RECIPROCATING COMPRESSOR CALCULATION SHEET

Σχετικά έγγραφα
RECIPROCATING COMPRESSOR CALCULATION SHEET

RECIPROCATING COMPRESSOR CALCULATION SHEET ISOTHERMAL COMPRESSION Gas properties, flowrate and conditions. Compressor Calculation Sheet


Proses = 0 / 0 Proses = 0 / 36 16" 4576 / 2.3 Barat : 4833 / Utara : 5941 / 3.05 Proses = 63 / 37 Flow : 9936 / 3.2

Group 30. Contents.

ZLW Series. Single-stage Monoblock Centrifugal Pump ZL PUMP GROUP.,LTD

Metal Oxide Varistors (MOV) Data Sheet

COPELAND SCROLL AIR COOLED CONDENSING UNITS

ΜΜ917-Σχεδιασμός Ενεργειακών Συστημάτων

Heat exchanger. Type WT. For the reheating of airflows in rectangular ducting PD WT 1. 03/2017 DE/en

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Ξενόγλωσση Τεχνική Ορολογία

4 Way Reversing Valve

UDZ Swirl diffuser. Product facts. Quick-selection. Swirl diffuser UDZ. Product code example:

Fin coil calculation with NTU

MATRIX. EBARA PUMPS EUROPE S.p.A. HORIZONTAL MULTISTAGE PUMPS

Smaller. 6.3 to 100 After 1 minute's application of rated voltage at 20 C, leakage current is. not more than 0.03CV or 4 (µa), whichever is greater.

STEAM TABLES. Mollier Diagram

Technical Report. General Design Data of a Three Phase Induction Machine 90kW Squirrel Cage Rotor

Swirl diffusers, Variable swirl diffusers Swirl diffusers

Aluminum Electrolytic Capacitors (Large Can Type)

the total number of electrons passing through the lamp.

2. Laser Specifications 2 1 Specifications IK4301R D IK4401R D IK4601R E IK4101R F. Linear Linear Linear Linear

Surface Mount Multilayer Chip Capacitors for Commodity Solutions

Westfalia Bedienungsanleitung. Nr

20/01/ of 8 TOW SSD v3. C 2.78AC Σ Cumul. A*C. Tc 1 =A14+1 =B14+1 =C14+1 =D14+1 =E14+1 =F14+1 =G14+1 =H14+1 =I14+1 =J14+1 =K14+1

Data sheet Thick Film Chip Resistor 5% - RS Series 0201/0402/0603/0805/1206

Technical Information T-9100 SI. Suva. refrigerants. Thermodynamic Properties of. Suva Refrigerant [R-410A (50/50)]

Aluminum Electrolytic Capacitors

Weight [lb] = (Do-t)*π*L*t*40.84/ (60-1)*3.1416*100*1*40.84/144 = (20000*1*1)/(29+0.6*1) = Pipe and Shell ver 4.

2 nd Law: m.s in + Q in /T in + S gen = ds/dt + m.s out + Q out /T out. S gen /ṁ = -(Q in /m)/t + Δs,

Thin Film Chip Resistors

Second Order RLC Filters

DuPont Suva 95 Refrigerant

Gearmotor Data. SERIES GM9000: We have the GM9434H187-R1

Consolidated Drained

5.0 DESIGN CALCULATIONS

Finish: Anticorrosive finish in polyester. Number of motor poles 4=1400 r/min. 50 Hz 6=900 r/min. 50 Hz 8=750 r/min. 50 Hz

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

Homework 3 Solutions

Accu-Guard II. SMD Thin-Film Fuse ELECTRICAL SPECIFICATIONS

SERIES DATASHEET INDUCTORS RF INDUCTORS (MRFI SERIES)

Thick Film Chip Resistors

Transient Voltage Suppression Diodes: 1.5KE Series Axial Leaded Type 1500 W

AT Surface Mount Package SOT-363 (SC-70) I I Y. Pin Connections B 1 C 1 E 1 E 2 C 2 B , 7:56 PM

Daewoo Technopark A-403, Dodang-dong, Wonmi-gu, Bucheon-city, Gyeonggido, Korea LM-80 Test Report

Τελική Εξέταση =1 = 0. a b c. Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. HMY 626 Επεξεργασία Εικόνας

