Real-Time, Finite-Temperature AdS/CFT

Σχετικά έγγραφα
Higher Derivative Gravity Theories

Higher spin gauge theories and their CFT duals

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Space-Time Symmetries

UV fixed-point structure of the 3d Thirring model

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Example Sheet 3 Solutions

Non-Gaussianity from Lifshitz Scalar

Cosmological Space-Times

AdS black disk model for small-x DIS

Probing the AdS/CFT Plasma with Heavy Quarks

Hartree-Fock Theory. Solving electronic structure problem on computers

Other Test Constructions: Likelihood Ratio & Bayes Tests

Sachdev-Ye-Kitaev Model as Liouville Quantum Mechanics

Graded Refractive-Index

SPONTANEOUS GENERATION OF GEOMETRY IN 4D

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

Solutions to Exercise Sheet 5

Aspects of the BMS/CFT correspondence

Congruence Classes of Invertible Matrices of Order 3 over F 2

1 String with massive end-points

2 Composition. Invertible Mappings

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1

SPECIAL FUNCTIONS and POLYNOMIALS

Symmetric Stress-Energy Tensor

Variational Wavefunction for the Helium Atom

Approximation of distance between locations on earth given by latitude and longitude

Forced Pendulum Numerical approach

Nonminimal derivative coupling scalar-tensor theories: odd-parity perturbations and black hole stability

derivation of the Laplacian from rectangular to spherical coordinates

Finite difference method for 2-D heat equation

Phys624 Quantization of Scalar Fields II Homework 3. Homework 3 Solutions. 3.1: U(1) symmetry for complex scalar

Structure constants of twist-2 light-ray operators in the triple Regge limit

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

D Alembert s Solution to the Wave Equation

Srednicki Chapter 55

Dark matter from Dark Energy-Baryonic Matter Couplings

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Dr. D. Dinev, Department of Structural Mechanics, UACEG

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

Revisiting the S-matrix approach to the open superstring low energy eective lagrangian

Quantum Statistical Mechanics (equilibrium) solid state, magnetism black body radiation neutron stars molecules lasers, superuids, superconductors

Parametrized Surfaces

Œ ˆ Œ Ÿ Œˆ Ÿ ˆŸŒˆ Œˆ Ÿ ˆ œ, Ä ÞŒ Å Š ˆ ˆ Œ Œ ˆˆ

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

Linearized Conformal gravity

What happens when two or more waves overlap in a certain region of space at the same time?

Local Approximation with Kernels

Geodesic Equations for the Wormhole Metric

Reminders: linear functions

Numerical Analysis FMN011

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

A manifestly scale-invariant regularization and quantum effective operators

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:

Areas and Lengths in Polar Coordinates

6.4 Superposition of Linear Plane Progressive Waves

Matrices and Determinants

DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E.

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Torsional Newton-Cartan gravity from a pre-newtonian expansion of GR

Homework 8 Model Solution Section

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

4.4 Superposition of Linear Plane Progressive Waves

The Standard Model. Antonio Pich. IFIC, CSIC Univ. Valencia

The Simply Typed Lambda Calculus

The mass and anisotropy profiles of nearby galaxy clusters from the projected phase-space density

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King

Aspects of the BMS/CFT correspondence

Three coupled amplitudes for the πη, K K and πη channels without data

F19MC2 Solutions 9 Complex Analysis

Physics 554: HW#1 Solutions

Differential equations

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3

Magnetic bubble refraction in inhomogeneous antiferromagnets

3.5 - Boundary Conditions for Potential Flow

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

EE101: Resonance in RLC circuits

Areas and Lengths in Polar Coordinates

Constitutive Relations in Chiral Media

BLACK HOLES AND UNITARITY GEORGE SIOPSIS. The University of Tennessee. G.S., Class. Quant. Grav. 22 (2005) 1425; hep-th/

Section 8.3 Trigonometric Equations

NLO BFKL and anomalous dimensions of light-ray operators

Problem 3.16 Given B = ˆx(z 3y) +ŷ(2x 3z) ẑ(x+y), find a unit vector parallel. Solution: At P = (1,0, 1), ˆb = B

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Solution to Review Problems for Midterm III

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

The Pohozaev identity for the fractional Laplacian

( ) 2 and compare to M.

