L F'(-c, 0) F(c, 0) M' D' x + d = 0 x - d = 0

Σχετικά έγγραφα
Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

r t te 2t i t Find the derivative of the vector function. 19. r t e t cos t i e t sin t j ln t k Evaluate the integral.

Section 7.7 Product-to-Sum and Sum-to-Product Formulas

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

CHAPTER (2) Electric Charges, Electric Charge Densities and Electric Field Intensity

PARTIAL NOTES for 6.1 Trigonometric Identities

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

If ABC is any oblique triangle with sides a, b, and c, the following equations are valid. 2bc. (a) a 2 b 2 c 2 2bc cos A or cos A b2 c 2 a 2.

Trigonometric Formula Sheet

ω = radians per sec, t = 3 sec

Oscillatory integrals

( )( ) La Salle College Form Six Mock Examination 2013 Mathematics Compulsory Part Paper 2 Solution

TRIGONOMETRIC FUNCTIONS

Areas and Lengths in Polar Coordinates

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Section 8.3 Trigonometric Equations

MathCity.org Merging man and maths

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

Homework 8 Model Solution Section

Section 7.6 Double and Half Angle Formulas

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Trigonometry 1.TRIGONOMETRIC RATIOS

AREAS AND LENGTHS IN POLAR COORDINATES. 25. Find the area inside the larger loop and outside the smaller loop

Econ Spring 2004 Instructor: Prof. Kiefer Solution to Problem set # 5. γ (0)

Section 9.2 Polar Equations and Graphs

1 Adda247 No. 1 APP for Banking & SSC Preparation Website:store.adda247.com

C 1 D 1. AB = a, AD = b, AA1 = c. a, b, c : (1) AC 1 ; : (1) AB + BC + CC1, AC 1 = BC = AD, CC1 = AA 1, AC 1 = a + b + c. (2) BD 1 = BD + DD 1,

SOLUTIONS TO PROBLEMS IN LIE ALGEBRAS IN PARTICLE PHYSICS BY HOWARD GEORGI STEPHEN HANCOCK

Section 8.2 Graphs of Polar Equations

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

( ) ( t) ( 0) ( ) dw w. = = β. Then the solution of (1.1) is easily found to. wt = t+ t. We generalize this to the following nonlinear differential

Appendix. The solution begins with Eq. (2.15) from the text, which we repeat here for 1, (A.1)

26 28 Find an equation of the tangent line to the curve at the given point Discuss the curve under the guidelines of Section

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

Trigonometry (4A) Trigonometric Identities. Young Won Lim 1/2/15

CRASH COURSE IN PRECALCULUS

COMPLEX NUMBERS. 1. A number of the form.

Rectangular Polar Parametric

Review-2 and Practice problems. sin 2 (x) cos 2 (x)(sin(x)dx) (1 cos 2 (x)) cos 2 (x)(sin(x)dx) let u = cos(x), du = sin(x)dx. = (1 u 2 )u 2 ( du)

Fourier Transform. Fourier Transform

= e 6t. = t 1 = t. 5 t 8L 1[ 1 = 3L 1 [ 1. L 1 [ π. = 3 π. = L 1 3s = L. = 3L 1 s t. = 3 cos(5t) sin(5t).

2 Composition. Invertible Mappings

Vidyamandir Classes. Solutions to Revision Test Series - 2/ ACEG / IITJEE (Mathematics) = 2 centre = r. a

Inverse trigonometric functions & General Solution of Trigonometric Equations

CBC MATHEMATICS DIVISION MATH 2412-PreCalculus Exam Formula Sheets

Matrices and Determinants

2 2 2 The correct formula for the cosine of the sum of two angles is given by the following theorem.