DuPont Suva 95 Refrigerant

Chapter 22 - Heat Engines, Entropy, and the Second Law of Thermodynamics

First Sensor Quad APD Data Sheet Part Description QA TO Order #

MARKET INTRODUCTION System integration

SMBJ SERIES. SMBG Plastic-Encapsulate Diodes. Transient Voltage Suppressor Diodes. Peak pulse current I PPM A with a 10/1000us waveform See Next Table

, / 230 4,6 / 2, , / 230 5,4 / 2,7

Transient Voltage Suppressor

Linear diffuser. Dimensions. Description

CENTRIFUGAL AIR COOLED CONDENSERS CONDENSADORES DE AIRE CENTRÍFUGOS. GPC, GMC and GSC Series. Series GPC, GMC y GSC

DuPont Suva. DuPont. Thermodynamic Properties of. Refrigerant (R-410A) Technical Information. refrigerants T-410A ENG

KYOWA PRODUCT CATALOGUE

4 Way Reversing Valve

VERTICAL MULTI-CELL CENTRIFUGAL PUMPS IN AISI 316 STAINLESS STEEL

Figure 1 T / K Explain, in terms of molecules, why the first part of the graph in Figure 1 is a line that slopes up from the origin.

1.575 GHz GPS Ceramic Chip Antenna Ground cleared under antenna, clearance area 4.00 x 4.25 mm / 6.25 mm. Pulse Part Number: W3011 / W3011A

ΕΒΑΘ ΑΝΤΛΙΕΣ EVATH PUMPS.

ΕΓΚΟΛΠΙΟ e-ιπταµένου 322M e-haf 22/11/08 VERSION 1.0

Volume of a Cuboid. Volume = length x breadth x height. V = l x b x h. The formula for the volume of a cuboid is

INPAQ Global RF/Component Solutions

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΣΧΕΔΙΑΣΜΟΥ & ΑΝΑΛΥΣΗΣ ΔΙΕΡΓΑΣΙΩΝ

APPENDIX A. Summary of the English Engineering (EE) System of Units

MCB and MHC Series Chip Ferrite Bead for Automotive Applications Qualified based on AEC-Q200

ISO Sample Report

Risk! " #$%&'() *!'+,'''## -. / # $

Macromechanics of a Laminate. Textbook: Mechanics of Composite Materials Author: Autar Kaw

LS series ALUMINUM ELECTROLYTIC CAPACITORS CAT.8100D. Specifications. Drawing. Type numbering system ( Example : 200V 390µF)

RANGE OF APPLICATION HYDRO TOTAL MRL. ver sion 3.1 / web: info@doppler.gr

5.4 The Poisson Distribution.

DATA SHEET Surface mount NTC thermistors. BCcomponents

NPI Unshielded Power Inductors

FORD RANGER Ranger_2013.5_Cover_V2.indd 1 20/12/ :57

Multilayer Ceramic Chip Capacitors

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Mechanical Behaviour of Materials Chapter 5 Plasticity Theory

RoHS 555 Pb Chip Ferrite Inductor (MFI Series) Engineering Spec.

Type. Capacities. 441, 442 Full nozzle DIN. Flanged Safety Relief Valves spring loaded. The-Safety-Valve.com LWN E

Math 6 SL Probability Distributions Practice Test Mark Scheme

Ceramic PTC Thermistor Overload Protection

MRL HYDRAULIC LIFTS TYPE:

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

Multilayer Ceramic Chip Capacitors

500mW Zener Diodes TZXJ2.0A TZXJ mW Zener Diodes. Features. Mechanical Data. Maximum Ratings (T Ambient=25ºC unless noted otherwise)

Thin Film Chip Resistors

Development of Finer Spray Atomization for Fuel Injectors of Gasoline Engines

Thin Film Chip Resistors

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Project: Brimsmore, Ye... Job no: C08127 Designed By kristian Checked By Network W Network Design Table for OUTFALL B.SWS

A31. Aluminium heat exchanger A31

LOWARA e-nsce, e-nscs, e-nscf

Problem Set 3: Solutions

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΓΕΩΤΕΧΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ. Πτυχιακή εργασία

