A Control Method of Errors in Long-Term Integration

Σχετικά έγγραφα
Vol. 40 No Journal of Jiangxi Normal University Natural Science Jul. 2016

J. of Math. (PRC) u(t k ) = I k (u(t k )), k = 1, 2,, (1.6) , [3, 4] (1.1), (1.2), (1.3), [6 8]

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

High order interpolation function for surface contact problem

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Applying Markov Decision Processes to Role-playing Game

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

9.1 Introduction 9.2 Lags in the Error Term: Autocorrelation 9.3 Estimating an AR(1) Error Model 9.4 Testing for Autocorrelation 9.

TRM +4!5"2# 6!#!-!2&'!5$27!842//22&'9&2:1*;832<

Feasible Regions Defined by Stability Constraints Based on the Argument Principle

1. Ευθύγραμμη ομαλή κίνηση 2. Εξίσωση κίνησης 3. Μετατόπιση & διάστημα 4. ιάγραμμα ταχύτητας χρόνου 5. Στρατηγική λύσης προβλημάτων.

Strain gauge and rosettes

r t te 2t i t Find the derivative of the vector function. 19. r t e t cos t i e t sin t j ln t k Evaluate the integral.

Re-Pair n. Re-Pair. Re-Pair. Re-Pair. Re-Pair. (Re-Merge) Re-Merge. Sekine [4, 5, 8] (highly repetitive text) [2] Re-Pair. Blocked-Repair-VF [7]

A research on the influence of dummy activity on float in an AOA network and its amendments

Research on Economics and Management

IPSJ SIG Technical Report Vol.2014-CE-127 No /12/6 CS Activity 1,a) CS Computer Science Activity Activity Actvity Activity Dining Eight-He

Εφαρµόζοντας τη µέθοδο αριθµητικής ολοκλήρωσης Euler και Runge-Kutta 2 ης, συστηµατική σύγκριση των πέντε µεθόδων. Η επιλογή των σταθερών

ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες

Tridiagonal matrices. Gérard MEURANT. October, 2008

The Euler Equations! λ 1. λ 2. λ 3. ρ ρu. E = e + u 2 /2. E + p ρ. = de /dt. = dh / dt; h = h( T ); c p. / c v. ; γ = c p. p = ( γ 1)ρe. c v.

A Fast Finite Element Electromagnetic Analysis on Multi-core Processer System

( ) ( ) ( ) Fourier series. ; m is an integer. r(t) is periodic (T>0), r(t+t) = r(t), t Fundamental period T 0 = smallest T. Fundamental frequency ω

( ) ( t) ( 0) ( ) dw w. = = β. Then the solution of (1.1) is easily found to. wt = t+ t. We generalize this to the following nonlinear differential

(, ) (SEM) [4] ,,,, , Legendre. [6] Gauss-Lobatto-Legendre (GLL) Legendre. Dubiner ,,,, (TSEM) Vol. 34 No. 4 Dec. 2017

Supplementary Materials for Evolutionary Multiobjective Optimization Based Multimodal Optimization: Fitness Landscape Approximation and Peak Detection

VBA Microsoft Excel. J. Comput. Chem. Jpn., Vol. 5, No. 1, pp (2006)

Pricing Asian option under mixed jump-fraction process

Detection and Recognition of Traffic Signal Using Machine Learning

Congruence Classes of Invertible Matrices of Order 3 over F 2

A summation formula ramified with hypergeometric function and involving recurrence relation

Χρονοσειρές Μάθημα 3

Homework 3 Solutions

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

Reservoir modeling. Reservoir modelling Linear reservoirs. The linear reservoir, no input. Starting up reservoir modeling

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 11/3/2006

Statistical Inference I Locally most powerful tests

Buried Markov Model Pairwise

ΕΡΓΑΣΙΑ ΜΑΘΗΜΑΤΟΣ: ΘΕΩΡΙΑ ΒΕΛΤΙΣΤΟΥ ΕΛΕΓΧΟΥ ΦΙΛΤΡΟ KALMAN ΜΩΥΣΗΣ ΛΑΖΑΡΟΣ

Siemens AG Rated current 1FK7 Compact synchronous motor Natural cooling. I rated 7.0 (15.4) 11.5 (25.4) (2.9) 3.3 (4.4)

