell (0) Carry absorber cell (CAB)

Rostock, Germany 16 Outline Motivation Introduction to CORDIC algorithm Previous approaches Area reduction method for add&shift algorithms Application to CORDIC Benets of area reduction Conclusion

reduction depends on operation mode, dierent implementation each mode for due to CORDIC-specic double iteration delayed start of method reduction { CAB-0-- { CAB-REC Rostock, Germany 17 reduction application: Area rotation mode CORDIC two alternative implementation possible advantage: starts one iteration before disadvantage: small increase in computing time (technology dependent)

18 Chip area reduction rotation mode CORDIC 000000000 0000000000 0000000000 0000000000 0000000000 0 0 0 0 00 00 00 00 000 000 000 000 0000 0000 0000 0000 00000 00000 00000 00000 1 11 11 11 11 111 111 111 111 1111 1111 1111 1111 1 1 1 1 11 11 11 11 111 111 111 111 1111 1111 1111 1111 11111 11111 11111 11111 000000000 0000000000 0000000000 0000000000 0000000000 0 0 0 0 00 00 00 00 000 000 000 000 0000 0000 0000 0000 00000 00000 00000 00000 1 11 11 11 11 111 111 111 111 1111 1111 1111 1111 1 1 1 1 11 11 11 11 111 111 111 111 1111 1111 1111 1111 11111 11111 11111 11111 0000000000 0 0 0 0 00 00 00 00 00 00 00 11 1111 1111 1111 1 1 1 1 11 11 11 11 11 11 11 X 0 Y 0 Z 0 Y n X n 00000 00000 11111 11111 logic (RR) logic(cab,0,) memory(only register) saved logic area σ 0.4n Rostock, Germany

Rostock, Germany 19 reduced Area datapath 1 2 3 4 x 4, n 5 x - 4, 6 7 8-4 - 4-4 - 4 2 y4, n - 1 2 y4, n - 2 2 y 4, n - 3 2 y 4, n - 4 s 4 CAB 0 RR RR RR RR - 5-5 - 5 2 y5, 1 2 y5, n - 2 2 y5, n - 3 s 5 CAB 0 RR RR RR - 6-6 2 y6, n - 1 2 y6, 2 s 6 CAB 0 RR RR x7, 1 x7, 2 x7, n - 3 x7, n - 4 x7, n - 5 x7, n - 6 x7, n - 7 x7, n - 8 Novel area reduced x-datapath by using special adder cells

Rostock, Germany 20 1 2 3 4 5 6 7 8 Area reduced datapath, second version - 4-4 - 4-4 2 y4, n - 1 2 y4, n - 2 2 y 4, n - 3 2 y 4, n - 4 s 4 CAB REC RR RR RR RR - 5-5 - 5 2 y5, 1 2 y5, n - 2 2 y5, 3 s 5 CAB REC RR RR RR - 6-6 2 y6, n - 1 2 y6, 2 s 6 CAB REC RR RR x7, n - 1 x7, n - 2 x7, n - 3 x7, n - 4 x7, n - 5 x7, n - 6 x7, n - 7 x7, n - 8 Novel area reduced x-datapath by using 3 digit adder cells

Rostock, Germany x i+1 = x i, m i 2,2S(m;i) y i z i+1 = z i, i m;i 21 Area reduction for CORDIC vectoring mode modied iteration y i+1 = 2(y i + i x i ) larger hardware savings due to larger right shift in x-datapath only registers for x required after iteration i dn=2e y resembles to the situation in the z-path for rotation mode only a small strip of special cells in the z-path after dn=3e

