Crack Propagation Terminating at a Bimaterial Interface Studied Using Extended Finite Element Method

Σχετικά έγγραφα
High order interpolation function for surface contact problem

Proposal on Unstructured Triangular Mesh Generation Method for Singular Stress Field Analysis of Bonded Structures Based on Finite Element Method

ADVANCED STRUCTURAL MECHANICS

Chapter 7 Transformations of Stress and Strain

1 (forward modeling) 2 (data-driven modeling) e- Quest EnergyPlus DeST 1.1. {X t } ARMA. S.Sp. Pappas [4]

Strain gauge and rosettes

Study on the Strengthen Method of Masonry Structure by Steel Truss for Collapse Prevention

Dr. D. Dinev, Department of Structural Mechanics, UACEG

Motion analysis and simulation of a stratospheric airship

Stress Relaxation Test and Constitutive Equation of Saturated Soft Soil

ER-Tree (Extended R*-Tree)

Homework 8 Model Solution Section

(, ) (SEM) [4] ,,,, , Legendre. [6] Gauss-Lobatto-Legendre (GLL) Legendre. Dubiner ,,,, (TSEM) Vol. 34 No. 4 Dec. 2017

Slide D-FLOW 8km. 13a. 400mm / d

MECHANICAL PROPERTIES OF MATERIALS

D Alembert s Solution to the Wave Equation

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Introduction to Theory of. Elasticity. Kengo Nakajima Summer

ΜΕΤΑΛΛΙΚΑ ΥΠΟΣΤΥΛΩΜΑΤΑ ΥΠΟ ΘΛΙΨΗ ΚΑΙ ΚΑΜΨΗ

Eigenfunction expansion for penny-shaped and circumferential cracks

STUDY ON 3D FRACTAL DISTRIBUTION LAW OF THE SURFACE NUMBER IN ROCK MASS

Written Examination. Antennas and Propagation (AA ) April 26, 2017.

DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E.

Approximation of distance between locations on earth given by latitude and longitude

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Lecture 26: Circular domains

EXPERIMENTAL AND NUMERICAL STUDY OF A STEEL-TO-COMPOSITE ADHESIVE JOINT UNDER BENDING MOMENTS

Quick algorithm f or computing core attribute

Q L -BFGS. Method of Q through full waveform inversion based on L -BFGS algorithm. SUN Hui-qiu HAN Li-guo XU Yang-yang GAO Han ZHOU Yan ZHANG Pan


ΣΤΑΤΙΚΗ ΜΗ ΓΡΑΜΜΙΚΗ ΑΝΑΛΥΣΗ ΚΑΛΩ ΙΩΤΩΝ ΚΑΤΑΣΚΕΥΩΝ

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΣΥΓΚΡΙΣΗ ΑΝΑΛΥΤΙΚΩΝ ΚΑΙ ΑΡΙΘΜΗΤΙΚΩΝ ΜΕΘΟ ΩΝ ΓΙΑ ΤΗ


Supporting information. An unusual bifunctional Tb-MOF for highly sensing of Ba 2+ ions and remarkable selectivities of CO 2 /N 2 and CO 2 /CH 4

( ) , ) , ; kg 1) 80 % kg. Vol. 28,No. 1 Jan.,2006 RESOURCES SCIENCE : (2006) ,2 ,,,, ; ;

Constitutive Equation for Plastic Behavior of Hydrostatic Pressure Dependent Polymers

CorV CVAC. CorV TU317. 1

Quantum dot sensitized solar cells with efficiency over 12% based on tetraethyl orthosilicate additive in polysulfide electrolyte

Τοίχοι Ωπλισμένης Γής: υναμική Ανάλυση Πειράματος Φυγοκεντριστή. Reinforced Soil Retaining Walls: Numerical Analysis of a Centrifuge Test

CH-4 Plane problems in linear isotropic elasticity

ACTA MATHEMATICAE APPLICATAE SINICA Nov., ( µ ) ( (

Nov Journal of Zhengzhou University Engineering Science Vol. 36 No FCM. A doi /j. issn