Integrability of Nonlinear Equations of Motion on Two-Dimensional World Sheet Space-Time

Geometry of the 2-sphere

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

Symmetry. March 31, 2013

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

Gravitational Waves in any dimension

Transcript:

Real-Time, Finite-Temperature AdS/CFT p. 1/34 Real-Time, Finite-Temperature AdS/CFT Chaolun Wu Physics Department, University of Virginia April 28, 2010

Real-Time, Finite-Temperature AdS/CFT p. 2/34 Real-Time, Finite-Temperature AdS/CFT Work done with Peter Arnold, Eddy Barnes & Diana Vaman e-print: arxiv:1004.1179 [hep-th]

Real-Time, Finite-Temperature AdS/CFT p. 3/34? Question? How to calculate n-point correlators like T O(x 1 )O(x 2 )O(x 3 ) in a Strongly Coupled, Finite Temperature field theory? Strong Coupling: AdS/CFT duality Finite Temperature: AdS-Schwarzschild/Thermal CFT duality QCD (Quark-Gluon Plasma) when g is large but slow-changing = N = 4, SU(N c ) Supersymmetric Yang-Mills (SYM) Field Theory

Real-Time, Finite-Temperature AdS/CFT p. 4/34 Outline A Brief Review CFT: N = 4 SU(N c ) Super-YM Field Theory AdS: Type IIB Supergravity in AdS 5 Space T = 0 Duality: AdS/CFT T = 0 Duality: AdS-Schwarzschild/Thermal CFT Scalar in AdS-Schwarzchild Bulk-to-Boundary Propagators 2-Point Functions 3-Point Functions related to Schwinger-Keldysh Formalism Summary & Outlook

Real-Time, Finite-Temperature AdS/CFT p. 5/34 { L = tr N = 4SU(N c ) Super-YM Field Theory 6 D μ φ i D μ φ i i=1 4 I=1 i ψ I γ μ D μ ψ I 1 2g 2 Y M d = 4 flat Minkowskian space Poincaré invariance (rotation and boost + translation) Symmetry group SO(1, 3) Maximal supersymmetry } F μν F μν + Bosons: φ i (x) (i = 1..6), A μ (x) Fermions: ψ I α(x) (I = 1..4) R-symmetry: mix same spin fields Symmetry group SO(6) β(g YM ) = 0 at quantum level Scale invariance Conformal field theory Symmetry group SO(2, 4) (together with Poincaré) Global symmetry: SO(2, 4) SO(6)

Real-Time, Finite-Temperature AdS/CFT p. 6/34 AdS 5 S 5 Geometry SO(6) = S 5 (5-d sphere) Embedding: X 2 1 +X 2 2 +X 2 3 +X 2 4 +X 2 5 +X 2 6 = R 2 Metric: ds 2 = R 2 dω 2 5 SO(2, 4) =?

Real-Time, Finite-Temperature AdS/CFT p. 7/34 AdS 5 S 5 Geometry SO(2,4) = AdS 5 (5-d Anti-de Sitter space) Embedding: X 2 1 X 2 0 +X 2 1 +X 2 2 +X 2 3 +X 2 4 = R 2 Metric: ds 2 = r2 R 2( dt2 +d x 2 )+ R2 r 2 dr2 = R2 z 2 ( dt2 +d x 2 +dz 2 ) Curvature: negative constant 2 Poincaré patches 1 boundary in each Poincaré patch: at r = or z = 0

Real-Time, Finite-Temperature AdS/CFT p. 8/34 S = 1 4πα + 1 4πα Type IIB Superstring Theory d 2 ξ { } γ [γ mn G μν (X)+ε mn B μν (X)] m X μ (ξ) n X ν (ξ)+α R (2) γ Φ(X) Σ d 2 ξ [ ] γg μν (X) ψ+(ξ)d z μ ψ+(ξ)+ψ ν (ξ)d μ z ψ (ξ) ν + Σ String 1 spatial dimension d = 2 worldsheet: ξ m = (τ,σ), (m = 0,1) Worldsheet metric: γ mn (ξ) Bosonic field: embedding space d = 10 spacetime: X μ = (t, x,r,...), (μ = 0..9) Target space metric: G μν (X) Fermionic field: ψ μ ±(ξ) Coupling constant: g s, string length: α = l 2 s AdS 5 S 5 is the backgound

