A Two Sample Test for Mean Vectors with Unequal Covariance Matrices

Σχετικά έγγραφα
α & β spatial orbitals in

Multi-dimensional Central Limit Theorem

Variance of Trait in an Inbred Population. Variance of Trait in an Inbred Population

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.

One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF

Multi-dimensional Central Limit Theorem

Other Test Constructions: Likelihood Ratio & Bayes Tests

ST5224: Advanced Statistical Theory II

Generalized Fibonacci-Like Polynomial and its. Determinantal Identities

8.1 The Nature of Heteroskedasticity 8.2 Using the Least Squares Estimator 8.3 The Generalized Least Squares Estimator 8.

Lecture 34 Bootstrap confidence intervals

Μηχανική Μάθηση Hypothesis Testing

Statistical Inference I Locally most powerful tests

Vol. 34 ( 2014 ) No. 4. J. of Math. (PRC) : A : (2014) Frank-Wolfe [7],. Frank-Wolfe, ( ).

5 Haar, R. Haar,. Antonads 994, Dogaru & Carn Kerkyacharan & Pcard 996. : Haar. Haar, y r x f rt xβ r + ε r x β r + mr k β r k ψ kx + ε r x, r,.. x [,

Estimators when the Correlation Coefficient. is Negative

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

1 Complete Set of Grassmann States

ΠΤΥΧΙΑΚΗ/ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

A Class of Orthohomological Triangles

8.324 Relativistic Quantum Field Theory II

2 Composition. Invertible Mappings

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

C.S. 430 Assignment 6, Sample Solutions

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Supplementary materials for Statistical Estimation and Testing via the Sorted l 1 Norm

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Lecture 2. Soundness and completeness of propositional logic

Appendix. Appendix I. Details used in M-step of Section 4. and expect ultimately it will close to zero. αi =α (r 1) [δq(α i ; α (r 1)

Every set of first-order formulas is equivalent to an independent set

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Homework 3 Solutions

Proposal of Terminal Self Location Estimation Method to Consider Wireless Sensor Network Environment

EE512: Error Control Coding

LECTURE 4 : ARMA PROCESSES

Math221: HW# 1 solutions

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

A General Note on δ-quasi Monotone and Increasing Sequence

Concrete Mathematics Exercises from 30 September 2016

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Finite Field Problems: Solutions

CAPM. VaR Value at Risk. VaR. RAROC Risk-Adjusted Return on Capital

Approximation of distance between locations on earth given by latitude and longitude

New bounds for spherical two-distance sets and equiangular lines

Fractional Colorings and Zykov Products of graphs

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

A Sequential Experimental Design based on Bayesian Statistics for Online Automatic Tuning. Reiji SUDA,

arxiv: v1 [stat.me] 20 Jun 2015

Math 6 SL Probability Distributions Practice Test Mark Scheme

Suppose Mr. Bump observes the selling price and sales volume of milk gallons for 10 randomly selected weeks as follows

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Non polynomial spline solutions for special linear tenth-order boundary value problems

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

CRASH COURSE IN PRECALCULUS

Neutralino contributions to Dark Matter, LHC and future Linear Collider searches

5.4 The Poisson Distribution.

Exam Statistics 6 th September 2017 Solution

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Supporting information for: Functional Mixed Effects Model for Small Area Estimation

On a four-dimensional hyperbolic manifold with finite volume

Example Sheet 3 Solutions

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

Section 7.6 Double and Half Angle Formulas

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

Supplementary Material For Testing Homogeneity of. High-dimensional Covariance Matrices

Correction Table for an Alcoholometer Calibrated at 20 o C

Areas and Lengths in Polar Coordinates

Srednicki Chapter 55

Reaction of a Platinum Electrode for the Measurement of Redox Potential of Paddy Soil

Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03)..

ΜΕΛΕΤΗ ΤΗΣ ΜΑΚΡΟΧΡΟΝΙΑΣ ΠΑΡΑΜΟΡΦΩΣΗΣ ΤΟΥ ΦΡΑΓΜΑΤΟΣ ΚΡΕΜΑΣΤΩΝ ΜΕ ΒΑΣΗ ΑΝΑΛΥΣΗ ΓΕΩΔΑΙΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΜΕΤΑΒΟΛΩΝ ΣΤΑΘΜΗΣ ΤΑΜΙΕΥΤΗΡΑ

A Note on Intuitionistic Fuzzy. Equivalence Relation

Uniform Convergence of Fourier Series Michael Taylor

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Congruence Classes of Invertible Matrices of Order 3 over F 2

Section 8.3 Trigonometric Equations

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

4.6 Autoregressive Moving Average Model ARMA(1,1)

Estimation for ARMA Processes with Stable Noise. Matt Calder & Richard A. Davis Colorado State University

Generalized Linear Model [GLM]

( ) 2 and compare to M.

Tridiagonal matrices. Gérard MEURANT. October, 2008

Matrices and vectors. Matrix and vector. a 11 a 12 a 1n a 21 a 22 a 2n A = b 1 b 2. b m. R m n, b = = ( a ij. a m1 a m2 a mn. def

ΠΑΡΑΜΕΤΡΟΙ ΕΠΗΡΕΑΣΜΟΥ ΤΗΣ ΑΝΑΓΝΩΣΗΣ- ΑΠΟΚΩΔΙΚΟΠΟΙΗΣΗΣ ΤΗΣ BRAILLE ΑΠΟ ΑΤΟΜΑ ΜΕ ΤΥΦΛΩΣΗ

Areas and Lengths in Polar Coordinates

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Some generalization of Cauchy s and Wilson s functional equations on abelian groups

Theorem 8 Let φ be the most powerful size α test of H

Comparison of Evapotranspiration between Indigenous Vegetation and Invading Vegetation in a Bog

PARTIAL NOTES for 6.1 Trigonometric Identities

Repeated measures Επαναληπτικές μετρήσεις

Partial Differential Equations in Biology The boundary element method. March 26, 2013

department listing department name αχχουντσ ϕανε βαλικτ δδσϕηασδδη σδηφγ ασκϕηλκ τεχηνιχαλ αλαν ϕουν διξ τεχηνιχαλ ϕοην µαριανι

6.3 Forecasting ARMA processes

w o = R 1 p. (1) R = p =. = 1

Solution Series 9. i=1 x i and i=1 x i.