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Research on real-time inverse kinematics algorithms for 6R robots

Approximation Expressions for the Temperature Integral

Mechanical Behaviour of Materials Chapter 5 Plasticity Theory

Estimation of stability region for a class of switched linear systems with multiple equilibrium points

A Model Generator for Multidisciplinary Design Optimization

Vol. 38 No Journal of Jiangxi Normal University Natural Science Nov. 2014

Sensitivity analysis on dynamic characteristics of self-anchored suspension bridge with super-wide girder

Discontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model

Congruence Classes of Invertible Matrices of Order 3 over F 2

Supplementary Information for

Note: Please use the actual date you accessed this material in your citation.

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Μιχάλης ΚΛΟΥΒΑΣ 1, Χρήστος ΖΕΡΗΣ 2

Συγκριτική Αξιολόγηση Προσοµοιωµάτων Τοιχείων και Πυρήνων Κτηρίων µε τη Μέθοδο των Πεπερασµένων Στοιχείων και Πειραµατικά Αποτελέσµατα


A method of seeking eigen-rays in shallow water with an irregular seabed

Stresses in a Plane. Mohr s Circle. Cross Section thru Body. MET 210W Mohr s Circle 1. Some parts experience normal stresses in

VSC STEADY2STATE MOD EL AND ITS NONL INEAR CONTROL OF VSC2HVDC SYSTEM VSC (1. , ; 2. , )

1 String with massive end-points

8Q5SAC) 8Q5SAC UV2Vis 8500 ( ) ; PHS23C ) ;721 ( ) :1 4. ;8Q5SAC : molπl ;Britton2Robinson Q5SAC BSA Britton2Robinson,

Second Order Partial Differential Equations

E T E L. E e E s G LT. M x, M y, M xy M H N H N x, N y, N xy. S ijkl. V v V crit

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

Numerical Analysis FMN011

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3

Correction of chromatic aberration for human eyes with diffractive-refractive hybrid elements

Quantitative analysis of damage evolution as recycled concrete approaches fatigue failure

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΟΜΟΣΤΑΤΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΜΕΤΑΛΛΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ

Hydrologic Process in Wetland

Derivation of Optical-Bloch Equations

(II) * PACS: a, Hj 300. ) [6 9] ) [10 23] ) [26 30]. . Deng [24,25] Acta Phys. Sin. Vol. 61, No. 15 (2012)

Coupling of a Jet-Slot Oscillator With the Flow-Supply Duct: Flow-Acoustic Interaction Modeling

ADT

Lifting Entry (continued)

EXPERIMENT RESEARCH OF INFLUENCE OF DYNAMIC LOADING ON PROCESS OF CRACK FORMATION AT BOOTY OF LITHOIDAL BLOCKS T.

No. 7 Modular Machine Tool & Automatic Manufacturing Technique. Jul TH166 TG659 A

Wavelet based matrix compression for boundary integral equations on complex geometries

2 ~ 8 Hz Hz. Blondet 1 Trombetti 2-4 Symans 5. = - M p. M p. s 2 x p. s 2 x t x t. + C p. sx p. + K p. x p. C p. s 2. x tp x t.

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: Ph:

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

On the Galois Group of Linear Difference-Differential Equations

SLM. 1 SLM SLM SLM SLM . 316L SLM. TN249 TF124 doi /j. issn X SLM SLM SLM D SLM 100% 3-8. SLM.

ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ ΛΕΩΝΙΔΑΣ Α. ΣΠΥΡΟΥ Διδακτορικό σε Υπολογιστική Εμβιομηχανική, Τμήμα Μηχανολόγων Μηχανικών, Πανεπιστήμιο Θεσσαλίας.

