DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E.

Σχετικά έγγραφα
Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

( ) 2 and compare to M.

Περίπτωση Μελέτης Θαλάσσιας Κατασκευής με χρήση λογισμικού και με βάση Κώδικες (Compliant Tower) (8.1.10)

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

Μονοβάθμια Συστήματα: Εξίσωση Κίνησης, Διατύπωση του Προβλήματος και Μέθοδοι Επίλυσης. Απόστολος Σ. Παπαγεωργίου

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Second Order RLC Filters

Operational Programme Education and Lifelong Learning. Continuing Education Programme for updating Knowledge of University Graduates:

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: Ph:

w o = R 1 p. (1) R = p =. = 1

ΑΝΩΤΑΤΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΠΕΙΡΑΙΑ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΔΟΜΙΚΩΝ ΕΡΓΩΝ

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Matrices and Determinants

1 String with massive end-points

Example Sheet 3 Solutions

Homework 8 Model Solution Section

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Ingenieurbüro Frank Blasek - Beratender Ingenieur Am Kohlhof 10, Osterholz-Scharmbeck Tel: 04791/ Fax: 04791/

Ingenieurbüro Frank Blasek - Beratender Ingenieur Am Kohlhof 10, Osterholz-Scharmbeck Tel: 04791/ Fax: 04791/

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. Τα γνωστικά επίπεδα των επαγγελματιών υγείας Στην ανοσοποίηση κατά του ιού της γρίπης Σε δομές του νομού Λάρισας

Tridiagonal matrices. Gérard MEURANT. October, 2008

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

Aluminum Electrolytic Capacitors

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Aluminum Electrolytic Capacitors (Large Can Type)

CorV CVAC. CorV TU317. 1

2.019 Design of Ocean Systems. Lecture 6. Seakeeping (II) February 21, 2011

ΠΣΤΥΙΑΚΗ ΔΡΓΑΙΑ. Μειέηε Υξόλνπ Απνζηείξσζεο Κνλζέξβαο κε Τπνινγηζηηθή Ρεπζηνδπλακηθή. Αζαλαζηάδνπ Βαξβάξα

Trigonometric Formula Sheet

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007


Homework 3 Solutions

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

CONSULTING Engineering Calculation Sheet

Electronic Supplementary Information:

Lifting Entry (continued)

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:

D Alembert s Solution to the Wave Equation

ADVANCED STRUCTURAL MECHANICS

Approximation of distance between locations on earth given by latitude and longitude

The Spiral of Theodorus, Numerical Analysis, and Special Functions

ΣΥΓΚΡΙΣΗ ΑΝΑΛΥΤΙΚΩΝ ΚΑΙ ΑΡΙΘΜΗΤΙΚΩΝ ΜΕΘΟ ΩΝ ΓΙΑ ΤΗ

Jordan Form of a Square Matrix

Graded Refractive-Index

Srednicki Chapter 55

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΓΕΩΠΟΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΒΙΟΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΕΠΙΣΤΗΜΗΣ ΤΡΟΦΙΜΩΝ. Πτυχιακή εργασία

ΔΙΕΡΕΥΝΗΣΗ ΤΗΣ ΣΕΞΟΥΑΛΙΚΗΣ ΔΡΑΣΤΗΡΙΟΤΗΤΑΣ ΤΩΝ ΓΥΝΑΙΚΩΝ ΚΑΤΑ ΤΗ ΔΙΑΡΚΕΙΑ ΤΗΣ ΕΓΚΥΜΟΣΥΝΗΣ ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ

1. Ηλεκτρικό μαύρο κουτί: Αισθητήρας μετατόπισης με βάση τη χωρητικότητα

LUNGOO R. Control Engineering for Development of a Mechanical Ventilator for ICU Use Spontaneous Breathing Lung Simulator LUNGOO

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King

Calculating the propagation delay of coaxial cable

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΕΡΙΒΑΛΛΟΝΤΟΣ

Lanczos and biorthogonalization methods for eigenvalues and eigenvectors of matrices