IGCSE Higher Sheet H a-1 Formulae - Answers

Areas and Lengths in Polar Coordinates

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Example Sheet 3 Solutions

Uniform Convergence of Fourier Series Michael Taylor

Math221: HW# 1 solutions

EE512: Error Control Coding

SOLUTIONS & ANSWERS FOR KERALA ENGINEERING ENTRANCE EXAMINATION-2018 PAPER II VERSION B1

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

C.S. 430 Assignment 6, Sample Solutions

Lecture 12 Modulation and Sampling

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Palestine Journal of Mathematics Vol. 2(1) (2013), Palestine Polytechnic University-PPU 2013

2 2 2 The correct formula for the cosine of the sum of two angles is given by the following theorem.

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

Quadratic Expressions

Rectangular Polar Parametric

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

11.4 Graphing in Polar Coordinates Polar Symmetries

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Tutorial Note - Week 09 - Solution

2. Μηχανικό Μαύρο Κουτί: κύλινδρος με μια μπάλα μέσα σε αυτόν.

Quantitative Aptitude 1 Algebraic Identities Answers and Explanations

MA6451-PROBABILITY & RANDOM PROCESS. UNIT-IV-CORRELATION AND SPECTRAL DENSITIES By K.VIJAYALAKSHMI Dept. of Applied mathematics

( ) ( ) ( ) Fourier series. ; m is an integer. r(t) is periodic (T>0), r(t+t) = r(t), t Fundamental period T 0 = smallest T. Fundamental frequency ω

APPENDIX A DERIVATION OF JOINT FAILURE DENSITIES

Problem 1.1 For y = a + bx, y = 4 when x = 0, hence a = 4. When x increases by 4, y increases by 4b, hence b = 5 and y = 4 + 5x.

ST5224: Advanced Statistical Theory II

is like multiplying by the conversion factor of. Dividing by 2π gives you the

Solutions to Exercise Sheet 5

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

The challenges of non-stable predicates

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

Example 1: THE ELECTRIC DIPOLE

4.6 Autoregressive Moving Average Model ARMA(1,1)

MATRICES

To find the relationships between the coefficients in the original equation and the roots, we have to use a different technique.

Low ESR Tantalum Capacitors (TCR Series)

Derivations of Useful Trigonometric Identities

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

Differential equations

Second Order Partial Differential Equations

Risk! " #$%&'() *!'+,'''## -. / # $

is the home less foreign interest rate differential (expressed as it

Strain gauge and rosettes

( N m 2 /C 2 )( C)( C) J

Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών. Εθνικό Μετσόβιο Πολυτεχνείο. Thales Workshop, 1-3 July 2015.

Differentiation exercise show differential equation

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

Approximation of distance between locations on earth given by latitude and longitude

1. If log x 2 y 2 = a, then dy / dx = x 2 + y 2 1] xy 2] y / x. 3] x / y 4] none of these

Transcript:

Hperol Reference: Advnced Level Pure Mheics S.L. Green (4 h Ediion) Chper VII p.9 - p.0 Edied Mr. Frncis Hung Ls upded: Deceer 7, 0 M D N' N P(, ) L F'(-c, 0) F(c, 0) A'(-,0) B' B A(,0) L' M' D' + d 0 - d 0. Definiion F is he focus, -is is he principl is. DD is he direcri. PF A vrile poin P(, ) oves so h e ( consn clled he eccenrici > ). PN where N is he foo of perpendiculr fro P ono DD. In priculr, when P oves o A (eween B nd F) on he principl is, AF eab Produce FB furher o poin A such h A F ea B; hen A is on he curve. (Noe h A nd A re on he opposie sides of DD.) Bisec AA (0, 0) (clled he cenre) nd le AA, hen A (, 0), A (, 0). Le DD e d. c e( d) () c + e( + d) () [() + ()] : c e (3) [() ()] : de (4) Now le P (, ), PF epn ( c) + e( d ) ( e) + e ( ) (3) nd (4) e e + e + e e + (e ) (e ) (given h e > e ( e ) > 0) Le e > 0, hen he equion of he locus ecoes nd (e) c + c (6) Replce nd in (5) respecivel, here is no chnge. The locus is sericl ou he -is nd -is (7) (5) hp://www.hkedci.ne/ihouse/fh7878/ Pge