( ) ( ) ( ) ( ) ( ) λ = 1 + t t. θ = t ε t. Continuum Mechanics. Chapter 1. Description of Motion dt t. Chapter 2. Deformation and Strain

Resilient static output feedback robust H control for controlled positive systems

Ingenieurbüro Frank Blasek - Beratender Ingenieur Am Kohlhof 10, Osterholz-Scharmbeck Tel: 04791/ Fax: 04791/

Ingenieurbüro Frank Blasek - Beratender Ingenieur Am Kohlhof 10, Osterholz-Scharmbeck Tel: 04791/ Fax: 04791/

Partial Differential Equations in Biology The boundary element method. March 26, 2013

[1-3] : [12-13] [4-5] x ( H K x x ) + x ( H K y y ) H +w=u s t ( 1) ; :H ;K x K y x y ;w ;u s ;t [6] (2) [7] KH+MH t=q (2) :K ;M ;Q ;H ;H

New bounds for spherical two-distance sets and equiangular lines

Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (2, 1,0). Find a unit vector in the direction of A. Solution: A = 1+9 = 3.

1 h, , CaCl 2. pelamis) 58.1%, (Headspace solid -phase microextraction and gas chromatography -mass spectrometry,hs -SPME - Vol. 15 No.

Transcript:

014 3 3 XFEM 1116 6 J kε K I K II J kε θ p J kε XFEM θ p θ p 4 θ p v 1/v lg E 1/E J O30 A doi 10.3981/j.issn.1000-7857.014.3.001 Crack Propagation Terminating at a Bimaterial Interface Studied Using Extended Finite Element Method SHI Fang, GAO Feng, GAO Yanan State Key Laboratory for Geomechanics & Deep Underground Engineering, China University of Mining & Technology, Xuzhou 1116, China Abstract A numerical method is presented for obtaining the stress intensity factors of cracks terminating at a bimaterial interface based on extended finite element method (XFEM). A new 6-term crack tip displacement enrichment function is derived. Based on the analytical solution of the stress and displacement fields around the crack tip, the expression of the path independent integral J kε and the stress intensity factors K I and K II, is established. The XFEM numerical solution is used to calculate the integral J kε, and the stress intensity factors are obtained by using the above expression. Finally, the maximum circumferential stress criterion is used to request the crack propagation angle θ p. Results of the numerical simulations show that propagation problems of vertical crack at the bimaterial interface can be solved efficiently by the combination of the integral J kε method and the XFEM. The crack propagation angle θ p is smaller when the crack propagates from a softer material into a harder material, but θ p is larger when the crack propagates from a harder material into a softer material. In the case of the four-point bending test, the crack propagation angle θ p is independent of the ratio of the Poisson's ratios (v 1/v ) of materials on both sides of the interface, but θ p and the logarithm of the ratio of elasticity modulus lg(e 1/E ) meet an exponential relation. Keywords XFEM; fracture mechanics; J integral; bimaterial interface; crack propagation - [1,] 014-04-7 014-07-11 973 011CB0105 CXZZ13_09 fshi@cumt.edu.cn fgao@cumt.edu.cn,,. XFEM [J]., 014, 3(3): 15-1. 15