Bounding Nonsplitting Enumeration Degrees

Transcript:

A Two Sample Test for Mean Vectors wth Unequal Covarance Matrces Tamae Kawasak 1 and Takash Seo 2 1 Department of Mathematcal Informaton Scence Graduate School of Scence, Tokyo Unversty of Scence, Tokyo, Japan 2 Department of Mathematcal Informaton Scence Faculty of Scence, Tokyo Unversty of Scence, Tokyo, Japan Abstract In ths paper, we consder testng the equalty of two mean vectors wth unequal covarance matrces. In the case of equal covarance matrces, we can use Hotellng s T 2 statstc, whch follows the F dstrbuton under the null hypothess. Meanwhle, n the case of unequal covarance matrces, the T 2 type test statstc does not follow the F dstrbuton, and t s also dffcult to derve the exact dstrbuton. In ths study, we propose an approxmate soluton to the problem by adjustng the degrees of freedom of the F dstrbuton. That s, we derve an extenson of the results derved by Yanaghara and Yuan (2005). Asymptotc expansons up to the term of order N 2 for the frst and second moments of the test statstc are gven, where N s the total sample sze mnus two, and a new result of the approxmate degrees of freedom s obtaned. Fnally, numercal comparson s presented by a Monte Carlo smulaton. Keywords Approxmate degrees of freedom; F approxmaton; Hotellng s T 2 statstc; Multvarate Behrens-Fsher problem; Two sample problem. 1 Introducton Let x 1,..., x j,..., x n be p-dmensonal random vectors from N p (µ, Σ ), = 1, 2, j = 1, 2,..., n. We consder the followng hypothess test problem: H 0 : µ 1 = µ 2 vs. H 1 : µ 1 µ 2, (1.1) where Σ 1 Σ 2. A natural statstc for testng (1.1) s ( T = (x 1 x 2 ) S1 + S ) 1 2 (x 1 x 2 ), n 1 n 2 where x = 1 n n j=1 x j, S = 1 n 1 n j=1 (x j x )(x j x ). 1

When n 1 = n 2 and Σ 1 = Σ 2, the T statstc s reduced to the two sample Hotellng s T 2 statstc. Then, under the null hypothess n (1.1), (n p 1)T/{p(n 2)} follows the F dstrbuton wth p and n p 1 degrees of freedom, where n = n 1 + n 2. To consder the tests for equalty of two mean vectors s a fundamental problem. Mean comparson wth unequal varances s ntrnscally dffcult, and s well known as the Behrens-Fsher problem. Welch (1938) and Scheffé (1943) proposed approxmate solutons for the unvarate case. One of the earlest methods for solvng the multvarate Behrens-Fsher problem was derved by Bennett (1951) based on an extenson of Scheffé s (1943) unvarate soluton. Some approxmate solutons were consdered by James (1954), Yao (1965), Johansen (1980), Nel et al. (1990), and Km (1992). Nel et al. (1986) obtaned the exact null dstrbuton of T, and Krshnamoorthy and Yu (2004) proposed a modfcaton to the soluton. Recently, Krshnamoorthy and Yu (2012) proposed a soluton extendng the modfed Nel and Van der Merwe s test procedure n ther earler study to the case of ncomplete data wth a monotone pattern. The problem concerns the dfference between the mean vectors of two normal populatons wth the case of a monotone mssng pattern when Σ 1 = Σ 2, as suggested by Seko, Kawasak and Seo (2011). Grón and del Castllo (2010) studed the multvarate Behrens-Fsher dstrbuton, whch s defned as the convoluton of two ndependent multvarate Student t dstrbutons. Yanaghara and Yuan (2005) provded three approxmate solutons to the multvarate Behrens-Fsher problem that are two F approxmatons wth approxmate degrees of freedom and modfed Bartlett corrected statstc. However, these solutons are not good approxmatons when the dfference between the covarance matrces s large. Our goal s to gve a new approxmate soluton by an extenson of Yanaghara and Yuan (2005). The followng secton presents a dervaton of the man result by approxmate degrees of freedom and presents the proof. In Secton 3, we compare four approxmate procedures by Monte Carlo smulaton and evaluate the advantages of the proposed procedures. In the Appendx, we present certan formulas used to derve the man result. 2

2 Approxmate Degrees of Freedom Assumng the standard regularty condton n /n = O(1), = 1, 2, then, as n Yanaghara and Yuan (2005), we can wrte where z = T = z W 1 z = z z U, (2.1) n1 n ( 2 n Σ 1/2 (x 1 x 2 ), W = Σ 1/2 n 2 n S 1 + n ) 1 n S 2 Σ 1/2, By approxmatng the dstrbuton of U as Σ = n 2 n Σ 1 + n 1 n Σ 2, U = z z z W 1 z. we have U χ2 ν ϕ, (2.2) ν pϕ T χ2 p/p χ 2 ν/ν F p,ν. Note that when Σ 1 = Σ 2 and n 1 = n 2, U s exactly dstrbuted as χ 2 ν/ϕ, where ν = n p 1 and ϕ = n 2. In general, the constants ν and ϕ can be gven usng the followng theorems for the frst and second moments of U. Theorem 2.1 Let U = z z/z W 1 z be defned by (2.1). Then, an asymptotc expanson up to the term of order N 2 for E[U] can be expanded as where E[U] = 1 θ 1 N + 1 N 2 (θ 2 θ 3 ) + O(N 3 ), (2.3) N =n 2, θ 1 = 1 p(p + 2) =1 c {p(a (1) ) 2 + (p 2)a (2) }, 3