Real-Time, Finite-Temperature AdS/CFT p. 9/34 Type IIB Supergravity (SUGRA): d = 10 S = 1 2κ 2 10 d 10 X } Ge {R Φ (10) +4 μ Φ(X) μ Φ(X) + where κ 10 = 8π 7 2g s l 4 s Low Energy (Point) limit of string: massive string modes decouple, only massless mode survives. l s R 0 d = 10 spacetime: X μ = (t, x,r,...), (μ = 0..9) Fields: metric G μν (X), scalar Φ(X),... G μν (X) = AdS 5 S 5 is a classical solution Classical limit: suppress quantum fluctuations g s 0

Real-Time, Finite-Temperature AdS/CFT p. 10/34 Classical Type IIB Supergravity: d = 5 Kaluza-Klein reduction from d = 10 to d = 5, eg: integrate over S 5 Φ(X) = φ(t, x,r)y lm... (Ω 5 ) Eigenvalue of Y lm... looks like a mass term in d = 5 5-d effective action S = N2 8π 2 R 3 d 5 x { g R (5) 1 2 S 5 = Δ(Δ 4) m 2 ( μ φ μ φ+m 2 φ 2) } R2 8 Fa μνf aμν + This is the starting point of an actual AdS calculation.

Real-Time, Finite-Temperature AdS/CFT p. 11/34 String/Gauge Duality 2 quite different theories: String/SUGRA vs. CFT Same global symmetry groups Prerequisite of forming a duality Duality: Mapping of everything Map of (coupling) constants Map of String fields CFT operators Map of String action CFT generating functional Map of correlation functions

Real-Time, Finite-Temperature AdS/CFT p. 12/34 AdS/CFT Duality: (Coupling) Constants Quantum IIB String in AdS 5 S 5 (g s,l s ) N = 4 SU(N c ) SYM (CFT) (N c,λ=g 2 YM N c) g s 0 l s R 0 4πg s = λ N c ( ) 4 R = λ λ N c λ l s Weakly coupled IIB SUGRA in AdS 5 Strongly coupled large N c Quantum CFT

Real-Time, Finite-Temperature AdS/CFT p. 13/34 AdS/CFT Duality: Fields / Operators AdS Fields CFT Operators φ L A a μ J a μ g μν T μν. m Δ

Real-Time, Finite-Temperature AdS/CFT p. 14/34 AdS/CFT Duality: Action & Correlators AdS (classical) CFT (strongly coupled) lim z 0 φ(x, z) z 2 Δ 2 = φ(x) φ(x) = J(x) J(x) O(x) S cl [ φ] = d 5 x g( φ) 2 + Z[J] = Dφe is+i d 4 xj(x)o(x) e is cl[ φ] = Z[J] δ n S cl [ φ] δ φ(x 1 )δ φ(x 2 )... φ 0 O(x 1 )O(x 2 )... δ n lnz[j] δj(x 1 )δj(x 2 )... J 0

Real-Time, Finite-Temperature AdS/CFT p. 15/34 AdS-Schwarzschild/CFT Duality: T = 0 Weakly coupled IIB SUGRA in AdS Schwarzschild 5 T H [Witten] Strongly coupled Quantum CFT at Finite Temperature T AdS 5 : AdS Schwarzschild 5 : ds 2 = r2 R 2( dt2 +d x 2 )+ R2 r 2 dr2 ds 2 = r2 R 2( fdt2 +d x 2 )+ R2 r 2 f dr2 f = 1 ( r 0 ) 4 r - Blackening function T H = r 0 - Hawking temperature πr 2

Real-Time, Finite-Temperature AdS/CFT p. 16/34 AdS-Sch/CFT Duality: Procedure & Complications 1. Solve EOM in AdS-Schwarzschild background ( m 2 )φ(t, x,r) = 0 with = 1 g μ gg μν ν Find 2 eigenfunctions AdS: 2 poles at r = 0 and r = = Bessel eq. AdS-Sch: 4 poles, 2 extra from f at r 2 = ±r0 2 =? Superposition by B.C. s =? 2. Calculate classical on-shell action S cl [ φ] = d 5 x g { μ φ μ φ+m 2 φ 2} global structure: 4 quadrants + 2 timelike boundaries, so d 5 x =? 3. Take functional derivative of S cl [ φ]