014 3 3 [3] ìσ 1 θθ(r, -π) = 0 σ 1 rθ(r, -π) = 0 σ 3 θθ(r,π) = 0 îσ 3 rθ(r,π) = 0 σ k ij k extended finite element method XFEM ìσ θθ( r,π/ ) = σ 3 θθ( r,π/) [4] σ rθ( r,π/ ) = σ 3 rθ( r,π/) σ finite element method FEM 1 θθ( r, -π/) = σ θθ( r, -π/) σ 1 rθ( r, -π/) = σ rθ( r, -π/) 3 u θθ( r,π/ ) = u 3 θθ( r,π/) 1999 Belytschko [5~8] u rr( r,π/ ) = u 3 rr( r,π/) u 1 θθ( r, -π/) = u θθ( r, -π/) îu 1 rr( r, -π/) = u rr( r, -π/) XFEM Sukumar [9] Huang [10] 4 Sukumar [11] 1 Bouhala [1] Airy [13,14] [15,16] isoparametric finite elements [17] Chang [18] J kε J k J kε XFEM J kε K I K II XFEM J kε Betaxfem D 4 3 ϕ k (z) ψ k (z) k=1,, 3 ìϕ k (z) = a 1k z λ + a k z λˉ (k = 1,,3) 4 îψ k (z) = b 1k z λ + b k z λˉ λ 1 4 1 3 a 1k a 1 k b 1k b k k=1,, 3 1 λ 0.5 O Ra=0 a =[a 11,a 1,b 11,b 1,a 1,a,b 1,b,a 13,a 3,b 13,b 3 ] T (x, y) (r, θ) R 3 Ω 1 (-π θ -π/) Ω (-π/ θ π/) R = 0 Ω 3 ( π/ θ π) [ λ (α - β)( β + 1) - α + β +(1 - β )cos(λπ)] = 0 5 ϕ(z) ψ(z) 5 λ5 ìσ rr + σ θθ = [ ϕ ] (z) + -- - ϕ - (z) α β Dundurs σ θθ - σ rr + iσ rθ = e iθ [zˉϕ (z) + ψ (z)] ì G(u î rr + iu θθ ) = e [ ] -iθ κϕ(z) - z -- - ϕ - (z) - - ψ(z) --- 1 α = G 1(κ + 1) - G (κ 1 + 1) G 1 (κ + 1) + G (κ 1 + 1) β = G 1(κ - 1) - G (κ 1-1) 6 σ rr σ θθ σ rθ u rr u θθ î G 1 (κ + 1) + G (κ 1 + 1) G G κ = 3-4v κ =(3 - v)/(1 + v) α<0 Fig. 1 1 A crack terminates normally at the bimaterial interface 16

014 3 3 λ>0.5 α>0 λ<0.5 Chen [13] 7 u rr u θθ ìu k rr = r λ [(A 1 ) k rr cos(λ + 1)θ +(A ) k rr sin(λ + 1)θ + u ij = K I r λ g I ij( θ ) + K II r λ g II ij ( θ) 7 (A 3 ) k rr cos(λ - 1)θ +(A 4 ) k rr sin(λ - 1)θ] σ ij = K I r f I 1 - λ ij ( θ ) + K 14 II r f u k II θθ = r λ [(A 1 ) k θθ cos(λ + 1)θ +(A ) k θθ sin(λ + 1)θ + 1 - λ ij ( θ) 8 î (A 3 ) k θθ cos(λ - 1)θ +(A 4 ) k θθ sin(λ - 1)θ] (A i ) k rr (A i ) θθ k i=1,, 3, 4 9 1999 Belytschko [5] { u x = u rr cos θ - u θθ sin θ u y = u rr sin θ + u θθ cos θ 15 Moës [7] ìu k x = r λ [(A 1 ) k rr cos(λ + 1)θ cos θ +(A ) k rr sin(λ + 1)θ cos θ +.1 (A 3 ) k rr cos(λ - 1)θ cos θ +(A 4 ) k rr sin(λ - 1)θ cos θ - n x (A 1 ) k θθ cos(λ + 1)θ sin θ -(A ) k θθ sin(λ + 1)θ sin θ - x XFEM (A 3 ) k θθ cos(λ - 1)θ sin θ -(A 4 ) k θθ sin(λ - 1)θ sin θ] 16 u FE u enr u k y = r λ [(A 1 ) k rr cos(λ + 1)θ sin θ +(A ) k rr sin(λ + 1)θ sin θ + u h (x) = u FE + u enr (A 3 ) k rr cos(λ - 1)θ sin θ +(A 4 ) k rr sin(λ - 1)θ sin θ + 9 (A 1 ) k θθ cos(λ + 1)θ cos θ +(A ) k θθ sin(λ + 1)θ cos θ + N k ( x) ψ( x) a k î (A 3 ) k θθ cos(λ - 1)θ cos θ +(A 4 ) k θθ sin(λ - 1)θ cos θ] n = N j ( ) j = 1 m x u j + k = 1 u h (x) = é n ë ê ù N j (x)u j + é m h j = 1 ë ê ù N h (x)h(x)a h + h = 1 { F l ( r,θ) } 4 ={ r 1 - λ sin λθ,r 1 - λ cos λθ,r 1 - λ sin(λ - )θ,r 1 - λ cos(λ - )θ} l = 1 m é t ù ê N k (x) æ 11 n l ö 18 ç F l (x)b l k k = 1 ë è l = 1 ø λ=0.5 1 m h H( x) Heaviside a h m t F l ( x) n l b l k 3 J kε F l (x) 4 { F l ( )} r,θ 4 l = 1 = { } r sin θ, r cos θ, r sin θ sin θ, r sin θ cos θ H(ξ) ={ 1 ξ > 0-1 ξ 0 13. u j N j j 16 a k m { F l (r,θ),l = 1,,,6 } = ψ(x) k N k {r λ cos(λ + 1)θ cos θ,r λ sin(λ + 1)θ cos θ, N k k r λ cos(λ - 1)θ cos θ,r λ sin(λ - 1)θ cos θ, 17 9 u h ( x ) = u FE ( x ) + u H ( x ) + u tip ( x) 10 r λ cos(λ + 1)θ cos θ,r λ sin(λ + 1)θ sin θ} λ 5 u ( x) λ=0.5λ 17 u tip ( x) 17 1Sukumar [9] Huang [10] 4 Chang [18] J kε J k 1 é æ u ù J r = ( x - x tip ) + ( y - y tip ) θ = arctan[ (y - y tip )/(x - x tip )] - γ k = Γ lim 0 Γ êwn k - σ ij n i ö j ç ds k = 1, 19 ë è k ø (x, y) x (x tip, y tip ) γ W n i Γ x Heaviside H i Γ O r [18] 19 J 1 = lim 1 r 0 r λ - 1 E ( pk + qk ) I II 1 0 17

