Επαναληπτικό Διαγώνισμα Γεωμετρίας Α Λυκείου Θέμα Α. Να αποδείξετε ότι το ευθύγραμμο τμήμα που ενώνει τα μέσα των δύο πλευρών τριγώνου, είναι παράλληλο προς την τρίτη πλευρά και ίσο με το μισό της (7 μονάδες) B. Να δώσετε τον ορισμό του ρόμβου. Β. Να γράψετε τα κριτήρια για να είναι ένα τετράπλευρο ορθογώνιο. (μονάδες) ( μονάδες) Γ. Να χαρακτηρίσετε τις παρακάτω προτάσεις σωστές ή λάθος. α. Η διάκεντρος δύο τεμνόμενων κύκλων είναι μεσοκάθετος της κοινής τους χορδής. β. Αν η απόσταση του κέντρου του κύκλου από μια ευθεία είναι μικρότερη από την ακτίνα του, τότε ο κύκλος και η ευθεία έχουν δυο κοινά σημεία. γ. Κάθε εξωτερική γωνία τριγώνου είναι μεγαλύτερη από τις απέναντι εσωτερικές. δ. Αν δυο τρίγωνα έχουν δύο πλευρές και μια γωνία ίσες, τότε είναι ίσα. ε. Αν σε ορθογώνιο τρίγωνο ( 90 ), 0, τότε. στ. Οι διαγώνιοι του ορθογωνίου διχοτομούν τις γωνίες του. Θέμα ( μονάδες ανά ερώτημα) Δίνεται τραπέζιο ΑΒΓΔ,(ΑΒ//ΓΔ), με ΓΔ=ΑΒ+ΒΔ. Η διάμεσος ΗΘ του τραπεζίου τέμνει την ΒΔ στο Κ. Αν Ε το μέσο της διαγωνίου ΑΓ και Ζ το σημείο που τέμνει η προέκταση της ΒΕ την ΓΔ, να δείξετε ότι : Α. 90 (8 μονάδες) Β. (8 μονάδες) Γ. 90 (9 μονάδες)
Θέμα Έστω ΓΔ και ΒΕ τα ύψη ισοσκελούς τριγώνου ΑΒΓ (ΑΒ=ΑΓ). Αν οι διχοτόμοι των γωνιών τέμνονται στο Ζ, να αποδείξετε ότι: Α. η ΑΚ είναι διχοτόμος της γωνίας. (8 μονάδες) Β. τα σημεία Α, Ζ, Κ είναι συνευθειακά. (8 μονάδες) Γ. τα σημεία Δ, Ζ, Ε, είναι ομοκυκλικά. (9 μονάδες) Θέμα 4 Σε παραλληλόγραμμο ΑΒΓΔ προεκτείνουμε την πλευρά ΑΒ κατά τμήμα ΒΕ = ΑΒ. Αν η ΕΓ τέμνει την προέκταση της ΑΔ στο Ζ, Ο το κέντρο του παραλληλογράμμου και Μ το σημείο τομής των ΟΕ και ΒΓ, να αποδείξετε ότι: Α. ΓΕ = ΓΖ (8 μονάδες) Β. ΓΜ = ΒΜ (7 μονάδες) Γ. Αν Λ, Κ τα μέσα των ΒΓ και ΟΕ αντίστοιχα τότε ΟΒ = ΛΚ. (0 μονάδες) Καλή Επιτυχία στις Εξετάσεις!!!