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

ME 374, System Dynamics Analysis and Design Homework 9: Solution (June 9, 2008) by Jason Frye

Partial Differential Equations in Biology The boundary element method. March 26, 2013

of the methanol-dimethylamine complex

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Cross sectional area, square inches or square millimeters

Wavelet based matrix compression for boundary integral equations on complex geometries

Optimizing Microwave-assisted Extraction Process for Paprika Red Pigments Using Response Surface Methodology

1 (forward modeling) 2 (data-driven modeling) e- Quest EnergyPlus DeST 1.1. {X t } ARMA. S.Sp. Pappas [4]

Second Order Partial Differential Equations

Higher Derivative Gravity Theories

Answers to practice exercises

is like multiplying by the conversion factor of. Dividing by 2π gives you the

ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations

Section 7.6 Double and Half Angle Formulas

Monolithic Crystal Filters (M.C.F.)

PARTIAL NOTES for 6.1 Trigonometric Identities

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

INTERVAL ARITHMETIC APPLIED TO STRUCTURAL DESIGN OF UNCERTAIN MECHANICAL SYSTEMS

MnPAVE Validation: Comparison of MnROAD HMA Modulus Values

NTC Thermistor:SCK Series

Math221: HW# 1 solutions

Fixed Inductors / AL TYPE

Sequent Calculi for the Modal µ-calculus over S5. Luca Alberucci, University of Berne. Logic Colloquium Berne, July 4th 2008

6.4 Superposition of Linear Plane Progressive Waves

Matrices and vectors. Matrix and vector. a 11 a 12 a 1n a 21 a 22 a 2n A = b 1 b 2. b m. R m n, b = = ( a ij. a m1 a m2 a mn. def

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

An Advanced Manipulation for Space Redundant Macro-Micro Manipulator System

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

2 ~ 8 Hz Hz. Blondet 1 Trombetti 2-4 Symans 5. = - M p. M p. s 2 x p. s 2 x t x t. + C p. sx p. + K p. x p. C p. s 2. x tp x t.

Development of Finer Spray Atomization for Fuel Injectors of Gasoline Engines

ΔΗΜΙΟΥΡΓΙΑ ΔΥΝΑΜΙΚΟΥ ΜΟΝΤΕΛΟΥ ΑΝΟΔΙΚΗΣ ΠΡΟΣΕΓΓΙΣΗΣ ΓΙΑ ΤΗΝ ΕΚΤΙΜΗΣΗ ΤΗΣ ΖΗΤΗΣΗΣ ΕΝΕΡΓΕΙΑΣ ΣΤΟΝ ΟΙΚΙΣΤΙΚΟ ΤΟΜΕΑ ΤΗΣ ΚΥΠΡΟΥ


Math 6 SL Probability Distributions Practice Test Mark Scheme

Ι ΑΚΤΟΡΙΚΗ ΙΑΤΡΙΒΗ. Χρήστος Αθ. Χριστοδούλου. Επιβλέπων: Καθηγητής Ιωάννης Αθ. Σταθόπουλος

NTC Thermistor:SCK Series

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

CRASH COURSE IN PRECALCULUS

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Transcript:

DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM by Zoran VARGA, Ms.C.E. Euro-Apex B.V. 1990-2012 All Rights Reserved.

The 2 DOF System Symbols m 1 =3m [kg] m 2 =8m m=10 [kg] l=2 [m] E=210000 [N/mm 2 ] I=19 [cm 4 ] DOF Degree of Freedom m i mass at level i j Degree of Freedom [Δ] Flexibility Matrix [K] Stiffness Matrix [M] Mass Matrix [I] Identity Matrix A Area of the Moment Diagram y the ordinate along the center of gravity of the moment diagram ω the pulse of the system T the period of the system f the frequency of the system k vibration mode φ jk Eigenvector Φ Mode Shape Matrix L k Modal Participation Factor M k Modal Mass m eff,k Effective Modal Mass In order to determinate the dynamic characteristics 2 methods were applied: FLEXIBILITY Method STIFFNESS Method