014 3 3 J = -lim r 0 r λ - 1 wk E I K II 1 1 0 1 p q w r 0 0 < λ < 0.5 J k 0.5 < λ < 1 J k 0 J ε r J kε [18] J 1ε = 1 ε λ - 1 ( pk I + qk II) E 1 ì u x = u x ε cos θ - u x sin θ u x y = u x ε sin θ + u x cos θ u y = u y ε cos θ - u y sin θ u y î y = u y ε sin θ + u y cos θ 7 J ε = - E 1 ε λ - 1 wk I K II 3 Chang [18] J kε é æ J 1ε = Γo êwn 1 - σ ij n j ç ë è u i öù ds + l1 ø + l + l 3 + l 4 é æ êwn 1 - σ ij n j ç ë è é æ u ù J ε = Γo êwn - σ ij n i ö j ç ds + ë è y s1 + s ø Wn ds u i öù ds ø 4 5 Fig. 3 3 p q w Calculation of p, q and w 4 4.1 p q w Chang [18] p q w p q w 15 u rr u θθ u x u y 6 Fig. J kε Integral paths of J kε ìσ xx = σ rr cos θ + σ θθ sin θ - σ rθ sin θ cos θ σ yy = σ rr sin θ + σ θθ cos θ + σ rθ sin θ cos θ îσ xy =(σ rr - σ θθ )sin θ cos θ + σ rθ (cos θ - sin θ) 6 3 ε N π/n ε = x + y θ = arctan( y x) ε/ = cos θ ε/ y = sin θ θ/ = -sin θ/ε θ/ y = cos θ/ε W W = 1 é u ù êσ x xx ë + σ æ u x ö xyç è y + u y u y + σ yy ø y u x J 1ε = Γ Wdy - Γ ε é ë ê ( σ xx n 1 + σ xy n ) + ( σ xyn ) 1 + σ yy n u x J ε = Γ Wdx - Γ ε é ë ê ( σ xx n 1 + σ xy n ) y + ( σ xyn ) 1 + σ yy n 8 u y ù dθ 9 u y ù y dθ 30 K I = 1 K II = 0 K I = 0 K II = 1 9 p qk I = 1 K II = 1 30 3 w 4. J kε J kε J 1ε 4 5 J kε Γ 4 4 J 1ε Fig. 4 Rectangular J 1ε integral path passes through gauss points 18