1 θ 2 = p(p + 2)(p + 4) =1 { 1 θ 3 = p(p + 2)(p + 4)(p + 6) d {4p 2 a (3) + (p 2)(3p + 4)a (1) a (2) + p(p + 2)(a (1) ) 3 }, =1 c 2 { p 2 (5p + 14)a (4) + 4(p + 3)(p + 2)(p 2)a (1) a (3) +p(p + 3)(p 2)(a (2) ) 2 + 2(p 3 + 5p 2 + 7p + 6)a (2) (a (1) ) 2 p(p + 4)(a (1) ) 4} + 4(p + 3)(p + 2)(p 2)ψ 1 + 4p(p + 2)(p 2)ψ 2 + 4p(p + 4)(p + 2)ψ 3 2p(p 2)ψ 4 2(p + 3)(p 2)ψ 5 2p(p + 4)(p 2)ψ 6 2p(p + 4)ψ 7 + 2p(p + 4)(3p + 2)ψ 8 }, wth ψ k, k = 1, 2,..., 7 gven by ψ 1 = c 1 c 2 {a (1) 1 b(1, 2, 1) + a (1) 2 b(2, 1, 1) }, ψ 2 = c 1 c 2 b (2, 2, 1), ψ 3 = c 1 c 2 a (1) 1 a(1) 2 b(1, 1, 1), ψ 4 = c 1 c 2 a (2) 1 a(2) 2, ψ 5 = c 1 c 2 {a (2) 1 (a(1) 2 )2 + (a (1) 1 )2 a (2) 2 }, ψ 6 = c 1 c 2 (b (1, 1, 1) ) 2, ψ 7 = c 1 c 2 (a (1) 1 )2 (a (1) 2 )2, ψ 8 = c 1 c 2 b (1,1,2), and c = (n n ) 2 (n 2) n 2, d = (n n ) 3 (n 2) 2 (n 1) n 3 (n 1) 2, a (l) = tr(σ Σ 1 ) l, = 1, 2, l = 1, 2, 3, 4, b (q, r, s) = tr{(σ 1 Σ 1 ) q (Σ 2 Σ 1 ) r } s, (q, r, s) = (1, 1, 1), (1, 1, 2), (1, 2, 1), (2, 1, 2), (2, 2, 1). Proof. Let ρ = n 1 n n 2 ( = 1, 2), Ω n = n 1 Σ 2 Σ 1 2 and V = n 1(Σ 1/2 S Σ 1/2 I p ), = 1, 2. Then, W 1 can be expanded as where W 1 = I p 1 N V + 1 N V 2 1 N N V 3 + 1 N 2 V 4 + O p (N 5/2 ), (2.4) V = =1 ρ 1 Ω V Ω. 4

Note that U = z z/z W 1 z. It follows from (2.4) that we can expand U as U =1 + 1 N Q 1 + 1 N (Q2 1 Q 2 ) + 1 N N (Q 3 2Q 1 Q 2 + Q 3 1) + 1 N 2 (Q4 1 Q 4 + 2Q 1 Q 3 + Q 2 2 3Q 2 1Q 2 ) + O p (N 5/2 ), where Q = z V z/z z, = 1, 2, 3, 4. Note that V and z are ndependent, and so are z V z/z z and z z, as well as z V 2 z/z z and z z (see Fang et al., 1990, p.30). In the same way as n Yanaghara and Yuan (2005), the followng results can be obtaned after a good deal of calculaton: () E[Q 1 ] = 0, () E[Q 2 ] = 1 p E[Q 2 1] = =1 2 p(p + 2) () NE[Q 3 ] = 1 p NE[Q1 Q 2 ] = NE[Q 3 1 ] = c {(a (1) ) 2 + a (2) }, =1 =1 c {(a (1) ) 2 + 2a (2) }, d {4a (3) + 3a (1) a (2) + (a (1) ) 3 }, 2 p(p + 2) =1 8 p(p + 2)(p + 4) d {6a (3) + 5a (1) a (2) + (a (1) ) 3 }, =1 d {8a (3) + 6a (1) a (2) + (a (1) ) 3 }, (v) E[Q 4 ] = 1 { c 2 {5a (4) + 4a (1) a (3) + (a (2) ) 2 + 2a (2) (a (1) ) 2 } p =1 } +2(2ψ 1 + 2ψ 2 + 2ψ 3 + ψ 6 + 3ψ 8 ) + O(N 1 ), { E[Q 4 12 1] = c 2 {48a (4) +32a (1) a (3) +12(a (2) ) 2 +12a (2) (a (1) ) 2 +(a (1) ) 4 } p(p + 2)(p + 4)(p + 6) =1 } +2(16ψ 1 + 32ψ 2 + 8ψ 3 + 4ψ 4 + 2ψ 5 + 8ψ 6 + ψ 7 + 16ψ 8 ) + O(N 1 ), E[Q 1 Q 3 ] = { 2 c 2 {8a (4) + 7a (1) a (3) + (a (2) ) 2 + 2a (2) (a (1) ) 2 } p(p + 2) =1 } +(7ψ 1 + 10ψ 2 + 4ψ 3 + 2ψ 6 + 6ψ 8 ) + O(N 1 ), 5

{ E[Q 2 1 2] = c 2 {14a (4) + 8a (1) a (3) + 7(a (2) ) 2 + (a (1) ) 4 + 6a (2) (a (1) ) 2 } p(p + 2) =1 } +2(4ψ 1 + 4ψ 2 + 4ψ 3 + ψ 4 + ψ 5 + 6ψ 6 + ψ 7 + 10ψ 8 ) + O(N 1 ), E[Q 2 1Q 2 ] = 2 p(p + 2)(p + 4) { =1 c 2 {40a (4) + 28a (1) a (3) + 10(a (2) ) 2 + 11a (2) (a (1) ) 2 + (a (1) ) 4 } +28ψ 1 + 48ψ 2 + 16ψ 3 + 4ψ 4 + 3ψ 5 + 16ψ 6 + 2ψ 7 + 32ψ 8 } + O(N 1 ). Usng the above results, we can show (2.3). Ths completes the proof of Theorem 2.1. In addton, we have the followng result. Corollary 2.1 If Σ 1 = Σ 2, n 1 = n 2, then E[U] = 1 1 1 (p 1) + N N 2 p 2 (p 2) (p + 2)(p + 6) + O(N 3 ). Smlarly, as the result of asymptotc expanson for E[U 2 ],we have the followng theorem. Theorem 2.2 Let U = z z/z W 1 z be defned by (2.1). Then, an asymptotc expanson up to the term of order N 2 for E[U 2 ] can be expanded as where 1 θ 4 = p(p + 2) E[U 2 ] = 1 2 N (θ 1 θ 4 ) + 1 N 2 (2θ 5 θ 6 ) + O(N 3 ), (2.5) =1 1 θ 5 = p(p + 2)(p + 4) { c (a (1) ) 2 } + 2a (2), =1 d { 4(p 2 3p + 4)a (3) + 3p(p 4)a (1) a (2) + p 2 (a (1) ) 3}, 6