Hperol Noes Mr. Frncis Hung. For n poin P(, ) on he hperol, P (, ) is he ige of P refleced long -is. B (7), he locus is seric ou -is P (, ) lso lies on he curve. Le F ( c, 0) e he ige of F(c, 0) refleced long -is. MM : d is he ige of he direcri DD refleced long -is. F' P' Then e (ll dshes re iges refleced long -is) P' N' P is he ige of P, which lies on he curve. F' P e for n poin P on he ellipse. PN' There re wo foci F(, 0), F (, 0) nd wo direcrices DD : d 0 nd EE : + d 0. 3. The equion gives + Fro which or. A(, 0) nd A (, 0) re he verices of he hperol. I follows h here is no poin eween o. The curve hs wo disinc rnches. 4. The lus recu is he line segen LL hrough F(c, 0) nd is perpendiculr o he principl is. To find he coordines of L nd L : e B susiuion, ± e L ( e, e ), L ( e, e ) LL e LL (8) e hp://www.hkedci.ne/ihouse/fh7878/ Pge

Hperol Noes Mr. Frncis Hung 5. Geoericl proper Le P, Q e wo poins on he se rnch of hperol. N is he foo of perpendiculr drwn fro P ono he line DD. K is he foo of perpendiculr drwn fro Q ono he line DD. The chord PQ is produced o R on DD. Join RF, he line joining P, F is produced o ee DD S. Le QFR α, RFS β, QRF θ hen PF epn, QF eqk definiion PF PN (9) QF QK ΔPNR ~ ΔQKR (equingulr) M D N K R Q F S + d 0 - d 0 M' D' P PF PN PR PF PR (0) QF QK QR QF QR PF sin θ Appl sine lw on ΔPRF: () PR sin β QF sin θ ΔFQR, () QR sin α () () (0) α β RF is he eerior ngle isecor of PFQ. Le P, Q e wo poins on he differen rnches of hperol. N is he foo of perpendiculr drwn fro P ono he line DD. K is he foo of perpendiculr drwn fro Q ono he line DD. The chord PQ cus DD R. Join RF. Q Le QFR α, PFR β, PRF θ hen PF epn, QF eqk definiion PF PN (3) QF QK ΔPNR ~ ΔQKR (equingulr) PF PN PR PF PR (4) QF QK QR QF QR PF sin θ Sine lw on ΔPRF: (5) PR sin β QF sin θ ΔFQR, (6) QR sin α (5) (6) (4) α β RF is he inerior ngle isecor of PFQ. M N R K θ β α + d 0 - d 0 M' D B D' F P hp://www.hkedci.ne/ihouse/fh7878/ Pge 3

Hperol Noes Mr. Frncis Hung 6. Vriion (0, 0) is he cenre of he curve. The curve is hperol which opens upwrd nd downwrd. The foci re F(0, c), F (0, c). c e (3) The direcri is DD whose equion is d nd EE whose equion is d, F(0,c) where d (4) e I is cler h + c (6) D' d D E' -d E F'(0,-c) If he cenre of hperol is rnsled o V(h, k), hen is new equion is ( h) ( k) (7) Eple Consider he equion + 4 3 + 4 0 I cn e rnsfored ino sndrd equion copleing he squre: ( + ) 3( 4) 4 0 ( + + ) 3( 4 + 4) + 6 0 3( ) ( + ) 6 ( ) ( + ) 3 I is hperol which opens upwrd nd downwrd wih cenre (, ),, 3. c + + 3 5 c 5 c e 5, d e. 5 7. Preric equions secθ (8) re he preric equions of, where θ is preer. n θ Siilrl n θ (9) re he preric equions of. secθ hp://www.hkedci.ne/ihouse/fh7878/ Pge 4