014 3 3 XFEM J 1ε n g J 1ε = δ( ξ g,η g ) I( ξ g,η g ) g = 1 ( ) 31 n g Γ ξ g,η g δ( ξ g,η g ) I( ξ g,η g ) I I(ξ g,η g ) = 1[ ] y σ xx ε xx + σ xy ε xy + σ yy ε yy η - é ù ê(σ xx n 1 + σ xy n ) u x ë +(σ xyn 1 + σ yy n ) u y æ ö ç + æ y ö è η ø è ç η ø J ε 3 4.3 p q w J 1ε J ε 3 K I K II [19] KˉI KˉI KˉI G G 1 v 1 v λ p σ θθ σ θθ Chen [13] Lin [1] θ p 0.007 0.30 0.35 0.0749 138.93 0.0195 0.019 0.0196 σ θθ θ = 0, σ θθ < 0 33 θ σ θθ 8 5 5.1 Matlab Beatxfem cm a =3 cm b=0.5 cm F=5 kn θ p D www.betaxfem.com 5 a =0.5 m b =1 m 800 6 I K II 0 p XFEM J 1ε K I Fig. 6 3.08 KˉI = K I σa 1 - λ 1 Chen [13] Lin [1] 5. 4 7 4 l=15 cm a 1= 7 4 33 θ =0 σ θθ θ p =0 Fig. 7 Geometry and loads of a 4-point bending bimaterial beam 6 Extended finite element mesh of the bimaterial plate Table 1 1 0.0433 0.30 0.35 0.1758 1.36 Normalized stress intensity factors 0.35 0.30 0.7110 0.7415 138.46 0.35 0.30 0.7335 0.6078 0.0946 4.360 4.980 0.0950 4.310 5.0010 0.0950 4.410 4.9780 Fig. 5 E =00 GPa v 1=v =0.3 E 1 10 Δa = 3 A elem A elem [5~7] E 1=E 33 θ p = arctan æ 5 ç Geometry and loads of a bimaterial plate under tension è K I - K I + 8K II 4K II ö ø 34 19

014 3 3 E /E 1=0.1 8 θ p=8 XFEM E /E 1 9 E /E 1 0.01 100 θ p 76 lg E /E 1 θ p = 10.45e -x x=lg E /E 1 9 a E/E1=0.1 b E/E1=10 10 Fig. 10 σ xx σ xx stress contours 8 Fig. 8 Extended finite element mesh and crack propagation path a E/E1=0.1 b E/E1=10 11 σ yy Fig. 11 σ yy stress contours a E/E1=0.1 9 Fig. 9 E /E 1=0.1 E /E 1=10 σ xx σ yy x 10~ 1 Fig. 1 11 11 F 1 Table Influence of Poisson's ratio on the crack E 1=E =00 GPa v =0.3 v 1 v 1 0. 0.5 0.3 lg E /E 1 Variations of crack propagation angle versus lg E /E 1 θ p/ 10.0 1 b E/E1=10 x Displacement contours in x direction propagation angle 10.04 10.0 0.35 10.09 0.4 10.05 0