Real-Time, Finite-Temperature AdS/CFT p. 17/34 ODE with 4 Regular Poles: Heun s Equation d 2 φ(z) dz 2 + ( γ z + δ z 1 + ε ) dφ(z) z a dz 4 poles: z = 0, 1, a, + αβz q z(z 1)(z a) φ(z) = 0 Regularity at z = : ε = α+β γ δ +1 Solution: Heun s function in z [0, min{1, a }) Hl(a,q,α,β,γ,δ;z) = k=0 c k z k = 1+ q z + γa Recursion relation: c k+1 =...c k +...c k 1 2 independent solutions (eigenfunctions): φ 1 (z) = Hl(a,q,α,β,γ,δ;z) φ 2 (z) = z 1 γ Hl(a,q (γ 1)(aδ +ε),β γ +1,α γ +1,2 γ,δ;z) { or φ 3 (z) = lim φ 1 (z) c } 2(γ, ) γ 1 γ +1 φ 2(z)

Real-Time, Finite-Temperature AdS/CFT p. 18/34 { Solving Scalar EOM in AdS-Schwarzschild ( m 2 )φ(t, x,r) = 0 with = 1 g μ gg μν ν F w.r.t. (t, x) φ(t, x,r) φ(ω, k;u) ω= E 2πT, k= p 2πT u = ( r 0 ) 2 r f = 1 u 2 boundary: u = 0 horizon: u = 1 2 u 2 + u2 +1 u(u 2 1) u + ω 2 u(u 2 1) + k 2 2 u(u 2 1) + m 2 R 2 4u 2 (u 2 1) } φ(ω, k;u) = 0 φ(ω, k;u) = F(ω, k;u) φ(ω, k) F(ω, k;u) = 1 u 0 u 2 Δ 2 F(u): bulk-to-boundary propagator φ(ω, k): boundary field

Real-Time, Finite-Temperature AdS/CFT p. 19/34 AdS-Schwarzschild: Bulk-to-Boundary Propagators (1) i.e., 2 independent solutions of the EOM: [Starinets] F(ω, k;u) = N ω, k u 2 Δ 2 (1+u) ω 2 (1 u) iω 2 Hl(a,q,α,β,γ,δ;1 u) with α = β = ( 2 Δ 2 γ = 1 iω δ = 3 Δ a = 2 ( ) q = 4 2Δ+ Δ2 4 ) + 1 i 2 ω + [ 1 2 +( ) ] Δ 7 2 i ω i 2 ω2 ω 2 + k 2 The other is F (ω, k;u).

Real-Time, Finite-Temperature AdS/CFT p. 20/34 What isf(ω, k;u)? F(ω, k;u) F(ω +iε, k;u): = Retarded propagator analytic in UHP of ω Near-horizon u 1 behavior inside the F.T. F(ω, k;u) (1 u) iω 2 e iet F(ω, R2 ie(t+ 4r ln k;u) e r r 0 0 r ) 0 V iω = F(ω, incoming wave in R k;u) is outgoing wave in L F(ω, k;u) has supports only inside the future light-cone = Retarded propagator

Real-Time, Finite-Temperature AdS/CFT p. 21/34 Global Structure of AdS-Schwarzschild Poincaré (local) ds 2 = r2 f R 2 dt2 + R2 r 2 f dr2 Coordinate transformation: t K = βe αr2 2r r 0 sinhαt in R r K = βe αr2 2r r 0 coshαt t K = βe αr2 2r r 0 sinhαt in L r K = βe αr2 2r r 0 coshαt r = arctan ( ) ( r r 0 arctanh r0 ) r t K = V +U r K = V U Kruskal (global) ds 2 = e Λ(t K,r K ) ( dt 2 K +drk) 2 AdS-Sch Penrose diagram F U=0 L R P V=0

Real-Time, Finite-Temperature AdS/CFT p. 22/34 Prescriptions & Boundary Conditions Defined in Kruskal (global) coordinates Action integral: only in L & R quadrants, minus R L [Frolov & Martinez] Continuity across the horizon: [Unruh] f(u,v = 0) f(u = 0,V) Frequency selection: [Son & Herzog] Physical particles R: incoming L: outgoing