KS Series. Changsung Corp. -CSC-

Thick Film Chip Resistors

Siemens AG Rated current 1FK7 Compact synchronous motor Natural cooling. I rated 7.0 (15.4) 11.5 (25.4) (2.9) 3.3 (4.4)

Transcript:

RECIPRCATING CMPRESSR CALCULATIN SHEET WITH INTERCLER Gas properties, flowrate and conditions 1 Gas name Air Item or symbol Quantity Unit Item or symbol Quantity Unit 2 Suction pressure, ps 1.013 bar A Discharge pressure, pd 38.2 bar A 3 Suction temperature, ts 35 C 4 Ts 308 K p CR 47.88 bar A 5 MW 28.4 kg/kgmol T CR 161.38 K 6 k S 1.403 p R = p / p CR 0.021 7 R S 0.295 kj/kg. K T R = T / T CR 1.91 8 DSs 1.115 kg/m3 Z S 1.00 9 MCp 29.10 kj/kgmol. K Cp S 1.027 kj/kg 10 G 26000 kg/hr G mol 917 kgmol/hr 11 Q S 23320 m 3 /hr Q N 20670 Nm 3 /hr 12 Compressor Calculation Sheet Item Symbol Unit Quantity Note ( Sheet : 1. f 3.) 13 Preliminary Calculation (General method) 14 Check whether need intercooler 15 First Stage Volume flow Qs m3/hr 23320 16 Cylinder intake pressure ps' bara 0.98261 17 Cylinder exhaust pressure pd' bara 39.346 18 Pressure ratio (p D / p S ) r' TTAL - 40.042 19 (k-1)/k - 0.2872 20 k/(k-1) - 3.481 25 Check number of stage due to max. temp 21 Max. temperature t MAX C 150 See Chapter VI. 22 T MAX K 423 23 Max. pressure ratio r MAX -T - 3.02 Equation (11) 24 Is r > r MAX or need intercooler? Yes 25 Total Hydrodynamic head H TTAL m 60816 Eq. 8. 26 Expected minimum adiabatic vol. eff. 0.850 27 Max. clearance space vol. % 12.53 Eq. A.3. If need intercooler, use r = r max-t, otherwise use r Total 28 Clearance space volume c % 10 Fill < max.at expected eff. 29 Volumetric efficiency η V 0.836 Eq. A.3 and A.4.

Item Symbol Unit Quantity Note ( Sheet : 2. f 3.) 1 Supply efficiency λ/η V 0.945 Eq. A.5. 2 Required piston capacity Qp m3/hr 29507.9 Eq. A.6 and A.7. 3 Max. hydr. Head for each stage H STG-MAX m 12039 Eq. A.6. 4 Preliminary number of stage i CAL 5 = Htotal / Hstg-max 5 GHP 5452 6 Mechanical efficiency 0.95 7 BHP 5739 8 Frame BHP selection at first stage Casing I 9 No. of compression acting 2 Fig. A.3 10 Stroke length, L 430 Fig. A.3 11 No. of throw at first stage, z 2 Fig. A.3 12 Crankshaft speed, N 360 Fig. A.1 13 Max. diameter, Dmax (= L / 0.4 ) 1075 14 No. of frame 1 15 Calculated frame BHP/throw, 0.11 Qp1 929 Chapter A.4. 16 Max. H per throw 10006 Eq.A.11 17 Detail calculation CASING I Note 18 Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Stage 6 Stage 7 Stage 8 19 G (kg/hr) 26000 26000 # 26000 # 26000 # 26000 26000 26000 26000 20 Max. H per stage for parallel throws 10006.5 10006.5 # 10006.5 # 10006.5 # 10006.5 10006.5 10006.5 10006.5 = line 16 21 Last cylinder exhaust press. (bara) 39.346 39.346 # 39.346 # 39.346 # 39.346 39.346 39.346 39.346 22 Cyl. intake pressure, ps ' (bara) 0.98 2.418 6 5.936 # 14.720 # 36.651 - - - Eq. A8 23 Suction temperat ure, ts ( C) 35.0 45.0 # 45.0 # 45.0 # 45.0 51.5 #VALUE! #VALUE! 24 Ts ( K) 308.0 318.0 # 318.0 # 318.0 # 318.0 324.5 #VALUE! #VALUE! 25 Max. disch arge temp., td max. ( C) 140 140 # 140 # 140 # 140 140 140 140 Chapter 6 26 Td max. ( C) 413.0 413.0 # 413.0 # 413.0 # 413.0 413.0 413.0 413.0 27 MW 28.36 28.36 # 28 # 28 # 28 28 28 28 28 Rs = 8.314/MW 0.30 0.30 0 0.30 0 0.30 0 0.30 0.30 0 0.30 0 0.30 29 p CR 47.9 47.9 # 47.9 # 47.9 # 47.9 47.9 47.9 47.9 30 T CR 161.4 161.4 # 161.4 # 161.4 # 161.4 161.4 161.4 161.4 31 p R = p RED = p / p CR 0.02 0 0.050 0 0.12 0 0.31 1 0.77 #VALUE! #VALUE! #VALUE! Appendix B 32 T R = T RED = T / T CR 1.91 3 1.971 3 1.97 3 1.97 3 1.97 2.01 #VALUE! #VALUE! 33 Z S 1 1 1 1 1 1 1 1 1 1 1 1 1 1 34 MCp S (kj/kgmol.k) 29.10 29.1 # 29.1 # 29.1 # 29.1 29.1 29.1 29.1 35 k = MCp 8. 1.40 1 1.400 1 1.400 1 1.400 1 1.400 1.400 1 1.400 1 1.400 36 Cp S = R.k /(k-1), (kj/kg.k) 1.03 1 1.033 1 1.033 1 1.033 1 1.033 1.033 1 1.033 1 1.033 37 DSs = 100.ps / (Z.R.Ts), (kg/m3) 1.1 2 2.6 5 6.3 # 15.7 # 39.1 #VALUE! #VALUE! #VALUE! Eq. 3 up to 7 38 Q S = G / DSs, (m3/hr) 23320.4 10087.7 # 4109 # 1656.9 # 665.5 #VALUE! #VALUE! #VALUE!