Προγραμματισμός και Χρήση Ηλεκτρονικών Υπολογιστών - Βασικά Εργαλεία Λογισμικού

FX10 SIMD SIMD. [3] Dekker [4] IEEE754. a.lo. (SpMV Sparse matrix and vector product) IEEE754 IEEE754 [5] Double-Double Knuth FMA FMA FX10 FMA SIMD

GPU. CUDA GPU GeForce GTX 580 GPU 2.67GHz Intel Core 2 Duo CPU E7300 CUDA. Parallelizing the Number Partitioning Problem for GPUs

Anti-aliasing Prefilter (6B) Young Won Lim 6/8/12

ACTA MATHEMATICAE APPLICATAE SINICA Sep., ( MR (2000) Õ È 32C17; 32F07; 35G30; 53C55

Lanczos and biorthogonalization methods for eigenvalues and eigenvectors of matrices

Math 6 SL Probability Distributions Practice Test Mark Scheme

Molecular evolutionary dynamics of respiratory syncytial virus group A in

X g 1990 g PSRB

Srednicki Chapter 55

D-Wave D-Wave Systems Inc.

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

WTO. ( Kanamori and Zhao,2006 ;,2006), ,,2005, , , 1114 % 1116 % 1119 %,

GPGPU. Grover. On Large Scale Simulation of Grover s Algorithm by Using GPGPU

Stabilization of stock price prediction by cross entropy optimization

Key Formulas From Larson/Farber Elementary Statistics: Picturing the World, Second Edition 2002 Prentice Hall

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

Vulnerable European option pricing with the time-dependent for double jump-diffusion process

Matrices and Determinants

( ) 2 and compare to M.

Problem Set 3: Solutions

= e 6t. = t 1 = t. 5 t 8L 1[ 1 = 3L 1 [ 1. L 1 [ π. = 3 π. = L 1 3s = L. = 3L 1 s t. = 3 cos(5t) sin(5t).

Written Examination. Antennas and Propagation (AA ) April 26, 2017.

clearing a space (focusing) clearing a space, CS CS CS experiencing I 1. E. T. Gendlin (1978) experiencing (Gendlin 1962) experienc-

STARTING STEPS IN GRAMMAR, FINAL TEST C TERM 2012 UNITS 1-18

Filter Diagonalization Method which Constructs an Approximation of Orthonormal Basis of the Invariant Subspace from the Filtered Vectors

Analiza reakcji wybranych modeli

is the home less foreign interest rate differential (expressed as it

Second Order RLC Filters

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗ ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΡΕΥΝΑ ΜΑΡΚΕΤΙΝΓΚ

The Research on Sampling Estimation of Seasonal Index Based on Stratified Random Sampling

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007

PARTIAL NOTES for 6.1 Trigonometric Identities

Appendix. The solution begins with Eq. (2.15) from the text, which we repeat here for 1, (A.1)

Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων. Εξάμηνο 7 ο

6.003: Signals and Systems

Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03)..

University of Washington Department of Chemistry Chemistry 553 Spring Quarter 2010 Homework Assignment 3 Due 04/26/10

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Discontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model

MIA MONTE CARLO ΜΕΛΕΤΗ ΤΩΝ ΕΚΤΙΜΗΤΩΝ RIDGE ΚΑΙ ΕΛΑΧΙΣΤΩΝ ΤΕΤΡΑΓΩΝΩΝ

ω = radians per sec, t = 3 sec

Assalamu `alaikum wr. wb.

Macromechanics of a Laminate. Textbook: Mechanics of Composite Materials Author: Autar Kaw

Section 8.3 Trigonometric Equations

Jinan Journal Philosophy and Social Sciences Sum No. 158

The third moment for the parabolic Anderson model

Aluminum Electrolytic Capacitors

A Method for Creating Shortcut Links by Considering Popularity of Contents in Structured P2P Networks

[1] P Q. Fig. 3.1

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 10η: Basics of Game Theory part 2 Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

New bounds for spherical two-distance sets and equiangular lines

Simplex Crossover for Real-coded Genetic Algolithms

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

College of Life Science, Dalian Nationalities University, Dalian , PR China.