{ 1 θ 6 = c 2 {2(p + 1)(5p 2 14p + 24)a (4) + 4(p 4)(2p 2 + 5p + 6)a (1) a (3) p(p + 2)(p + 4)(p + 6) =1 + (p 2)(p 4)(2p + 3)(a (2) ) 2 + 2(p + 2)(2p 2 p + 12)a (2) (a (1) ) 2 3(p 2 + 2p 4)(a (1) ) 4 } + 4(p 4)(2p 2 + 5p + 6)ψ 1 + 8p(p 2)(p 4)ψ 2 + 8p(p 2 + 4p + 2)ψ 3 6(p 2)(p 4)ψ 4 6(p 4)(p + 2)ψ 5 +4(p + 3)(p 2)(p 4)ψ 6 6(p 2 + 2p 4)ψ 7 +12(p 3 +p 2 2p + 8)ψ 8 }. Proof. In the same way, we can expand U 2 as U 2 =1 + 2 N Q 1 + 1 N (3Q2 1 2Q 2 ) + 2 N N (Q 3 3Q 1 Q 2 + 2Q 3 1) + 1 N 2 (5Q4 1 2Q 4 + 6Q 1 Q 3 + 3Q 2 2 12Q 2 1Q 2 ) + O p (N 5/2 ). By calculatng the expectatons of the above results, we can show (2.5). Ths completes the proof of Theorem 2.2. In addton, we have the followng result. Corollary 2.2 If Σ 1 = Σ 2, n 1 = n 2, then E[U 2 ] = 1 2 1 (p 2) + N N 2 p5 + 6p 4 p 3 92p 2 60p + 144 + O(N 3 ). (p + 2)(p + 4)(p + 6) It follows from (2.2) that E[U] ν ϕ, E[U 2 ] ν(ν + 2) ϕ 2. Therefore, usng the asymptotc expansons of E[U] and E[U 2 ] n Theorems 2.1 and 2.2, the new approxmaton to the values of ν and ϕ are gven by ν KS = ϕ KS = 2(N 2 Nθ 1 + θ 2 θ 3 ) 2 N 2 (N 2 2Nθ 1 + 2Nθ 4 + 2θ 5 θ 6 ) (N 2 Nθ 1 + θ 2 θ 3 ) 2, (2.6) N 2 ν N 2 Nθ 1 + θ 2 θ 3, (2.7) respectvely. We can propose a new procedure as follows. 7

(I) Hgh Order Procedure T KS = ν KS pϕ KS T a F p,νks where ν KS and ϕ KS are gven by (2.6) and (2.7), respectvely, and where a means approxmately followng. If θ 2 = θ 3 = θ 5 = θ 6 = 0, then ν KS = (N θ 1) 2 Nθ 4 θ 2 1 /2(= ν Y ), ϕ KS = ν Y N N θ 1 (= ϕ Y ), (2.8) and these values are the same as the results of Yanaghara and Yuan (2005). In addton, they slghtly adjust the coeffcent ν Y to whch wll be used to obtan the F approxmaton. 3 Numercal Studes ν M = (N θ 1) 2 Nθ 4 θ 1, (2.9) In ths secton, we perform a Monte Carlo smulaton n order to nvestgate the accuracy of our procedure (I) and to compare t wth the followng three procedures: (II) Yanaghara and Yuan s (2005) Procedure where ν Y and ϕ Y are gven by (2.8). T Y = ν Y pϕ Y T a F p,νy (III) Modfed Yanaghara and Yuan s (2005) Procedure where T M = ν M pϕ M T a F p,νm ϕ M = ν MN N θ 1 and ν M s gven by (2.9). 8

(IV) Modfed Bartlett Procedure (see Yanaghara and Yuan (2005)) ( T MB = (N β 1 + β 2 ) log 1 + T ) a N β χ 2 p, 1 where 2 β 1 =, β2 = (p + 2) γ 2 2(p + 4) γ 1, γ 2 2 γ 1 2( γ 2 2 γ 1 ) γ 1 = 1 c {(â (1) ) 2 1 + â (2) }, γ 2 = c {2(p + 3)(â (1) ) 2 + 2(p + 4)â (2) }, p p(p + 2) =1 â (l) = tr(s S 1 ) l, S = n 2 n S 1 + n 1 n S 2. For each of parameter, the smulaton was carred out for 1,000,000 trals based on normal random vectors. Wthout loss of generalty, we can assume that µ 1 = µ 2 = 0. We compare the followng type I errors for four procedures: (I) α 1 = P(T KS > F α;p,νks ), (II) α 2 = P(T Y > F α;p,νy ), (III) α 3 = P(T M > F α;p,νm ), (IV) α 4 = P(T MB > c α;p ), where F α;m,n s the upper 100α percentle of the F dstrbuton wth m and n degrees of freedom and c α;p s the upper 100α percentle of the ch-square dstrbuton wth p degrees of freedom. We choose α = 0.05, 0.01, p = 4, 8, and the sample szes (n 1, n 2 ) = (10, 10), (10, 20), (20, 10), (20, 20), (50, 50), (50, 80), (80, 50), (80, 80) for (I) (IV). We note that the second degree of freedom of F dstrbuton for the test statstc (I) (III) changes wth each smulaton of 1,000,000 trals. In practcal use, we must estmate a (l) ths paper, we use the consstent estmators of a (l) procedure (IV). =1 and b (q,r,s) for (I) (III) snce Σ and Σ are unknown. In and b (q,r,s), whch are the same as that of Table 1 presents the emprcal szes α j, j = 1, 2, 3, 4 n the case of Σ 1 = dag(η, η 2,, η p ) and Σ 2 = I, where η = 1, 5(5)20. We note that Σ 1 1 and the dfference between Σ 1 and Σ 2 s large when η s large. Tables 2 and 3 present the emprcal szes α j, j = 1, 2, 3, 4 n the case of Σ 1 = σ 2 I and Σ 2 = I, where σ 2 = 0.1(0.2)0.9,1 n Table 2, and σ 2 = 2, 5(5)30 n Table 3. We note that the emprcal szes for the case of Σ 1 1 and Σ 1 > 1 are gven n Tables 2 and 3, respectvely. The last row of each of these tables ndcates the average absolute dscrepancy (AAD). In ths context, see Yanaghara and Yuan (2005). 9