15 Preliminary Piston speed (m/s) 5 5 5 5 5 5 5 5 5 5 5 5 5 5 16 Stroke length, ( ) 430 430 # 430 # 430 # 430 430 430 430 ( Sheet : 3. f 3..) Detail calculation (cont) CASING I Note Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Stage 6 Stage 7 Stage 8 1 Q N (Nm3/h) 20670 20670 # 20670 # 20670 # 20670 20670 20670 20670 2 (k-1)/k 0.287 0.286 # 0.286 # 0.286 # 0.286 0.286 0.286 0.286 3 k/(k-1) 3.481 3.500 # 3.500 # 3.500 # 3.500 3.500 3.500 3.500 4 Due to max. temperature 5 Pressure rati r o 2.777 2.497 # 2.497 # 2.497 # 1.074 #VALUE! #VALUE! #VALUE! Eq. 11, Eq. A.10 6 Due to max. frame BHP 7 Max. r' due to max. frame BHP 2.562 2.498 # 2.498 # 2.498 # 2.498 2.458 #VALUE! #VALUE! 8 Selected r' 2.562 # 2.497 # 2.497 # 2.497 # 1.074 #VALUE! # #VALUE! # #VALUE! 9 Discharge pressure, pd (bara) 2.518 6.036 # 14.820 # 36.751 # 39.350 #VALUE! #VALUE! #VALUE! 10 Cylinder exh p 2.593 6.217 6 15.265 # 37.853 # 40.530 #VALUE! #VALUE! #VALUE! Eq. A8 11 Clearance space vol ume, c (%) 10 0 10 0 10 0 10 0 10 10 0 10 0 10 12 Volumetric efficiency, η V 0.859 0.862 1 0.862 # 0.862 # 0.945 #VALUE! #VALUE! #VALUE! Eq. A4 13 Supply efficiency, λ/η V 0.957 0.958 1 0.958 # 0.958 # 0.998 #VALUE! #VALUE! #VALUE! Eq. A5 14 Required pist on capacity, Qp ( m3) 28369.1 12204.7 # 4970.9 # 2004.6 # 705.8 #VALUE! #VALUE! #VALUE! Eq. A7 17 No. of compression acting 2 2 2 2 2 2 2 2 2 2 2 2 2 2 18 No. of throw st z 2 1 1 1 1 1 1 1 0 0 0 0 Fill for D < Dmax 19 Crankshaft d, 360 360 # 360 # 360 # 360 360 360 360 Adjust if U > 6 m/s 20 Piston speed, (m/s) 5.2 5.2 # 5.2 # 5.2 # 5.2 5.2 5.2 5.2 Eq. 12, max. 6 m/s 21 Piston displacement vol./strok e, m3 0.328 0.283 # 0.115 # 0.046 # 0.016 #VALUE! #VALUE! #VALUE! 22 Piston di t ( ) 985.2 913.8 # 583.2 # 370.4 # 219.8 #VALUE! #VALUE! #VALUE! Max.(mm)= 1075 23 Hydrod ic d, H m) 10006.5 9999.1 # 9999.1 # 9999.1 # 686.4 #VALUE! #VALUE! #VALUE! Eq. 8 24 GHP 862 0 883 0 883 0 883 0 53 0 0 0 0 0 Eq. 9 25 Exhaust t ef l 131 # 140 # 140 # 140 # 52 #VALUE! # #VALUE! # #VALUE! Eq. 10 26 Need intercooler? Yes Yes Yes Yes No - - - 27 If "Yes", outlet gas temp. ( C) 45 # 45 # 45 # 45 # 45 45 # 45 # 45 28 Pres. drop at inter/stg cooler (bar) 0.10 # 0.10 # 0.10 # 0.100 # 0.100 0.100 # 0.100 # 0.100 29 Compression continue? Continue Continue Continue Continue Finish - - - 30 Total Adiabatic Compression GHP (kw) 3563.54 31 Adiabatic eff, when isn' t fully adiabatic 0.90 See figure below 32 Mechanical efficiency 0.94 Fig. A4 33 Total BHP (kw) 4212 34 C.W. each cooler (ton/hr) 61.2 61.2 # 61.2 # 61.2 # 0.0 0 0 0 0 0 For Δt water = 10 C 35 Total C.W. required (ton/hr) 244.7