Rostock, Germany 22 X 0 Y 0 Z 0 Chip area reduction vectoring mode CORDIC 0.5n 00000 11111 00000 11111 0000 1111 000 111 000 111 00 11 00 11 0 1 00000 11111 00000 11111 00000 11111 00000 11111 0000 1111 0000 1111 0000 1111 0000 1111 000 111 000 111 000 111 000 111 00 11 00 11 00 11 00 11 0 1 0 1 0 1 0 1 σ 1111 1111 1111 1111 111 111 111 111 0000000000 11 0000000000 11 0000000000 11 0000000000 11 000000000 1 000000000 1 000000000 1 000000000 1 00000000 00000000 00000000 00000000 0000000 1111111 0000000 1111111 0000000 1111111 0000000 1111111 000000 111111 000000 111111 000000 111111 000000 111111 00000 11111 00000 11111 00000 11111 00000 11111 00000 11111 00000 11111 logic (RR) 0.4n logic(cab,0,) X n memory(only register) saved logic area Z n

Rostock, Germany 23 comparison of redundant CORDIC Area architectures relation area effort to standard redundant 1.2 1.1 1 0.9 0.8 0.7 0.6 0.5 full redundant redundant zero add&shift 10 20 30 40 50 60 wordlength n relation area effort to standard redundant 1.2 1.1 1 0.9 0.8 0.7 0.6 0.5 full redundant redundant zero add&shift 10 20 30 40 50 60 wordlength n rotation mode vectoring mode

Rostock, Germany 24 Outline Motivation Introduction to CORDIC algorithm Previous approaches Area reduction method for add&shift algorithms Application to CORDIC Benets of area reduction Conclusion

Rostock, Germany static power decreases proportional { with cell area dynamic power decreases as { well chip area results in smaller wire length with re- shorter capacity load for standarduced cell layouts 25 Benets of area reduction 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 estimated normalized power consumption full redundant redundant zero add&shift 10 20 30 40 50 60 wordlength n power minimization speed improvment

Area reduction method is applicable in general add&shift by successively adder cells savings architectures With optimized full custom cells for CAB, 0, the results be improved can Rostock, Germany 26 Conclusion Up to 40% area savings possible Results checked by sample synthesized layouts

of Slides List Outline 2 Motivation 3 Outline 4 Introduction to CORDIC algorithm 5 Introduction to CORDIC algorithm (cont') 6 Introduction to CORDIC algorithm (cont') 7 Outline 8 Previous approaches 9 Previous approaches (cont') 10 Previous approaches (cont') 11 Outline 12 A closer look at redundant addition 13 Redundant addition of leading zero's 14 New cells for area reduction 15 Outline 16 Area reduction application: 17 rotation mode CORDIC Chip area reduction rotation mode CORDIC 18 Area reduced datapath 19 Area reduced datapath, second version 20 Area reduction for CORDIC vectoring mode 21 Chip area reduction vectoring mode CORDIC 22 Area comparison of redundant CORDIC architectures 23 Outline 24 Benefits of area reduction 25 26-1 26 Conclusion

26-2 References et al., 1996] Antelo, E., Brugera, J., and Zapata, E. (1996). Unified mixed radix 2-4 redundant cordic [Antelo processor. IEEE Trans. on Computers, 45(9):1068{1073. [Lee and Lang, 1992] Lee, J.-A. and Lang, T. (1992). Constant-factor redundant cordic for angle calculation and rotation. IEEE Trans. on Computers, 41(8):1016{1025. [Schmidt, et al., 1986] Schmidt, et al. (1986). Parameter optimization of the cordic-algorithm and implementation in a cmos-chip. In Proc. EUSICO-86, B. 2, pages 1219{1222, Hague, Netherlands. [Takagi et al., 1991] Takagi, N., Asada, T., and Yajima, S. (1991). Redundant cordic methods with a constant scale factor for sine and cosine computation. IEEE Trans. on Computers, 40(9):989{995. [Timmermann et al., 1992] Timmermann, D., Hahn, H., and Hosticka, B. (1992). Low latency time cordic algorithms. IEEE Trans. on Computers, 41(8):1010{1015. [Timmermann and Sundsb, 1992] Timmermann, D. and Sundsb, I. (1992). Area and latency efficient cordic architectures. In Proc. ISCAS'92, pages 1093{1096, San Diego.