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

2002 Journal of Software

ΠΣΤΥΙΑΚΗ ΔΡΓΑΙΑ. Μειέηε Υξόλνπ Απνζηείξσζεο Κνλζέξβαο κε Τπνινγηζηηθή Ρεπζηνδπλακηθή. Αζαλαζηάδνπ Βαξβάξα

Transcript:

1,a) Hamilon Runge Kua Hamilonian 1/2 Runge Kua (Brouwer s law) Runge Kua Runge Kua Hamilonian 1/2 Brouwer 3 A Conrol Mehod of Errors in Long-Term Inegraion Ozawa Kazufumi 1,a) Absrac: When solving he Hamilon canonical equaion by numerical mehods, i is imporan no only o solve he equaion accuraely, bu also o preserve he values of he firs inegrals. Symplecic Runge Kua mehods are shown o preserve hese values very accuraely. In pracice, however, for sandard implemenaions of he Runge Kua mehods he Hamilonian error behaves like O(), where is he ime. This repor proposes an implemenaion of Gauss Runge Kua mehods, he mos commonly used symplecic mehod, which suppresses he error growh up o O( 1/2 )(which is called Brouwer s law) by using riple-precision arihmeic. Keywords: symplecic numerical inegraion, Runge Kua mehod, long-erm inegraion, Brouwer s law, riple-precision arihmeic, firs inegral 1. Henrici[6] [4], [15]. IEEE754[12] Runge Kua Hamilon 1 Yuri-Honjo, Akia, 015-0055, Japan a) ozawa@akia-pu.ac.jp ( ) 2. Hamilon Hamilon c 2012 Informaion Processing Sociey of Japan 1

dq d = ph(q, p), dp d = qh(q, p), q, p R d. (1) q p H(q, p) Hamilonian H(q, p) (1) z n δ n (µ n ) µ n [5], [9] h 0 p Hamilonian O(h p ) E[µ l ] 0, E[µ l µ k ] ε 2 Bδ O(h p lk (5) ) ε B (4) Runge Kua O(h p ) [4], [5] (= nh) [4] Runge Kua 3. Runge Kua E C E B Runge Kua [4] z n+1 = z n +δ n, δ n = h b i f(z i ) (4) E B nε B = /hε B (6) 3 E L (2) C R 2d 2d Hamilon (1) ( ) ( ) q p H(q, p) z =, f(z) =, z, f R 2d p q H(q, p) z T Cf(z) = 0, z R 2d (7) Q() = z T Cz (8) Q() (2) 2 dz d = f(z()). (2) Runge Kua z n+1 = z n +h b i f(z i ), Z i = z n +h a ij f(z j ), i = 1,...,s Runge Kua Hamilon 3 [4] E C O( 1/2 ) E B O() E L (3) Q 0 = Q( 0 ) Runge Kua 1 (= 0 +h) Q() Q 1 Q 1 = Q 0 +2h +h 2 b i Z T i Cf(Z i) Runge Kua (3) [5] 2 (7) 0 Runge Kua 3 m ij 0 [5], [13] Hamilonian H(q, p) 2 E E C L = Q n Q 0 < K L nh 2 ε L = K L hε L (10) p h E C = O(h p 3 ) E L Runge Kua (3) IEEE754 i, f(z i ) T m ij Cf(Z j ), m ij = b i b j b i a ij b j a ji [1], [5] a ij, b i ε L n K L > 0 (9) c 2012 Informaion Processing Sociey of Japan 2