Gas properties, flowrate and conditions RECIPRCATING CMPRESSR CALCULATIN SHEET WITH INTERCLER 1 Gas name Dry Air Item or symbol Quantity Unit Item or symbol Quantity Unit 2 Suction pressure, ps 1.013 bar A Discharge pressure, pd 45 bar A 3 Suction temperature, ts 35 4 Ts 308 C K p CR 37.70 bar A 5 MW 28.4 kg/kgmol T CR 132.80 6 k S 1.403 p R = p / p CR 0.027 7 R S 0.295 kj/kg. K T R = T / T CR 2.32 8 DSs 1.115 kg/m3 Z S 1.00 9 MCp 29.10 kj/kgmol. K Cp S 1.027 kj/kg 10 G 6000 kg/hr G mol 212 kgmol/hr 11 Q S 5382 m 3 /hr Q N 4770 Nm 3 /hr 12 Compressor Calculation Sheet Item Symbol Unit Quantity Note K ( Sheet : 1. f 3.) 13 Preliminary Calculation (General method) 14 Check whether need intercooler 15 First Stage Volume flow Qs m3/hr 5382 16 Cylinder intake pressure ps' bara 0.98261 17 Cylinder exhaust pressure pd' bara 46.35 18 Pressure ratio (p D / p S ) r' TTAL - 47.170 19 (k-1)/k - 0.2872 20 k/(k-1) - 3.481 25 Check number of stage due to max. temp 21 Max. temperature t MAX C 150 See Chapter VI. 22 T MAX K 423 23 Max. pressure ratio r MAX -T - 3.02 Equation (11) 24 Is r > r MAX or need intercooler? Yes 25 Total Hydrodynamic head H TTAL m 65300 Eq. 8. 26 Expected minimum adiabatic vol. eff. η V-A 0.850 27 Max. clearance space vol. c MAX 12.53 Eq. A.3. If need intercooler, use r = r max-t, otherwise use r Total 28 Clearance space volume c % 10 Fill < max.at expected eff. 29 Volumetric efficiency η V 0.836 Eq. A.3 and A.4.