Real-Time, Finite-Temperature AdS/CFT p. 23/34 AdS-Schwarzschild: Bulk-to-Boundary Propagators (2) Bulk field (globally defined): φ R (t, x,r) in R φ(t K, x K,r k ) = φ L (t, x,r) in L d 4 { } p φ R (t, x,r) = f RR (ω, k;u) φ R (ω, k)+f RL (ω, k;u) φ L (ω, k) φ L (t, x,r) = (2π) 4eipx d 4 { } p f (2π) 4eipx LR (ω, k;u) φ R (ω, k)+f LL (ω, k;u) φ L (ω, k) Bulk-to-boundary propagators: Feynman & Wightman f RR (ω, k;u) = e2πω e 2πω 1 F(ω, k;u) 1 e 2πω 1 F (ω, k;u) f RL (ω, [ k;u) = eπω e 2πω 1 F(ω, k;u)+f (ω, ] k;u) f LR (ω, [ k;u) = eπω e 2πω 1 F(ω, k;u) F (ω, ] k;u) f LL (ω, k;u) = 1 e 2πω 1 F(ω, k;u)+ e2πω e 2πω 1 F (ω, k;u) where e 2πω = e E/T - Boltzman factor [Son & Herzog]

Real-Time, Finite-Temperature AdS/CFT p. 24/34 S[φ] = Structure of On-Shell Action d 5 x gl[φ] R L d 5 x gl[φ] L 0 = μ φ μ φ+m 2 φ 2, L pert = λ 3! φ3 Substitute 0 th order EOM solution into the action S cl [φ] = d 4 x gg uu φ u φ + λ dud 4 x gφ 3 R L u 0 3! R L S cl [ φ] = d 4 p 1 d 4 p 2 δ (4) (p 1 +p 2 ) f ij1 (p 1 ;u) gg uu u f ij2 (p 2 ;u) (p 1 ) φ j2 (p 2 ) ij u 0 φj1 + λ 1 du g d 4 p 1 d 4 p 2 d 4 p 3 δ (4) (p 1 +p 2 +p 3 ) f ij1 (p 1 ;u)f ij2 (p 2 ;u) 3! 0 ij f ij3 (p 3 ;u) φ j1 (p 1 ) φ j2 (p 2 ) φ j3 (p 3 ) where i,j = R,L Next: to take functional derivative w.r.t. φ.

Real-Time, Finite-Temperature AdS/CFT p. 25/34 AdS-Schwarzschid: 2-Point Functions Define: G ij (p 1,p 2 ) = ( ) i+j δ 2 S cl [ φ] δ φ i (p 1 )δ φ j (p 2 ) φ 0 where i,j = 1,2 (1 R, 2 L) 2-point functions: F(u) F(p;u) = F(ω, k;u) [Son & Herzog] [ G 11 (p) = N2 8π 2 R gg uu e 2πω 3 e 2πω 1 F(u) uf(u) 1 e 2πω 1 F (u) u F (u)] G 12 (p) = N2 8π 2 R gg uu e πω 3 e 2πω 1 [ F(u) uf(u)+f (u) u F (u)] u 0 u 0 G 21 (p) = G 12 (p) G 22 (p) = N2 8π 2 R gg uu 3 [ 1 e 2πω 1 F(u) uf(u) e2πω e 2πω 1 F (u) u F (u)] u 0 Same structure as the propagators: Retarded vs. Feynman & Wightman?

Real-Time, Finite-Temperature AdS/CFT p. 26/34 AdS-Schwarzschid: 3-Point Functions Define: G ijk (p 1,p 2,p 3 ) = ( ) i+j+k δ 3 S cl [ φ] δ φ i (p 1 )δ φ j (p 2 )δ φ k (p 3 ) φ 0 where i,j,k = 1,2; (1 R, 2 L) 3-point functions: G ijk (p 1,p 2,p 3 ) = ( ) i+j+k N 2 16π 2 R 3λδ(4) (p 1 +p 2 p 3 ) du g 0 [ ] f Ri (p 1 ;u)f Rj (p 2 ;u)f Rk (p 3 ;u) f Li (p 1 ;u)f Lj (p 2 ;u)f Lk (p 3 ;u) 1 1 = ( ) i+j+k N 2 16π 2 R 3λδ(4) (p 1 +p 2 p 3 ) du g 0 [ n ( e 2πω 1,e 2πω 2,e ) ] 2πω 3 F(p 1 ;u)f(p 2 ;u)f(p 3 ;u)+ Tree-level diagrams & Circling rules