The FLEXIBILITY Method The general equation of the Eigen vibrations of a vibrating system using the Flexibility Matrix [Δ]: Δ M λ I φ jk = 0 (1) In order to have non-zero solutions for the equation the determinant must then be zero: Δ M λ I = 0 (2) where λ = 1 ω 2 The Mass Matrix [Δ] Flexibility Matrix [M] Mass Matrix [I] Identity Matrix M = m 1 0 0 m 2 M = m 3 0 0 8 (3)

The FLEXIBILITY Method Determination of the FLEXIBILITY Matrix Δ = δ 11 δ 12 δ 21 δ 22 (4) δ ij the displacement of the mass i in the j direction Mohr Maxwell Formula: δ ij = M i (x) M j (x) EI dx = A i y j EI (5) Moment diagrams obtained from applying the unit force in the direction of the DOF

The FLEXIBILITY Method Determination of the FLEXIBILITY Matrix The displacement of mass m 1 in the 1 st DOF direction: δ 11 = 1 A y EI δ 11 = 1 EI 1 2 1 l l 2 3 1 l δ 11 = l3 3EI The displacement of mass m 2 in the 2 nd DOF direction: δ 22 = 1 A y EI δ 22 = 1 EI 1 2 1 l 2 l 2 2 3 1 l 2 δ 22 = Δ = l3 24EI l3 48EI 16 5 The displacement of mass m 1 in the 2 nd DOF direction: δ 12 = δ 21 (Theorem of reciprocal unit displacements) δ 12 = 1 EI A 1 y 1 + A 2 y 2 + A 3 y 3 δ 12 = 1 EI 1 2 1 l 2 l 2 0 + 1 l 2 l 2 1 2 1 l 2 + 1 2 1 l 2 l 2 2 3 1 l 2 δ 12 = δ 21 = 5l3 48EI 5 2

The STIFFNESS Method The general equation of the Eigen vibrations of a vibrating system using the Stiffness Matrix [K]: K ω 2 M φ jk = 0 (6) In order to have non-zero solutions for the equation the determinant must then be zero: K ω 2 M = 0 (7) [K] Stiffness Matrix [M] Mass Matrix The Mass Matrix M = m 1 0 0 m 2 M = m 3 0 0 8

The STIFFNESS Method Determination of the STIFFNESS Matrix k = R = M φ (8) Loading conditions M A = M B = 6EI L 2 R A = R B = 12EI L 3 M A = 4EI L M B = 2EI L R A = R B = 6EI L 2 K = k 11 k 12 k 21 k 22 k 13 k 14 k 31 k 32 k 23 k 43 k 24 k 44 k 41 k 42 k 33 k 34 (9)

The STIFFNESS Method Determination of the STIFFNESS Matrix k 11 = k 21 = 12EI L 3 = 12EI l/2 3 = 96EI l 3 k 31 = k 41 = 6EI L 2 = 6EI l/2 2 = 24EI l 2 k 13 = k 23 = 6EI L 2 = 6EI l/2 2 = 24EI l 2 k 33 = 4EI L = 4EI l/2 = 8EI l k 12 = 96EI l 3 k 22 = 96EI l 3 k 32 = 24EI l 2 k 42 = 24EI l 2 + 96EI l 3 = 192EI l 3 k 43 = 2EI L = 2EI l/2 = 4EI l 24EI l 2 = 0 k 14 = 24EI l 2 k 24 = 0 k 34 = 4EI l k 44 = 16EI l

The STIFFNESS Method Determination of the STIFFNESS Matrix K = k 11 k 12 k 13 k 14 k 21 k 22 k 23 k 24 k 31 k 32 k 33 k 34 k 41 k 42 k 43 k 44 K = 8EI l 3 12 12 3l 3l 12 24 3l 0 3l 3l 3l 0 l 2 l 2 = /2 l 2 /2 2l 2 k tt k t0 k 0t k 00 (10) Condensed STIFFNESS Matrix: K = k tt k 0t T k 00 1 k 0t (11) K = 48EI 7l 3 2 5 5 16