Item Symbol Unit Quantity Note ( Sheet : 2. f 3.) 1 Supply efficiency λ/η V 0.945 Eq. A.5. 2 Required piston capacity Qp m3/hr 6809.5 Eq. A.6 and A.7. 3 Max. hydr. Head for each stage H STG-MAX m 12039 Eq. A.6. 4 Preliminary number of stage i CAL 5 = Htotal / Hstg-max 5 GHP GHP kw 1351 6 Mechanical efficiency η M 0.95 7 BHP BHP kw 1422 8 Frame BHP selection at first stage Casing I 9 No. of compression acting 2 Fig. A.3 10 Stroke length, L L mm 300 Fig. A.3 11 No. of throw at first stage, z z 1 Fig. A.3 12 Crankshaft speed, N N RPM 520 Fig. A.1 for U near 5 m/s or using graphical method below 13 Max. diameter, Dmax (= L / 0.4 ) Dmax mm 750 14 No. of frame 1 15 Calculated frame BHP/throw, 0.11 Qp1 BHP/throw kw 456 Chapter A.4. 16 Max. H per throw H STG-MAX m 21270 Eq.A.11 17 Detail calculation CASING I Note 18 Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Stage 6 Stage 7 Stage 8 19 G (kg/hr) 6000 6000 # 6000 # 6000 # 6000 6000 6000 6000 20 Max. H per stage for parallel throws 21269.8 21269.8 # 21269.8 # 21269.8 # 21269.8 21269.8 21269.8 21269.8 = line 16 21 Last cylinder exhaust press. (bara) 46.35 46.35 # 46.35 # 46.35 # 46.35 46.35 46.35 46.35 22 Cyl. intake pressure, ps ' (bara) 0.98 2.865 # 7.678 # 20.744 # - - - - Eq. A8 23 Suction temperat ure, ts ( C) 35.0 45.0 # 45.0 # 45.0 # 127.1 #VALUE! #VALUE! #VALUE! 24 Ts ( K) 308.0 318.0 # 318.0 # 318.0 # 400.1 #VALUE! #VALUE! #VALUE! 25 Max. disch arge temp., td max. ( C) 150 150 # 150 # 150 # 150 150 150 150 Chapter 6 26 Td max. ( C) 423.0 423.0 # 423.0 # 423.0 # 423.0 423.0 423.0 423.0 27 MW 28.36 28.36 # 28 # 28 # 28 28 28 28 28 Rs = 8.314/MW 0.30 0.30 # 0.30 # 0.30 # 0.30 0.30 0.30 0.30 29 p CR 37.7 37.7 # 37.7 # 37.7 # 37.7 37.7 37.7 37.7 30 T CR 132.8 132.8 # 132.8 # 132.8 # 132.8 132.8 132.8 132.8 31 p R = p RED = p / p CR 0.03 0 0.076 0 0.20 1 0.55 1 #VALUE! #VALUE! #VALUE! #VALUE! Appendix B 32 T R = T RED = T / T CR 2.32 3 2.395 3 2.39 3 2.39 3 3.01 #VALUE! #VALUE! #VALUE! 33 Z S 1 1 1 1 1 1 1 1 1 1 1 1 1 1 34 MCp S (kj/kgmol.k) 29.10 29.1 # 29.1 # 29.1 # 29.1 29.1 29.1 29.1 35 k = MCp 8. 1.40 1 1.400 1 1.400 1 1.400 1 1.400 1.400 1 1.400 1 1.400 36 Cp S = R.k /(k-1), (kj/kg.k) 1.03 1 1.033 1 1.033 1 1.033 1 1.033 1.033 1 1.033 1 1.033 37 DSs = 100.ps / (Z.R.Ts), (kg/m3) 1.1 2 3.1 6 8.2 # 22.1 # #VALUE! #VALUE! #VALUE! #VALUE! Eq. 3 up to 7 38 Q S = G / DSs, (m3/hr) 5381.6 1964.3 # 733 # 271.3 # #VALUE! #VALUE! #VALUE! #VALUE!