Table 1 Emprcal szes ( α 1 α 4 ) when p = 4, 8, and η = 1, 5(5)20 α = 0.05 α = 0.01 p n 1 n 2 η α 1 α 2 α 3 α 4 α 1 α 2 α 3 α 4 4 10 10 1 0.047 0.048 0.044 0.046 0.009 0.010 0.008 0.009 5 0.057 0.067 0.045 0.057 0.013 0.017 0.008 0.013 10 0.055 0.069 0.042 0.057 0.012 0.018 0.007 0.013 15 0.054 0.070 0.040 0.057 0.012 0.019 0.007 0.013 20 0.054 0.070 0.039 0.057 0.012 0.019 0.007 0.013 10 20 1 0.053 0.053 0.049 0.051 0.011 0.011 0.009 0.010 5 0.057 0.070 0.039 0.059 0.013 0.019 0.007 0.013 10 0.054 0.070 0.036 0.057 0.012 0.019 0.006 0.013 15 0.053 0.070 0.034 0.057 0.012 0.019 0.005 0.013 20 0.053 0.070 0.033 0.056 0.011 0.019 0.005 0.013 20 10 1 0.053 0.053 0.049 0.051 0.011 0.011 0.009 0.010 5 0.051 0.052 0.049 0.051 0.010 0.011 0.010 0.010 10 0.051 0.053 0.049 0.051 0.010 0.011 0.010 0.011 15 0.051 0.053 0.049 0.051 0.010 0.011 0.010 0.010 20 0.050 0.053 0.049 0.051 0.010 0.011 0.009 0.010 20 20 1 0.049 0.049 0.048 0.049 0.010 0.010 0.009 0.009 5 0.051 0.053 0.049 0.052 0.010 0.011 0.009 0.010 10 0.051 0.054 0.048 0.052 0.010 0.012 0.009 0.011 15 0.051 0.053 0.048 0.051 0.010 0.012 0.009 0.010 20 0.050 0.053 0.047 0.051 0.010 0.012 0.009 0.010 AAD 0.322 1.098 0.661 0.439 0.124 0.476 0.217 0.168 8 10 10 1 0.046 0.000 0.035 0.048 0.009 0.000 0.005 0.009 5 0.077 0.000 0.030 0.149 0.018 0.000 0.004 0.052 10 0.073 0.000 0.022 0.160 0.018 0.000 0.003 0.061 15 0.071 0.000 0.019 0.165 0.018 0.000 0.003 0.064 20 0.069 0.000 0.017 0.167 0.018 0.000 0.002 0.066 10 20 1 0.060 0.028 0.048 0.060 0.012 0.013 0.008 0.012 5 0.079 0.000 0.017 0.162 0.020 0.000 0.002 0.061 10 0.073 0.000 0.012 0.169 0.020 0.000 0.001 0.067 15 0.070 0.000 0.011 0.171 0.019 0.000 0.001 0.029 20 0.068 0.000 0.010 0.172 0.019 0.000 0.001 0.071 20 10 1 0.059 0.028 0.048 0.059 0.012 0.013 0.008 0.012 5 0.053 0.000 0.046 0.058 0.011 0.000 0.009 0.013 10 0.052 0.000 0.044 0.059 0.011 0.000 0.008 0.013 15 0.052 0.000 0.043 0.058 0.011 0.000 0.007 0.013 20 0.052 0.000 0.043 0.059 0.011 0.000 0.007 0.013 20 20 1 0.050 0.068 0.047 0.049 0.010 0.019 0.009 0.010 5 0.053 0.000 0.041 0.059 0.011 0.000 0.007 0.013 10 0.052 0.000 0.038 0.059 0.011 0.000 0.006 0.013 15 0.051 0.000 0.037 0.058 0.010 0.000 0.006 0.013 20 0.051 0.000 0.037 0.058 0.010 0.000 0.006 0.013 AAD 0.011 0.046 0.018 0.050 0.004 0.009 0.005 0.021 Note : AAD = 100 α 100α /20 10

Table 2 Emprcal szes ( α 1 α 4 ) when p = 4, 8 and σ 2 = 0.1(0.2)0.9, 1 α = 0.05 α = 0.01 p n 1 n 2 σ 2 α 1 α 2 α 3 α 4 α 1 α 2 α 3 α 4 4 10 10 0.1 0.058 0.064 0.049 0.057 0.013 0.015 0.009 0.012 0.3 0.052 0.054 0.047 0.051 0.010 0.012 0.009 0.010 0.5 0.049 0.051 0.045 0.048 0.009 0.010 0.008 0.009 0.7 0.047 0.049 0.045 0.047 0.009 0.010 0.008 0.009 0.9 0.047 0.049 0.044 0.046 0.009 0.010 0.008 0.009 1 0.047 0.048 0.044 0.046 0.009 0.010 0.008 0.009 10 20 0.1 0.050 0.051 0.049 0.050 0.010 0.011 0.010 0.010 0.3 0.048 0.049 0.047 0.048 0.009 0.010 0.009 0.009 0.5 0.049 0.050 0.047 0.048 0.010 0.010 0.010 0.009 0.7 0.051 0.051 0.048 0.050 0.010 0.010 0.009 0.010 0.9 0.053 0.053 0.048 0.051 0.011 0.011 0.009 0.010 1 0.053 0.053 0.049 0.051 0.011 0.011 0.009 0.010 20 10 0.1 0.061 0.069 0.044 0.060 0.014 0.018 0.008 0.014 0.3 0.061 0.063 0.049 0.058 0.014 0.015 0.009 0.013 0.5 0.059 0.059 0.050 0.056 0.013 0.013 0.010 0.012 0.7 0.056 0.056 0.050 0.054 0.012 0.012 0.010 0.011 0.9 0.054 0.054 0.049 0.052 0.011 0.011 0.009 0.010 1 0.053 0.053 0.049 0.051 0.011 0.011 0.009 0.010 20 20 0.1 0.052 0.053 0.049 0.052 0.011 0.011 0.010 0.010 0.3 0.051 0.051 0.049 0.050 0.010 0.011 0.010 0.010 0.5 0.050 0.050 0.049 0.050 0.010 0.010 0.010 0.010 0.7 0.049 0.050 0.049 0.049 0.010 0.010 0.009 0.010 0.9 0.049 0.049 0.048 0.049 0.010 0.010 0.009 0.010 1 0.049 0.049 0.048 0.049 0.010 0.010 0.009 0.009 AAD 0.335 0.387 0.227 0.263 0.112 0.140 0.096 0.089 Note : AAD = 100 α 100α /24 11