Compensaed Summaion E B E L, E B E C (11) 1: ε 0 = 0 2: for n = 0 o do Brouwer [2] 3: n = δ n ε n 4: z n+1 = z n n h 5: ε n+1 = n (z n+1 z n ) 6: end for ε B ε L 4. Runge Kua (11) Runge Kua 3 hεm hε L 4.1 E C E C ε L εm (16) h h = 10 8, h = 10 2 3 10 Gauss Runge Kua h = 2 4 2 7 ε L 2.2 10 19 2 62 Z (ν+1) i = z n +h a ij f(z (ν) j ), ν = 0,1,... (12) IEEE754 x86 64bi D (ν) = 0, or D (ν) D (ν+1) n (13) D (ν) = max i Z (ν) i Z (ν 1) i Runge Kua (3) Z i = z n +h a ij f(z j ) (17) 4.2 E B E B ε B 3 3 (4) compensaed summaion[7] IEEE754 O(h) δ n a ij = a (2) ij +a (1) ij +a (0) ij, b i = b (2) i +b (1) i +b (0) i, ε B hε M (14) f i = f (1) i +f (0) i. ε M ε M 2.22 10 16 (6) E B hε M (15) 1 z n+1 = z n +δ n compensaed summaion. Fig. 1 Compensaed summaion in he addiion z n+1 = z n + δ n. 4.3 E L [11], [12] Forran 4 4 112bi (16) 4 ( 50 100 ) ([8], [10]) Runge Kua a ij, b i f(z i ) a (2) ij : 26bis, a (1) ij : 27bis, a (0) ij : 26bis, b (2) i : 26bis, b (1) i : 27bis, b (0) i : 26bis, f (1) i : 26bis, f (0) i : 27bis 1 3 c 2012 Informaion Processing Sociey of Japan 3

S 3 = + S = 52 bis S 2 = 52 bis S 1 = 53 bis S 0 = 27 bis 54 bis 53 bis 79 bis 53 bis 2 3 s aij fj. Fig. 2 Compuaion of s aij fj by riple-precision arihmeic 1 s Gauss Runge Kua 5 Table 1 5 implemenaions of he s-sage Gauss Runge Kua rkgs0 mehods updae formula ieraion evaluaion of f rkgs1 c d rkgs2 c z d rkgs3 c+ z d rkgs4 c+ z+(only once) d s: number of he sages of he Runge Kua mehod c: compensaed summaion, d: double precision, : riple precision z: zero olerance ir. by eq. (13), : riple precision 2 Table 2 Compuing environmen d 3 1 Compiler ifor 11.1 (Op 2) f CPU Xeon X3450(2.67GHz) S = s a ij f q(0) = (1 e,0) T, j ( p(0) = 0, T (1+e)/(1 e)), OS Linux ver. 2.6.18(Red Ha) S = a ij f j = + + + a (2) ij f(1) j := S 3 a (2) ij f(0) j + a (1) ij f(0) j + a (0) ij f(0) j := S 0 a (1) ij f(1) j a (0) ij f(1) j := S 2 := S 1 H() H(0) 0 e < 1. e 0.6 5 10 Runge Kua 3,4 rkg51 rkg52 rkg50 rkg54 S 3 53bis S 2 52bis S 1 54bis S 0 53bis 2 3 3/2 (79.5bis) S 0 S 0 S 1, S 2, S 3 compensaed summaion h 3 compensaed summaion z n z n+1 5. 5 3 (2) Hénon Heiles 1 5 H(q, p) = 1 2 2 (q2 1 +q2 2 )+q2 1 q 2 1 3 q3 2 + 1 2 (p2 1 +p2 2 ), (1) Kepler H(q, p) = 1 q + 1 2 pt p q, p R 2, (18) rkg53 rkg50(q) 3 5 Gauss Runge Kua 5 Kepler H(q, p) Fig. 3 Long-erm behaviours of H(q, p) when solving he Kepler problem by he five implemenaions of 5-sage Gauss Runge Kua mehod. q = (q 1, q 2 ) T, p = (p 1, p 2 ) T. (19) H(q, p) = 0.8 q, p 5 6 c 2012 Informaion Processing Sociey of Japan 4