15 Preliminary Piston speed (m/s) 5 5 5 5 5 5 5 5 5 5 5 5 5 5 16 Stroke length, ( ) 300 300 # 300 # 300 # 300 300 300 300 ( Sheet : 3. f 3..) Detail calculation (cont) CASING I Note Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Stage 6 Stage 7 Stage 8 1 Q N (Nm3/h) 4770 4770 # 4770 # 4770 # 4770 4770 4770 4770 2 (k-1)/k 0.287 0.286 # 0.286 # 0.286 # 0.286 0.286 0.286 0.286 3 k/(k-1) 3.481 3.500 # 3.500 # 3.500 # 3.500 3.500 3.500 3.500 4 Due to max. temperature 5 Pressure rati r o 3.018 2.715 # 2.715 # 2.234 # #VALUE! #VALUE! #VALUE! #VALUE! Eq. 11, Eq. A.10 6 Due to max. frame BHP 7 Max. r' due to max. frame BHP 5.834 5.595 # 5.595 # 5.595 # 4.183 #VALUE! #VALUE! #VALUE! 8 Selected r' 3.018 # 2.715 # 2.715 # 2.234 # #VALUE! #VALUE! # #VALUE! # #VALUE! 9 Discharge pressure, pd (bara) 2.965 7.778 # 20.844 # 46.352 # #VALUE! #VALUE! #VALUE! #VALUE! 10 Cylinder exh p 3.054 8.012 # 21.470 # 47.743 # #VALUE! #VALUE! #VALUE! #VALUE! Eq. A8 for 3 % loss 11 Clearance space vol ume, c (%) 10 0 10 0 10 0 10 0 10 10 0 10 0 10 12 Volumetric efficiency, η V 0.836 0.851 # 0.851 # 0.876 # #VALUE! #VALUE! #VALUE! #VALUE! Eq. A4 13 Supply efficiency, λ/η V 0.945 0.953 # 0.953 # 0.965 # #VALUE! #VALUE! #VALUE! #VALUE! Eq. A5 14 Required pist on capacity, Qp ( m3) 6809.5 2422.3 # 903.9 # 320.7 # #VALUE! #VALUE! #VALUE! #VALUE! Eq. A7 17 No. of compression acting 2 2 2 2 2 2 2 2 2 2 2 2 2 2 18 No. of throw st z 1 1 1 1 1 1 1 0 0 0 0 0 Fill for D < Dmax 19 Crankshaft d, 520 520 # 520 # 520 # 520 520 520 520 Adjust if U > 6 m/s 20 Piston speed, (m/s) 5.2 5.2 # 5.2 # 5.2 # 5.2 5.2 5.2 5.2 Eq. 12, max. 6 m/s 21 Piston displacement vol./strok e, m3 0.109 0.039 # 0.014 # 0.005 # #VALUE! #VALUE! #VALUE! #VALUE! 22 Piston di t ( ) 680.0 405.5 # 247.7 # 147.6 # #VALUE! #VALUE! #VALUE! #VALUE! Max.(mm)= 750 23 Hydrod ic d, H m) 12039.4 11051.6 # 11051.6 # 8643.1 # #VALUE! #VALUE! #VALUE! #VALUE! Eq. 8 24 GHP 249 0 230 0 230 0 172 0 0 0 0 0 0 0 Eq. 9 28 Exhaust t ef l 150 # 150 # 150 # 127 # #VALUE! #VALUE! # #VALUE! # #VALUE! Eq. 10 25 Need intercooler? Yes Yes Yes No - - - - 26 If "Yes", outlet gas temp. ( C) 45 # 45 # 45 # 45 # 45 45 # 45 # 45 27 Pres. drop at inter/stg cooler (bar) 0.10 # 0.10 0 0.10 0 0.100 0 0.100 0.100 0 0.100 0 0.100 28 Compression continue? Continue Continue Continue Finish - - - - 29 Total Adiabatic Compression GHP (kw) 879.99 30 Adiabatic eff, when isn' t fully adiabatic 0.90 See figure below 31 Mechanical efficiency 0.93 Fig. A4 32 Total BHP (kw) 1051 33 C.W. each cooler (ton/hr) 17.0 15.6 # 15.6 # 0.0 # 0.0 0 0 0 0 0 For Δt water = 10 C 34 Total C.W. required (ton/hr) 48.2

Example : Blue dot line To find N (RPM) at expected overall efficiency 0.80 65,300x 6,000 H10 T = = 39, 180m 10,000

Interpretation of adiabatic efficiency from literature (0.65 for small, 0.80 for medium, 0.85 and higher for large reciprocating compressor) when the compressor doesn't work in fully adiabatic compression. Qs is suction flow at first stage of the compressor. When intercoolers and water jacket are applied, adiabatic efficiency higher than above figure. BHP = GHP /( η A. η M )