The Dynamic Characteristics The FLEXIBILITY Method The STIFFNESS Method M λ I = 0 K ω 2 M = 0 l 3 48EI 16 5 5 2 m 3 0 0 8 λ 1 0 0 1 = 0 48EI 7l 3 2 5 5 16 ω2 m 3 0 0 8 = 0 48 40 15 16 48 40 15 16 α 1 0 0 1 λ 48EI l 3 m 1 0 0 1 = 0 = 0, where α = λ 48EI l 3 m 2 5 5 16 7l3 ω 2 m 48EI 3 0 0 8 = 0 2 5 5 16 α 3 0 0 8 = 0, where α = 7l3 ω 2 m 48EI 48 α 40 15 16 α = 0, 2 3α 5 5 16 8α = 0, α 2 64α + 168 = 0 α 1 = 61.2575 α 2 = 2.7425 24α 2 64α + 7 = 0 α 1 = 0.1143 α 2 = 2.5524 α = 1 ω 2 48EI l 3 m

The Dynamic Characteristics The FLEXIBILITY Method The STIFFNESS Method The pulsation of the system ω = 1 α 48EI l 3 m = 6.928 α EI l 3 m rad s ω = α 48EI 7l 3 m = 2.6186 α 48EI l 3 m rad s The pulsation of the system in the 1 st mode of vibration For α 1 = 61.26, For α 1 = 0.1143, ω 1 = 0.885 EI l 3 m = 0.885 21 1010 19 10 8 2 3 10 ω 1 = 0.885 EI l 3 m = 0.885 21 1010 19 10 8 2 3 10 ω 1 = 19. 76 [rad/s] ω 1 = 19. 76 [rad/s] The pulsation of the system in the 2 nd mode of vibration For α 2 = 2.74, ω 2 = 4.184 EI l 3 m For α 2 = 2.5524 ω 2 = 4.184 EI l 3 m ω 2 = 93. 44 [rad/s] ω 2 = 93. 44 [rad/s]

The Dynamic Characteristics The FLEXIBILITY Method The STIFFNESS Method The period and the frequency of the system (12) (13) T k = 2π [s] f ω k = 1 [Hz] k T k The period and the frequency of the system in the 1 st mode of vibration T 1 = 2π ω 1 f 1 = 1 T 1 T 1 = 0. 318 [s] f 1 = 3. 144 [Hz] The period and the frequency of the system in the 2 nd mode of vibration T 2 = 2π ω 2 f 2 = 1 T 2 T 2 = 0. 067 [s] f 2 = 14. 87 [Hz]

The Dynamic Characteristics The FLEXIBILITY Method Δ M λ I φ jk = 0 48 α 40 15 16 α φ 1k φ 2k = 0 48 α φ 1k + 40 φ 2k = 0 15 φ 1k + 16 α φ 2k = 0 The Eigenvectors The STIFFNESS Method K ω 2 M ϕ jk = 0 2 3α 5 5 16 8α φ 1k φ 2k = 0 2 3α φ 1k 5 φ 2k = 0 5 φ 1k + 16 8α φ 2k = 0 In the 1 st mode of vibration 48 α 1 φ 11 + 40 φ 21 = 0 48 61.2675 φ 11 + 40 φ 21 = 0 φ 11 = 1 φ 21 = 0. 3315 2 3α 1 φ 11 5 φ 21 = 0 2 3 0.1143 φ 11 5 φ 21 = 0 φ 11 = 1 φ 21 = 0. 3315 In the 2 nd mode of vibration 15 φ 12 + 16 α 2 φ 22 = 0 15 φ 12 + 16 2.7425 φ 22 = 0 φ 22 = 1 φ 12 = 0. 8838 5 φ 1k + 16 8α 2 φ 2k = 0 5 φ 12 + 16 8 2.5524 φ 22 = 0 φ 22 = 1 φ 12 = 0. 8838