H() H(0) rkg100.da rkg101.da rkg102.da rkg103.da rkg104.da H() H(0) rkg100.da rkg101.da rkg102.da rkg103.da rkg104.da 4 10 Gauss Runge Kua 5 Kepler 6 10 Gauss Runge Kua 5 Hénon H(q, p) Heiles H(q, p) Fig. 4 Long-erm behaviours of H(q, p) when solving he Kepler problem by he five implemenaions of 10-sage Fig. 6 Long-erm behaviours of H(q, p) when solving he Gauss Runge Kua mehod. Hénon Heiles problem by he five implemenaions of 10-sage Gauss Runge Kua mehod. H() H(0) Q 1 () = z 2 1 +z 2 2 +z 2 3, Q 2 () = 1 2 (I 1 1 z 2 1 +I 1 2 z 2 2 +I 1 3 z 2 3). rkg50 rkg51 rkg53 rkg52 rkg54 [14] z 1 (0) = 0, z 2 (0) = 1, z 3 (0) = 1 8 9 I 2 5 5 Gauss Runge Kua 5 Hénon Heiles H(q, p) Fig. 5 Long-erm behaviours of H(q, p) when solving he Hénon Heiles problem by he five implemenaions of 5-sage Gauss Runge Kua mehod. (3) ( 7) 3 rkg54, rkg104 Brouwer I 1, I 2, I 3 z 1, z 2, z 3 z 1, z 2, z 3 5 10 Gauss Runge Kua 5 (Euler ) [14] Kepler z 1 () = a 1 z 2 ()z 3 (), z 2 () = a 2 z 3 ()z 1 (), z 3 () = a 3 z 1 ()z 2 (). (20) a 1 = (I 2 I 3 )/I 1, a 2 = (I 3 I 1 )/I 2, a 3 = (I 1 I 2 )/I 3. I 3 7 Fig. 7 Torque free moion of a rigid body. 0 10 6 3,4 Brouwer E C,E L E B ( 10) rkgs4 I 1 c 2012 Informaion Processing Sociey of Japan 5

Q1() Q1(0) rkg50 rkg51 rkg52 rkg53 rkg54 4 10 Gauss Runge Kua (h = 2 5, 0 10 6 ). Table 4 CPU imes of he various implemenaions of 10-sage Gauss Runge Kua mehod(h = 2 5, 0 10 6 ). Implemenaions sec(raio) Error growh in H rkg100 112(1.00) O() rkg101 113(1.01) O() rkg102 143(1.28) O() rkg103 163(1.46) O() rkg104 317(2.83) O( 1/2 ) rkg100(q) 15550(139) rkg100(q) rkg100 4 8 5 Gauss Runge Kua 5 (20) Q 1 Fig. 8 Long-erm behaviours of he invarian Q 1 when solving he rigid-body problem(20) by various implemenaions of 5-sage Runge Kua mehod. H() H(0) 1e-08 h = 1/8 h = 1/16 h = 1/32 Q2() Q2(0) rkg50 rkg51 rkg52 rkg53 rkg54 h = 1/64 h = 1/128 10 4 Gauss Runge Kua rkg44 H(q, p). Fig. 10 Long-erm behaviours of Hamilonian H(q, p) wih rkg44 implemenaion of he 4-sage GaussRunge Kua. 9 5 Gauss Runge Kua 5 5 Kepler (20) Q 2 0 10 6 Fig. 9 Long-erm behaviours of he invarian Q 2 when solving he rigid-body problem(20) by various implemenaions of 5-sage Runge Kua mehod. 5 rkgs4(s s = 3,...,10) Brouwer h 3 5 Gauss Runge Kua Table 5 Maximum sep-size and CPU imes achieving Table 3 CPU imes of he various implemenaions of 5-sage Brouwer s law wih rkgs4 implemenaions, where Gauss Runge Kua mehod(h = 2 6, 0 10 6 ) s(= 3,...,10) is he number of sages. Implemenaions sec(raio) Error growh in H rkg50 74.9(1.00) O() rkg51 77.8(1.04) O() rkg52 110(1.47) O() rkg53 130(1.74) O() rkg54 215(2.87) O( 1/2 ) rkg50(q) 8830(118) rkg500(q) rkg100 4 sage s h cpu ime[sec] 3 1/256 4.23 10 2 4 1/64 1.58 10 2 5 1/32 1.14 10 2 6 1/16 7.95 10 7 1/16 9.96 10 8 1/16 1.19 10 2 9 1/16 1.44 10 2 10 1/8 8.94 10 h 2 8, 2 7,...,2 3 Brouwer 5 s 6 c 2012 Informaion Processing Sociey of Japan 6