Hperol Noes Mr. Frncis Hung 8. Equion of chords using preers. Le A( sec α, n α), B( sec β, n β) e poins of he hperol. Then he equion of AB is nβ secβ nβ n α nβ secβ secα secβ ( ) sin α sinβ cosα cosβ cosαcosβ ( ) cosαcosβ cosα cosβ ( sin αcosβ cosαsinβ ) ( cosβ cosα) ( α β) nβ secβ nβ sin secβ sin α+β sin α β α β α β nβ sin cos α+β α β secβ sin sin α β nβ cos α+β secβ sin α + β nβ α + β α β secβ α β sin sin cos cos α β α + β α β α + β cos sin secβcos nβsin α β α + β sec β cos sinβsin β β sec β cos β α + sinβsin α + α + β α + β secβ cosβcos cos α β α + β α + β The equion of chord is cos sin cos (0) 9. Equion of ngen θ. As β α θ, equion of chord AB ecoes ngen P wih preer θ. The equion of ngen θ is given sinθ cosθ sec θ n θ () If ( 0, 0 ) lies on he hperol, hen 0 sec θ, 0 n θ. 0 0 () hp://www.hkedci.ne/ihouse/fh7878/ Pge 5

Hperol Noes Mr. Frncis Hung 0. Suppose he ngen P( sec θ, n θ) cus he direcri T, hen PT isecs FPF nd PFT 90. M D Equion of ngen P is sec θ n θ secθ To find T: le, hen co θ e e Q P( sec θ, n θ) T, cscθ( ecosθ) e e α β e cscθ( ecosθ) cscθ( ecosθ) F'(-c, 0) T TF e e ( e ) G F(c, 0) n θ sin θ PF secθ e ( ecos θ) cscθ( ecosθ) sin θ TF PF ( e ) ( ecos θ) + d 0 - d 0 c e M' D' ( e ) ( e ) ( e ) TF PF Le F PT α, TPF β, PT is produced o cu -is G, PGF φ. To find G, pu 0 in sec θ n θ G ( cos θ, 0). GF cos θ + e (cos θ + e), FG e cos θ (e cos θ) PF ( secθ + e) + ( n θ) sec θ + esecθ + e + ( e ) n θ ( sec θ n θ) + esecθ + e + e ( + n θ) + esecθ + e + e sec θ ( + esecθ) PF ( secθ e) + ( n θ) ( + e sec θ) (e sec θ ) (Q e >, sec θ >, PF > 0) FG sinβ Appl sine lw on ΔPGF, PF sin φ ( e cosθ) sinβ sinβ cos θ (3) ( esecθ ) sin φ sin φ F' G sin α Appl sine lw on ΔPGF, PF' sin φ ( cosθ + e) sin α sin α cos θ (4) ( + esecθ) sin φ sin φ Copre () nd () α β PT isecs FPF.. Le P( sec θ, n θ) e poin on, hen he difference of he focl disnces is consn. PF ( secθ e) + ( n θ) (e sec θ ) PF ( secθ + e) + ( n θ) (e sec θ + ) PF PF (e sec θ + ) (e sec θ ) hp://www.hkedci.ne/ihouse/fh7878/ Pge 6

Hperol Noes Mr. Frncis Hung. Condiion for ngenc. Le l + + n 0 e ngen, hen i is proporionl o sec θ n θ. secθ n θ i.e. l n sec θ l n, n θ n sec θ n l θ n n (l) () n () + n (l) (5) 3. Equion of ngens, given slope. Le + k e ngen, hen i is proporionl o sec θ n θ. secθ n θ i.e. k sec θ, n θ k k sec θ n θ k k () k k ± Given slope, equion of ngens re ± (6) Noe h when 0, i.e. or, wo ngens cn e found. When < <, no ngens cn e drwn. 4. The locus of he fee of perpendiculrs fro he foci o ngen is he uilir circle wih cenre (0, 0) nd rdius. Equion of ngen: ± (7) ngen The perpendiculr line hrough F is + e (8) The perpendiculr line hrough F is + e (9) (7) + (8) : ( + )( + ) e + + c + + ( + ) Siilrl, eliining fro (7) nd (9) gives +. R P( sec θ, n θ) F'(-c, 0) F(c, 0) Q hp://www.hkedci.ne/ihouse/fh7878/ Pge 7