Real-Time, Finite-Temperature AdS/CFT p. 27/34 Schwinger-Keldysh Formalism for Field Theory at T = 0 Real-time formalism Complex t-contour C, doubler fields S = dtl C e β ˆH it ˆH e Generating function Z[J 1,J 2 ] = Dφe is+i d 4 xj 1 O 1 i d 4 xj 2 O 2 n-point functions G (n) ab... ({x i}) = ( i) n 1 δ n lnz[j 1,J 2 ] δj a (x 1 )δj b (x 2 )... (a,b... = 1,2)

Real-Time, Finite-Temperature AdS/CFT p. 28/34 Mapping AdS-Sch Structure to Schwinger-Keldysh L & R structure S-K contour 2 boundaries 2 real time paths R = 1, L = 2 Fields: right real, left doubler φ R = J 1, φl = J 2 φ R = O 1, φ L = O 2 n-point function n n matrices match, e.g.: G RLRR... = G 1211... Hawking temperature imaginary contour period σ = β 2

Real-Time, Finite-Temperature AdS/CFT p. 29/34 2-Point Function: Matrix & Causal Schwinger-Keldysh 2-point function marix has the following properties: KMS (Kubo-Martin-Schwinger) relation G 11(p) = G 22 (p), G 12(p) = G 21 (p) Largest time identity (πω = E 2T ) G 11 e πω G 12 e πω G 21 +G 22 = 0 Feynman, Wightman & Causal G 11 (p) = G F (p), G 12 (p) = e πω G (p), G R (p) = G 11 e πω G 12 G 11 (p) = RG R (p)+icoth(πω)ig R (p) G 12 (p) = icsch(πω)ig R (p) G R (p) = N2 gg uu 8π 2 R 3 F(ω, k;u) u F(ω, k;u) u 0

Real-Time, Finite-Temperature AdS/CFT p. 30/34 3-Point Function: Matrix & Causal Schwinger-Keldysh 3-point function marix has the following properties: KMS relation G 111(p) = G 222 (p), G 121(p) = G 212 (p) Largest time identity (p 3 = p 1 +p 2 ) G 111 e πω 1 G 211 e πω 2 G 121 +e πω 3 G 221 +e πω 1 G 122 +e πω 2 G 212 e πω 3 G 112 G 222 = 0 Feynman & Wightman G 111 ({x}) = G F ({x}) = T e β ˆHO(x 1 )O(x 2 )O(x 3 ), Causal [Kobes] G R ({p}) = G 111 e πω 1 G 211 e πω 2 G 121 +e πω 3 G 221 G R ({x}) = θ(t 3 > t 2 > t 1 ) e β ˆH[[O(x 3 ),O(x 2 )],O(x 1 )] θ(t 3 > t 1 > t 2 ) e β ˆH[[O(x 3 ),O(x 1 )],O(x 2 )]

Real-Time, Finite-Temperature AdS/CFT p. 31/34 Causal 3-Point Function G R ({p}) = G 111 e πω 1 G 211 e πω 2 G 121 +e πω 3 G 221 =? G 111 ( ( G 121 e ω 2 π ( (? G e (ω 1 + ω 2 ) π 221 G211 e ω π 1

Real-Time, Finite-Temperature AdS/CFT p. 32/34 Causal 3-Point Function G R ({p}) = G 111 e πω 1 G 211 e πω 2 G 121 +e πω 3 G 221 ( ( 1 2 G 111 G 121 e ω 2 π λ ( ( 3 G e (ω 1 + ω 2 ) π 221 G211 e ω π 1 1 G R ({p}) = λn2 16π 2 R 3δ(4) (p 1 +p 2 p 3 ) du gf(p 1 ;u)f(p 2 ;u)f(p 3 ;u) 0 G R ({x}) λ dud 4 y gf(x 1 y;u)f(x 2 y;u)f (x 3 y;u)

Real-Time, Finite-Temperature AdS/CFT p. 33/34 Conclusions & Outlook Conclusions Strongly-coupled FT Weakly-coupled gravity Finite-temperature Black Hole in gravity Mapping of everything: built & checked 2-pt & 3-pt functions: calculated (in terms of Heun s function) Causal correlators: very simple structures in gravity dual Future Work More realistic calculations (such as T μν ) Non-relativistic, scale-invariant FT gravity dual

Real-Time, Finite-Temperature AdS/CFT p. 34/34