014 3 3 6 (11): 549-568. [9] Sukumar N, Prévost J H. Modeling quasi static crack growth with the XFEM extended finite element method part I: Computer implementation[j]. J k k=1 International Journal of Solids and Structures, 003, 40(6): 7513- k= 7537. J k 0 [10] Huang R, Prévost J H, Huang Z Y, et al. Channel cracking of thin J k films with the extended finite element method[j]. Engineering Fracture Mechanics, 003, 70(18): 513-56. ε [11] Sukumar N, Huang Z Y, Prévost J H, et al. Partition of unity enrichment J kε J XFEM for bimaterial interface cracks[j]. International Journal for Numerical 6 Methods in Engineering, 004, 59(8): 1075-110. λ=0.5 [1] Bouhala L, Shao Q, Koutsawa Y, et al. An XFEM crack-tip enrichment Sukumar [9] Huang [10] 4 for a crack terminating at a bi-material interface[j]. Engineering Fracture Mechanics, 013, 10: 51-64. [13] Chen D H. A crack normal to and terminating at a bimaterial interface 1 XFEM J kε [J]. Engineering Fracture Mechanics, 1994, 49(4): 517-53. [14] Chen D H, Nisitani H. Body force method[j]. International Journal of Fracture, 1997, 86(1): 161-189. [15] Cook T S, Erdogan F. Stress in bounded material with a crack perpendicular to the interface[j]. International Journal of Engineering Science, 197, 10: 677-697. 3 4 [16] Wang T C. Stress state in front of a crack perpendicular to bi- material θ p v 1/v interface[j]. Engineering Fracture Mechanics, 1998, 59(4): 471-485. lg E 1/E y=ae -x References Fracture Mechanics, 1995, 5(1): 65-70. [18] Chang J H, Wu D J. Calculation of mixed-mode stress intensity factors [1],,,. for a crack normal to a bimaterial interface using contour integrals[j]. [J]., 007, 4(3): 443-446. Yao Zhanjun, Ni Xinhua, Zheng Jian, et al. Micro-strength of particle reinforced metal matrix composites[j]. Chinese Journal of Applied Mechanics, 007, 4(3): 443-446. Engineering Fracture Mechanics, 003, 70(13): 1675-1695. [19] Erdogan F, Sih G C. On the crack extension in plates under plane loading and transverse shear[j]. Journal of Basic Engineering, 1963, 85 (4): 519-57. [],,,. [0] Chang J, Xu J Q. The singular stress field and stress intensity factors [J]., 007, 8(): 09-14. of a crack terminating at a bimaterial interface[j]. International Wang Yangwei, Wang Fuchi, Yu Xiaodong, et al. Research Journal of Mechanical Science, 007, 49(7): 888-897. advancement on graded ceramic- metal armor composites[j]. Acta [1] Lin K Y, Mar J W. Finite element analysis of stress intensity factors Armamentarii, 007, 8(): 09-14. for cracks at a bi-material interface[j]. International Journal of Fracture, [3],,,. 1976, 1(4): 51-531. [J]. :, 011, 8(1): 111-119. Yang Fushu, Sun Zhigang, Li Longbiao, et al. Research on matrix crack evolution of cross-ply ceramicmatrix composite[j]. Transactions of Nanjing University of Aeronautics & Astronautics, 011, 8(1): 111-119. [4] Abdelaziz Y, Hamouine A. A survey of the extended finite element[j]. Computers and Structures, 008, 86(11): 1141-1151. [5] Belytschko T, Black T. Elastic crack growth in finite elements with minimal remeshing[j]. International Journal for Numerical Methods in Engineering, 1999, 45(5): 601-60. [6] Belytschko T, Moës N, Usui S, et al. Arbitrary discontinuities in finite elements[j]. International Journal for Numerical Methods in Engineering, 001, 50(4): 993-1013. [7] Moës N, Dolbow J, Belytschko T. A finite element method for crack growth without remeshing[j]. International Journal for Numerical Methods in Engineering, 1999, 46(1): 131-150. [8] Moës N, Gravouil A, Belytschko T. Non-planar 3D crack growth by the extended finite element and level sets part I: Mechanical model[j]. International Journal for Numerical Methods in Engineering, 00, 53 [17] Lim W, Lee C. Evaluation of stress intensity factors for a crack normal to bi-material interface using isoparametric finite elements[j]. Engineering 000 kjdbbjb@cast.org.cn 1