The Dynamic Characteristics The verification of the Eigenvectors m i φ i,1 φ i,2 = 0 (14) Modal Participation Factor L k = m i φ ki [kg] (15) m 1 φ 11 φ 12 + m 2 φ 21 φ 22 = 0 3m 1 0.8838 + 8m 0.3315 1 = 0 2.652m + 2.652m = 0 0 = 0 The Mode Shape Matrix Φ = 1 0.8838 0.3315 1 1 st vibration mode: L 1 = m 1 φ 11 + m 2 φ 12 L 1 = 3m 1 + 8m (0.3315) L 1 = 56.52 [kg] 2 nd vibration mode: L 2 = m 1 φ 21 + m 2 φ 22 L 2 = 3m 0.8838 + 8m 1 L 2 = 53.48 [kg] Modal Mass M k = m i φ ki 2 [kg] (16) 1 st vibration mode: M 1 = m 1 φ 2 2 11 + m 2 φ 12 M 1 = 3m 1 2 + 8m 0.3315 2 M 1 = 38.79 [kg] 2 nd vibration mode: M 2 = m 1 φ 2 2 21 + m 2 φ 22 M 2 = 3m 0.8838 2 + 8m 1 2 M 2 = 103.44 [kg]

The Dynamic Characteristics Effective Modal Mass RESULTS 1 st vibration mode: 2 nd vibration mode: m eff,k = L k 2 M k m eff,1 = L 1 2 m eff,1 = (56.52)2 38.79 M 1 m eff,2 = L 2 2 m eff,2 = (53.48)2 103.44 [kg] = 82.35 [kg] M 2 = 27.65 [kg] (17) Eigen mode Pulsation [rad/s] Period [s] Frequency [Hz] Modal Mass [kg] Effective Modal Mass [kg] 1 19.76 0.318 3.144 38.79 82.35 2 93.44 0.067 14.87 103.44 27.65 m eff,1 + m eff,2 = 82.35 + 27.65 = 110 [kg] Sum of the effective masses equals the total system mass.

Modeling a 2DOF System with FEM Graitec Advance Design Dlubal - RFEM Modal analysis Eigenvalues Mode Pulsation Period Frequency Energy Modal masses Damping N (Rad/s) (s) (Hz) (J) X (%) kg (%) 1 19.71 0.32 3.14 194.24 82.54 ( 75.04) 5.00 2 91.46 0.07 14.56 4182.75 27.46 ( 24.96) 5.00 residual 0.00 ( 0.00) Total 4377.00 110.00 (100.00)

DLUBAL 100 GRAITEC 100 ANALYTIC 100 COMPARING THE RESULTS Eigen mode 1 Eigen mode 2 1 Eigen mode 2 1 2 Node Eigenvectors Pulsation Period Frequency 1 1 2 0.3315 Node Eigenvectors Pulsation Period Frequency 1-0.8838 2 1 1 0.1604 2 0.05342 Node Eigenvectors Pulsation Period Frequency 1 0.08724 2-0.09821 1 1 2 0.33145 1-0.88384 2 1 Modal Part. Factor Modal Part. Factor Modal Part. Factor Modal Mass Modal Mass Modal Mass Effective Modal Mass [rad/s] [s] [Hz] [kg] [kg] [kg] [%] [%] 19.76 0.318 3.144 56.52 38.79 82.35 74.9 Effective Modal Mass 93.44 0.067 14.87 53.48 103.44 27.65 25.1 [rad/s] [s] [Hz] [kg] [kg [kg] [%] [%] 19.71 0.32 3.14 - - 82.54 75.04 Effective Modal Mass 91.46 0.07 14.56 - - 27.46 24.96 [rad/s] [s] [Hz] [kg] [kg [kg] [%] [%] 19.769 0.318 3.146 56.52 38.79 82.34 74.9 93.425 0.067 14.869 53.48 103.44 27.66 25.1 The agreement between the analytical (theoretical) method and the results of the industrial FEM packages is as expected very good.