Table 2 (Contnued) α = 0.05 α = 0.01 p n 1 n 2 σ 2 α 1 α 2 α 3 α 4 α 1 α 2 α 3 α 4 8 10 10 0.1 0.069 0.000 0.044 0.095 0.012 0.000 0.006 0.022 0.3 0.054 0.000 0.040 0.062 0.010 0.000 0.006 0.013 0.5 0.048 0.000 0.037 0.052 0.009 0.000 0.006 0.010 0.7 0.046 0.000 0.036 0.049 0.009 0.000 0.006 0.010 0.9 0.046 0.000 0.035 0.048 0.009 0.000 0.005 0.010 1 0.046 0.000 0.035 0.048 0.009 0.000 0.005 0.009 10 20 0.1 0.051 0.103 0.047 0.052 0.010 0.040 0.009 0.011 0.3 0.049 0.092 0.044 0.048 0.010 0.033 0.008 0.009 0.5 0.051 0.099 0.044 0.050 0.010 0.038 0.008 0.010 0.7 0.055 0.081 0.046 0.054 0.011 0.034 0.008 0.011 0.9 0.057 0.043 0.047 0.057 0.011 0.020 0.008 0.011 1 0.060 0.028 0.048 0.060 0.012 0.013 0.008 0.012 20 10 0.1 0.086 0.000 0.038 0.130 0.016 0.000 0.004 0.035 0.3 0.078 0.000 0.050 0.093 0.015 0.000 0.007 0.021 0.5 0.071 0.000 0.051 0.077 0.014 0.000 0.008 0.016 0.7 0.065 0.003 0.050 0.067 0.013 0.002 0.008 0.014 0.9 0.061 0.017 0.048 0.062 0.012 0.008 0.008 0.012 1 0.059 0.028 0.048 0.059 0.012 0.013 0.008 0.012 20 20 0.1 0.057 0.086 0.048 0.058 0.012 0.038 0.009 0.012 0.3 0.054 0.083 0.049 0.053 0.011 0.026 0.009 0.011 0.5 0.051 0.073 0.048 0.050 0.010 0.021 0.009 0.010 0.7 0.050 0.069 0.047 0.049 0.010 0.019 0.009 0.010 0.9 0.049 0.067 0.047 0.049 0.010 0.018 0.009 0.009 1 0.050 0.068 0.047 0.049 0.010 0.019 0.009 0.010 AAD 0.809 3.758 0.547 1.211 0.157 1.265 0.260 0.322 Note : AAD = 100 α 100α /24 12

Table 3 Emprcal szes ( α 1 α 4 ) when p = 4, 8 and σ 2 = 2, 5(5)30 α = 0.05 α = 0.01 p n 1 n 2 σ 2 α 1 α 2 α 3 α 4 α 1 α 2 α 3 α 4 4 10 10 2 0.048 0.050 0.045 0.048 0.009 0.010 0.008 0.009 5 0.055 0.058 0.048 0.054 0.011 0.013 0.009 0.011 10 0.057 0.064 0.048 0.057 0.013 0.015 0.009 0.012 15 0.059 0.066 0.047 0.058 0.013 0.016 0.009 0.013 20 0.059 0.068 0.047 0.059 0.013 0.017 0.009 0.013 25 0.058 0.069 0.045 0.059 0.013 0.018 0.009 0.013 30 0.058 0.069 0.045 0.058 0.013 0.018 0.008 0.013 10 20 2 0.058 0.059 0.050 0.055 0.013 0.013 0.009 0.011 5 0.062 0.066 0.048 0.060 0.014 0.016 0.009 0.013 10 0.061 0.069 0.044 0.060 0.014 0.018 0.008 0.014 15 0.059 0.070 0.042 0.059 0.014 0.019 0.007 0.014 20 0.058 0.070 0.040 0.059 0.013 0.019 0.007 0.014 25 0.057 0.070 0.038 0.058 0.013 0.019 0.007 0.014 30 0.057 0.071 0.038 0.058 0.013 0.019 0.006 0.013 20 10 2 0.049 0.050 0.047 0.048 0.010 0.010 0.009 0.009 5 0.049 0.050 0.048 0.049 0.010 0.010 0.009 0.009 10 0.050 0.051 0.049 0.050 0.010 0.010 0.009 0.010 15 0.051 0.052 0.050 0.051 0.010 0.011 0.010 0.010 20 0.051 0.053 0.050 0.051 0.011 0.011 0.010 0.010 25 0.051 0.053 0.049 0.051 0.010 0.011 0.010 0.010 30 0.051 0.053 0.050 0.051 0.010 0.011 0.010 0.010 20 20 2 0.050 0.050 0.049 0.049 0.010 0.010 0.010 0.010 5 0.052 0.052 0.050 0.051 0.011 0.011 0.010 0.011 10 0.052 0.053 0.049 0.051 0.011 0.011 0.010 0.011 15 0.052 0.053 0.049 0.052 0.011 0.011 0.010 0.011 20 0.052 0.053 0.049 0.051 0.011 0.011 0.009 0.011 25 0.051 0.053 0.048 0.051 0.011 0.011 0.009 0.011 30 0.051 0.054 0.048 0.052 0.011 0.012 0.009 0.011 AAD 0.449 0.890 0.326 0.435 0.168 0.366 0.114 0.160 Note : AAD = 100 α 100α /28 13