Hperol Noes Mr. Frncis Hung 5. The produc of perpendiculrs fro he foci is. Using he forul (6) in secion 3, equion of ngen is ± e ± e ± + + B disnce forul, QF, RF ( ) ( ) e + c, e c +, c + 6. The spoes. Clerl he hperol hs no vericl spoes. ± ± (30) Le + k e n olique spoe. li li ± ± (Siilrl, li ± ) k li ( ) li li 0 + k li ( + ) li + li + 0 + The wo spoes re (3) nd (3) B(0,) F'(-c,0) A'(-,0) A(,0) F(c,0) B'(0,-) AA is clled he rnsverse is (). BB is clled he conjuge is (), i hs no rel inersecion wih he curve. hp://www.hkedci.ne/ihouse/fh7878/ Pge 8

Hperol Noes Mr. Frncis Hung 7. Recngulr hperol If, he spoes re he lines + 0 nd 0, which re righ ngles. The hperol is hen sid o e recngulr or equilerl. To find he eccenrici, + c e e e The equion e (33) or (34) + 0-0 F(0,c) P(,) A(0,) + 0-0 F'(-c,0) F(c,0) A'(-,0) N A(, 0) A'(0,-) F'(0,-c) Le P(, ) e poin on (33) Le N e he foo of perpendiculr fro P on he line + 0. N + PN N cos 45 + PN sin 45 PN N PN sin 45 N cos 45 N + PN PN N (33): ( ) ( ) N PN If we ke he spoe N s he new X-is, nd he oher spoe ( 0) s he new Y-is, hen he k new equion of he recngulr hperol, referred o is spoes, is in he for: XY k, where k. Wih his sse, he spoes re given X 0 or Y 0. 4 - -4 hp://www.hkedci.ne/ihouse/fh7878/ Pge 9

Hperol Noes Mr. Frncis Hung 8. Preric equions k k (35) re he preric equions of k. 9. Chord, ngen nd norl. Le A k k,, B k k, e wo poins on he recngulr hperol k. k k k ( ) k Equion of chord AB is given : k k k k k + k 0 ( ) The equion of chord is: + k( + ) 0 (36) As B A, he equion of ngen A is + k 0 (37) k Equion of norl is given : k which is equivlen o 3 k 4 + k 0 (38) 0. Eple Find he preer of he poin in which he norl ee he curve gin. Le he required preer e. Copre he norl 3 k 4 + k 0 (38) nd chord: + k( + ) 0 (36) Since he re idenicl, 3 4 k + k k( + ) 3 Eple 3 Find he locus of id poins of chords k which re prllel o he dieer. Le he chord e + k( + ) 0 (36) I is prllel o. k The id-poin is ( ) (40) (39): k + (39), + The locus is. I is clled he conjuge dieer. Eple 4 If ( 0, 0 ) lie on k, hen 0 k, 0 k. The equion of ngen is : + k 0 k + (k) k 0 ( 0 + 0 ) k k + (40) hp://www.hkedci.ne/ihouse/fh7878/ Pge 0

Hperol Noes Mr. Frncis Hung Eple 5 If PP is dieer of recngulr hperol nd he norl P ee he curve gin Q, show h PQ suends righ ngle P. PP psses hrough (0, 0), PQ norl P. Tr o show h PP Q 90 k 6 4 P() Le he preer of P e. Then since PP psses hrough, preer of P Q - B eple, preer of Q is. -4 3 P' 3 k PP QP k + k 3 k ( ) -5-0 -5 5 PP QP. There re os 4 norls pss hrough given poin (p, q). k The norl k, is 3 k 4 0 + k 0 8 3 I psses hrough (p, q): 3 p q k 4 + k 0 6 k 4 p 3 + q k 0 4 I is polnoil equion of degree 4, which hs, in generl os 4 (rel) roos in (,, 3, 4 ). - 3 4 4-4 If,, 3, 4 re rel, 3 lies on one rnch nd -6 one on he oher, (s),, 3 is posiive nd 4 is negive or,, 3 is negive nd he 4 is posiive. 5 0 5 (p,q) hp://www.hkedci.ne/ihouse/fh7878/ Pge