Απαντήσεις Διαγωνίσματος Θέμα Α. σελ. 04 σχολικού Β σελ. 0 σχολικού Β σελ. 0 σχολικού Γ. α Σ β Σ γ Σ δ Λ (Μόνο αν η γωνία είναι περιεχόμενη στις πλευρές) ε Λ ( ) στ Λ (Ισχύει μόνο στον ρόμβο και το τετράγωνο) Θέμα Α Β Η Ε Θ Κ Δ Ζ Γ Α. ΓΔ=ΑΒ+ΒΔ () Πάνω στην ΓΔ θεωρούμε σημείο Ζ, ώστε ΔΖ=ΒΔ. Από την () προκύπτει ότι ΓΖ=ΑΒ και αφού ΓΖ//ΑΒ το τετράπλευρο ΑΒΓΖ είναι παραλ/μο. Άρα η διαγώνιος ΒΖ θα διέρχεται από το μέσο Ε της ΑΓ. Επομένως Ε μέσο της ΒΖ. Το τρίγωνο ΒΔΖ είναι ισοσκελές και ΔΕ διάμεσος προς την ΒΖ. Άρα είναι και ύψος. Δηλαδή 90. Β. Γνωρίζουμε ότι η διάμεσος του τραπεζίου διέρχεται από τα μέσα των διαγωνίων. Άρα η ΗΘ θα διέρχεται από το Ε. β τρόπος Στο τρίγωνο ΒΔΖ, Ε και Κ τα μέσα των πλευρών ΒΖ και ΒΔ αντίστοιχα. Άρα
Γ. ΕΖΔ ορθογώνιο. Άρα () Όμως (ως εξωτερική στο τρίγωνο ΒΖΓ) () ΕΘ//ΖΓ και ΘΓ τέμνουσα. Άρα ως εντός εκτός επί τ αυτά. () () () () Θέμα Α Ζ Θ Δ Κ Ε Β Η Γ Α. Τα τρίγωνα ΒΔΓ και ΓΕΒ είναι ίσα γιατί: είναι ορθογώνια, ΒΓ κοινή πλευρά και ως γωνίες προσκείμενες στη βάση ισοσκελούς τριγώνου. Άρα ΒΔ=ΓΕ () και. Επομένως () και Συγκρίνω τα ορθογώνια τρίγωνα ΒΔΚ και ΓΕΚ. Έχουν: ΒΔ=ΓΕ από () και από (). Άρα είναι ίσα και επομένως ΚΔ=ΚΕ. Αφού το σημείο Κ ισαπέχει από τις πλευρές της γωνίας, ανήκει στην διχοτόμο της. Β. Η προέκταση της ΑΖ, τέμνει την ΒΓ στο Η και αφού ΑΗ διχοτόμος της, θα είναι ύψος και διάμεσος στο ισοσκελές ΑΒΓ. Δηλαδή ΑΗ μεσοκάθετος του ΒΓ.. Άρα το ΒΖΓ είναι ισοσκελές. Επομένως ΖΒ=ΖΓ.. Άρα το ΒΚΓ είναι ισοσκελές. Επομένως ΚΒ=ΚΓ Αποδείξαμε ότι τα σημεία Ζ και Κ ισαπέχουν από τα άκρα του ΒΓ. Άρα ανήκουν στην μεσοκάθετό του ΑΗ. Επομένως είναι συνευθειακά. Γ. Αρκεί να δείξουμε ότι 90 γιατί τότε οι ορθές γωνίες,, θα βαίνουν σε ημικύκλιο διαμέτρου ΒΓ.
Στο ορθογώνιο τρίγωνο ΑΒΕ: 90 Στο ορθογώνιο τρίγωνο ΑΔΓ: 90 90 90 90 90 90 90 Στο τρίγωνο ΒΖΘ: 90. Άρα 90 Θέμα 4 Α Β Ε Μ Ο Κ Λ Δ Γ Ζ Α. ΑΒ//=ΓΔ άρα ΒΕ//=ΓΔ. Επομένως ΔΒΕΓ παραλληλόγραμμο και ΔΒ //=ΓΕ. () ΑΔ//=ΒΓ άρα ΔΖ//=ΒΓ. Επομένως ΔΒΓΖ παραλληλόγραμμο και ΔΒ //=ΓΖ. () Από () και () προκύπτει ότι ΓΕ = ΓΖ. Β. ΕΟ και ΓΒ διάμεσοι του τριγώνου ΑΕΓ. Άρα Μ είναι το βαρύκεντρο του τριγώνου. Επομένως ΓΜ = ΒΜ. Γ. Στο τρίγωνο ΑΕΓ, Β και Ο είναι τα μέσα των ΑΕ και ΑΓ αντίστοιχα. Άρα //. Στο τραπέζιο ΟΒΕΓ