Table 3 (Contnued) α = 0.05 α = 0.01 p n 1 n 2 σ 2 α 1 α 2 α 3 α 4 α 1 α 2 α 3 α 4 8 10 10 2 0.049 0.000 0.037 0.053 0.009 0.000 0.006 0.010 5 0.060 0.000 0.042 0.073 0.011 0.000 0.006 0.015 10 0.069 0.000 0.044 0.095 0.013 0.000 0.006 0.022 15 0.073 0.000 0.043 0.109 0.013 0.000 0.005 0.027 20 0.075 0.000 0.041 0.119 0.014 0.000 0.005 0.031 25 0.077 0.000 0.039 0.127 0.014 0.000 0.004 0.035 30 0.077 0.000 0.037 0.133 0.014 0.000 0.004 0.038 10 20 2 0.071 0.000 0.051 0.077 0.014 0.000 0.008 0.016 5 0.083 0.000 0.047 0.107 0.016 0.000 0.006 0.026 10 0.086 0.000 0.038 0.130 0.016 0.000 0.004 0.035 15 0.073 0.000 0.043 0.109 0.013 0.000 0.005 0.027 20 0.086 0.000 0.029 0.150 0.017 0.000 0.002 0.046 25 0.087 0.000 0.026 0.156 0.018 0.000 0.002 0.050 30 0.086 0.000 0.024 0.160 0.018 0.000 0.002 0.053 20 10 2 0.051 0.099 0.044 0.050 0.010 0.039 0.008 0.010 5 0.049 0.092 0.045 0.049 0.010 0.033 0.008 0.010 10 0.051 0.103 0.047 0.052 0.010 0.040 0.009 0.011 15 0.053 0.084 0.048 0.055 0.011 0.036 0.009 0.011 20 0.053 0.040 0.048 0.056 0.011 0.018 0.009 0.012 25 0.054 0.013 0.048 0.057 0.011 0.007 0.009 0.012 30 0.054 0.004 0.048 0.057 0.011 0.002 0.009 0.012 20 20 2 0.051 0.073 0.048 0.050 0.010 0.021 0.009 0.010 5 0.056 0.096 0.049 0.055 0.011 0.034 0.009 0.011 10 0.057 0.086 0.048 0.058 0.012 0.038 0.009 0.012 15 0.056 0.015 0.046 0.059 0.012 0.008 0.008 0.013 20 0.056 0.001 0.045 0.059 0.012 0.001 0.008 0.013 25 0.055 0.000 0.043 0.059 0.011 0.000 0.007 0.013 30 0.055 0.000 0.043 0.059 0.011 0.000 0.007 0.013 AAD 1.446 4.496 0.758 3.486 0.267 1.289 0.351 1.128 Note : AAD = 100 α 100α /28 14

From Table 1, t s seen that the proposed approxmatons α 1 are very good for cases when η s large. In contrast, t seems that other α are farther from α as η becomes large. It may also be noted that α 1 s stable and a good approxmaton to α when n 1 and n 2 are large. From Table 2, we can see that α 3 s AAD and α 4 s AAD are lower than the others, and ther approxmatons are good for the case of p = 4, an that α 1 s a good approxmaton for the case of p = 8. On the other hand, t seems from Table 2 that the emprcal szes are almost unchanged except for α 2. It can be seen from Table 3 that α 3 are closer to α when p = 4. Meanwhle, the behavor of α 1 resembles the behavor of α 4. In addton, t s seen from Table 3 that α 1 and α 3 are good approxmatons when p = 8. In concluson, when the dfference between covarance matrces s large, the approxmate upper percentle of the null dstrbuton of T by the method (hgh order procedure) proposed n ths paper s better than those of other procedures. Appendx In ths Appendx, we present some results of expectaton: A.1 Let u N p (0, I) wth A and B are p p symmetrc matrces, then (1) E[u Au] = tra, (2) E[u u(u Au)] = (p + 2)(trA), (3) E[(u Au) 2 ] = 2(trA 2 ) + (tra) 2, (4) E[(u Au)(u Bu)] = 2(trAB) + (tra)(trb), (5) E[(u Au) 3 ] = 8(trA 3 ) + 6(trA 2 )(tra) + (tra) 3, (6) E[(u Au) 2 (u Bu)] = 8(trA 2 B) + 4(trAB)(trA) + 2(trA 2 )(trb) + (tra) 2 (trb), (7) E[(u Au) 4 ] = 48(trA 4 ) + 32(trA 3 )(tra) + 12(trA 2 )(tra) 2 + 12(trA 2 ) 2 + (tra) 4. 15

A.2 Let S W p (n, Σ) and V = n(s Σ) wth A, B and C are p p symmetrc matrces, then (1) E[(trAV ) 2 ] = 2 tr(aσ) 2, (2) E[tr(AV ) 2 ] = tr(aσ) 2 + (traσ) 2, (3) E[(trAV BV )] = (trav BV ) + (traσ)(trbσ), (4) E[{tr(AV )} 3 ] = 8 n tr(aσ) 3, (5) E[tr(AV ) 3 ] = 1 n [4 tr(aσ) 3 + 3{tr(AΣ) 2 }(traσ) + (traσ) 3 ], (6) E[(trAV ){tr(av ) 2 }] = 4 n [tr(aσ) 3 + (traσ){tr(aσ) 2 }], (7) E[(trAV ) 2 (trbv )] = 8 n {tr(aσ) 2 BΣ}, (8) E[(trAV ) 4 ] = 12{tr(AΣ) 2 } 2 + O(N 1 ) (9) E[tr(AV ) 4 ] = 5 tr(aσ) 4 +4{tr(AΣ) 3 }(traσ)+2{tr(aσ) 2 }(traσ) 2 +{tr(aσ) 2 } 2 +O(N 1 ), (10) E[(trAV ){tr(av ) 3 }] = 6[ tr(aσ) 4 + (traσ){tr(aσ) 3 }] + O(N 1 ), (11) E[{tr(AV ) 2 } 2 ] = 5{tr(AΣ) 2 } 2 + 4 tr(aσ) 4 + 2{tr(AΣ) 2 }(traσ) 2 + (traσ) 4 + O(N 1 ), (12) E[(trAV ) 2 {tr(av ) 2 }] = 8 tr(aσ) 4 + 2{tr(AΣ) 2 } 2 + 2{tr(AΣ) 2 }(traσ) 2 + O(N 1 ), (13) E[(trAV ) 3 (trbv )] = 12{tr(AΣ) 2 }(traσbσ) + O(N 1 ), (14) E[(trAV ) 2 (trbv ) 2 ] = 8(trAΣBΣ) 2 + 4{tr(AΣ) 2 }{tr(bσ) 2 } + O(N 1 ), (15) E[(trAV ) 2 (trbv )(trcv )] = 8(trAΣBΣ)(trAΣCΣ) + 4{tr(AΣ) 2 }(trbσcσ) + O(N 1 ). 16