6. Runge Kua Nysröm (1) q = g(q) (21) Runge Kua Runge Kua Nysröm q n+1 = q n +hp n +h 2 bi g(q i ), p n+1 = p n +h b i g(q i ), (22) H() H(0) rkng100.da rkng101.da rkng102.da rkng103.da rkng104.da Q i =q n +c i hp n +h 2 ā ij g(q j ). 12 10 Gauss Runge Kua Nysröm 5 Kepler H(q, p) Runge Kua Nysröm Fig. 12 Long-ermbehavioursof H(q, p) when solving he Kepler problem by he five implemenaions of 10-sage Runge Kua Kepler 11 CPU ime Gauss Runge Kua Nysröm mehod. 7 Runge Kua Nysröm 3 (rkngs3) Brouwer (rkngs0) 2 Brouwer 7 Runge Kua Nysröm Brouwer 6 5 Gauss Runge Kua Nysröm CPU ime (22) Q i (h = 2 6, 0 10 6 ) h h 2 Table 6 CPU imes of he 5-sage Gauss Runge Kua Nysröm mehod(h = 2 6, 0 10 6 ). H() H(0) rkng50.da rkng51.da rkng52.da rkng53.da rkng54.da Implemenaions sec(raio) Error growh in H rkng50 39.0(1.00) O() rkng51 43.0(1.10) O() rkng52 58.1(1.49) O() rkng53 86.0(2.20) O( 1/2 ) rkng54 136(3.49) O( 1/2 ) rkng50(q) 3814(97.8) 7 10 Gauss Runge Kua Nysröm CPU ime (h = 2 6, 0 10 6 ) Table 7 CPU imes of he 10-sage Gauss Runge Kua Nysröm mehod(h = 2 6, 0 10 6 ). 11 5 Gauss Runge Kua Nysröm 5 Implemenaions sec(raio) Error growh in H Kepler H(q, p) Fig. 11 Long-erm behaviours of H(q, p) when solving he Kepler problem by he five implemenaions of 5-sage Gauss Runge Kua Nysröm mehod. rkng100 rkng101 rkng102 rkng103 44.3(1.00) 46.4(1.05) 70.2(1.58) 97.4(2.20 O()() O()() O()() O()( 1/2 ) rkng104 180(4.06) O()( 1/2 ) rkng100(q) 5630(127) Runge Kua Nysröm Brouwer c 2012 Informaion Processing Sociey of Japan 7

7. Hamilon Hamilonian O() O( 1/2 ) Runge Kua Runge Kua Nysröm Runge Kua Nysröm [1] Cooper, G.J.: Sabiliy of Runge Kua Mehods for Trajecory Problems, IMA J. Numer. Anal. Vol. 7, pp.1 13, (1987). [2] Brouwer, D.: On he Accumulaion of Errors in Numerical Inegraion, Asron. J., Vol. 46, pp.149 153 (1937). [3] Fukushima, T.: Reducion of Round-off Error in Symplecic Inegraors, Asron. J., Vol. 121, pp.1768 1775 (2001). [4] Hairer, E. Mclachlan, R.I. and Razakarivony, A.: Achieving Brouwer s Law wih Implici Runge Kua Mehods, BIT, Vol. 48, pp.231 243 (2008). [5] Hairer, E., Lubich, C. and Wanner, G.:Geomeric Numerical Inegraion, Springer, Berlin (2001). [6] Henrici, P.:Discree Variable Mehods in Ordinary Differenial Equaions, John Wiley & Sons, Inc. New York (1961). [7] Higham, N.J.: Accuracy and Sabiliy of Numerical Algorihms, SIAM, Philadelphia (1996). [8] Ikebe, Y. : Noe on Triple-Precision Floaing-Poin Arihmeic wih 132 bi Numbers, Commu ACM Vol. 8, pp.175 177 (1965). [9] Leimkuhler, B. and Reich, S.:Simulaing Hamilonian Dynamics, Cambridge Universiy Press, Cambridge (2004). [10] : GPU 3, Vol. 2011-HPC-132, pp.1 9. [11] Muller, J. e al. : Handbook of Floaing-poin Arihmeic, Birkäuser, Boson (2010). [12] Overon, M. L.:Numerical Compuing wih IEEE Floaing Poin Arihmeic, SIAM, Philadelphia (2001). [13] Sanz-Serna, J. M. and Calvo, M. P.: Numerical Hamilonian Problems, Chapman & Hall, London (1993). [14] Taylor, J. R.:Classical Mechanics, Universiy science Books, Sauslio, California (2005). [15] Vilmar, G: Reducing Round-Off Errors in Rigid Body Dynamics, Journal of Compuaional Physics, Vol. 227, pp.7083 7088 (2008). c 2012 Informaion Processing Sociey of Japan 8