A.3 Let S W p (n, Σ) and V = n(s Σ) wth A, B, C and D are p p symmetrc matrces where = 1, 2, then (1) E[tr(AV 1 ) 2 (BV 2 ) 2 ] = tr(aσ) 2 (BΣ) 2 + (traσ){traσ(bσ) 2 } + {tr(aσ) 2 BΣ}(trBΣ) +(traσ)(trbσ)(traσbσ), (2) E[(trAV 1 BV 2 ) 2 ] = 2{tr(AΣ) 2 (BΣ) 2 } + {tr(aσ) 2 }{tr(bσ) 2 } + (traσbσ) 2, (3) E[{tr(AV 1 ) 2 }{tr(bv 2 ) 2 }] = {tr(aσ) 2 }{tr(bσ) 2 } + {tr(aσ) 2 }(trbσ) 2 +(traσ) 2 {tr(bσ) 2 } + (traσ) 2 (trbσ) 2, (4) E[(trAV 1 ) 2 (trbv 2 ) 2 ] = 4{tr(AΣ) 2 }{tr(bσ) 2 }, (5) E[{tr(AV 1 ) 2 }(trbv 2 ) 2 ] = 2{tr(AΣ) 2 }{tr(bσ) 2 } + 2(trAΣ) 2 {tr(bσ) 2 }, (6) E[(trAV 1 ){trav 1 (BV 2 ) 2 }] = 2{tr(AΣ) 2 (BΣ) 2 } + 2{tr(AΣ) 2 BΣ}(trBΣ), (7) E[(trAV 1 )(trbv 2 )(trav 1 BV 2 )] = 4{tr(AΣ) 2 (BΣ) 2 }, (8) E[trAV 1 BV 1 CV 2 DV 2 ] = (traσbσcσdσ) + (traσbσcσ)(trdσ) +(traσcσdσ)(trb) + (traσcσ)(trbσ)(trdσ). A.4 The followng results are presented as supplementary expectatons: (1) E[tr(Ω 2 Ω 1V 1 Ω 1 Ω 2V 2 ) 2 ] = 3tr(Ω 1 Ω 1 Ω 2Ω 2 )2 + (trω 1 Ω 1 Ω 2Ω 2 )2, (2) E[(trΩ 1 Ω 1V 1 )(trω 2 Ω 1V 1 Ω 1 Ω 2V 2 Ω 2 Ω 2V 2 )] = 2{tr(Ω 1 Ω 1) 2 Ω 2 Ω 2}(trΩ 2 Ω 2) +2{tr(Ω 1 Ω 1) 2 (Ω 2 Ω 2) 2 }, (3) E[(trΩ 2 Ω 1V 1 Ω 1 Ω 2V 2 ) 2 ] = 2tr(Ω 1 Ω 1 Ω 2Ω 2 )2 + 2(trΩ 1 Ω 1 Ω 2Ω 2 )2, (4) E[(trΩ 1 Ω 1V 1 )(trω 2 Ω 2V 2 )(trω 2 Ω 1V 1 Ω 1 Ω 2V 2 )] = 4{tr(Ω 1 Ω 1) 2 (Ω 2 Ω 2) 2 }, where the notatons are defned by Secton 2. 17

Acknowledgments Second author s research was n part supported by Grant-Ad for Scentfc Research (C) (23500360). References [1] Bennett, B. M. (1951). Note on a soluton of the generalzed Behrens-Fsher problem. Ann. Inst. Statst. Math., 2, 87 90. [2] Fang, K. T., Kotz, S. and Ng, K. W. (1990). Symmetrc multvarate and related dstrbutons. London; Chapman & Hall / CRC. [3] Fujkosh, Y. (2000). Transformatons wth mproved ch-square approxmatons. J. Multvarate Anal., 72, 249 263. [4] Grón, F. J. and del Castllo, C. (2010). The multvarate Behrens-Fsher dstrbuton. J. Multvarate Anal., 101, 2091 2102. [5] James, G. S. (1954). Tests of lnear hypotheses n unvarate and multvarate analyss when the ratos of the populaton varances are unknown. Bometrka, 41, 19 43. [6] Johansen, S. (1980). The Welch-James approxmaton to the dstrbuton of the resdual sum of squares n a weghted lnear regresson. Bometrka, 67, 85 92. [7] Km, S. - J. (1992). A practcal soluton to the multvarate Behrens-Fsher problem. Bometrka, 79, 171 176. [8] Krshnamoorthy, K. and Yu, J. (2004). Modfed Nel and Van der Merwe test for the multvarate Bahrens-Fsher problem. Statst. Probab. Lett., 66, 161 169. [9] Krshnamoorthy, K. and Yu, J. (2012). Multvarate Behrens-Fsher problem wth mussng data. J. Multvarate Anal., 105, 141 150. [10] Nel, D. G. and van der Merwe, C. A. (1986). A soluton to the multvarate Behrens-Fsher problem. Comm. Statst., Theory Methods, 15, 3719 3735. [11] Nel, D. G., van der Merwe, C. A. and Moser, B. K. (1990). The exact dstrbutons of the unvarate and multvarate Behrens-Fsher statstcs wth a comparson of several solutons n the unvarate case. Comm. Statst., Theory Methods, 19, 279 298. [12] Scheffé, H. (1943). On solutons of the Behrens-Fsher problem, based on the t-dstrbuton. Ann. Math. Statst., 14, 35 44. [13] Seko, N., Kawasak, T. and Seo, T. (2011). Testng equalty of two mean vectors wth two-step monotone mssng data. Amer. J. Math. Management Sc., 31, 117 135. [14] Welch, B. L. (1938). The sgnfcance of the dfference between two means when the populaton varances are unequal. Bometrka, 29, 350 362. [15] Yanaghara, H. and Yuan, K. (2005). Three approxmate solutons to the multvarate Behrens-Fsher problem. Comm. Statst., Smulaton Comput., 34, 975 988. [16] Yao, Y. (1965). An approxmate degrees of freedom soluton to the multvarate Behrens- Fsher problem. Bometrka, 52, 139 147. 18