9. UTILIZAREA TRANSFORMATELOR LAPLACE ŞI Z ÎN STUDIUL SEMNALELOR

Σχετικά έγγραφα
x (s-a neglijat curentul de câmp faţă de cel de difuzie, tranzistor fără câmp intern) * ecuaţiile de continuitate (valabile pentru orice x şi t ):

Cursul 10 T. rezultă V(x) < 0.

ο ο 3 α. 3"* > ω > d καΐ 'Ενορία όλις ή Χώρί ^ 3 < KN < ^ < 13 > ο_ Μ ^~~ > > > > > Ο to X Η > ο_ ο Ο,2 Σχέδι Γλεγμα Ο Σ Ο Ζ < o w *< Χ χ Χ Χ < < < Ο

.. ntsets ofa.. d ffeom.. orp ism.. na s.. m ooth.. man iod period I n open square. n t s e t s ofa \quad d ffeom \quad orp ism \quad na s \quad m o

Το άτομο του Υδρογόνου

ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s

5 Ι ^ο 3 X X X. go > 'α. ο. o f Ο > = S 3. > 3 w»a. *= < ^> ^ o,2 l g f ^ 2-3 ο. χ χ. > ω. m > ο ο ο - * * ^r 2 =>^ 3^ =5 b Ο? UJ. > ο ο.

ITU-R P (2009/10)

M p f(p, q) = (p + q) O(1)

rs r r â t át r st tíst Ó P ã t r r r â

Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ. Παππάς Χρήστος Επίκουρος Καθηγητής

Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA)

ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ

Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design

ΝΟΜΟΣ ΤΗΣ ΠΕΡΙΟ ΙΚΟΤΗΤΑΣ : Οι ιδιότητες των χηµικών στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.

Alterazioni del sistema cardiovascolare nel volo spaziale

ss rt çã r s t à rs r ç s rt s 1 ê s Pr r Pós r çã ís r t çã tít st r t

P P Ó P. r r t r r r s 1. r r ó t t ó rr r rr r rí st s t s. Pr s t P r s rr. r t r s s s é 3 ñ

τροχιακά Η στιβάδα καθορίζεται από τον κύριο κβαντικό αριθµό (n) Η υποστιβάδα καθορίζεται από τους δύο πρώτους κβαντικούς αριθµούς (n, l)

Ηλεκτροτεχνία. Συνδεσμολογίες Αντιστάσεων Νόμος του Όμ. Ηλεκτρική Ισχύς. Ασκήσεις Ηλεκτρικών Κυκλωμάτων ΦΑΕΡ105

SONATA D 295X245. caza

Κεφάλαιο q = C V => q = 48(HiC. e και. I = -3- => I = 24mA. At. 2. I = i=>i= -=>I = e- v=»i = 9,28 1(Γ 4 Α. t Τ

ΠΕΡΙΟΔΙΚΟ ΣΥΣΤΗΜΑ ΤΩΝ ΣΤΟΙΧΕΙΩΝ (1) Ηλία Σκαλτσά ΠΕ ο Γυμνάσιο Αγ. Παρασκευής

r r t r r t t r t P s r t r P s r s r r rs tr t r r t s ss r P s s t r t t tr r r t t r t r r t t s r t rr t Ü rs t 3 r r r 3 rträ 3 röÿ r t

m r = F m r = F ( r) m r = F ( v) F = F (x) m dv dt = F (x) vdv = F (x)dx d dt = dx dv dt dx = v dv dx

Sarò signor io sol. α α. œ œ. œ œ œ œ µ œ œ. > Bass 2. Domenico Micheli. Canzon, ottava stanza. Soprano 1. Soprano 2. Alto 1

UNIVERSITÀ DEGLI STUDI DI BOLOGNA. DIPARTIMENTO DI INGEGNERIA ELETTRICA Viale Risorgimento n BOLOGNA (ITALIA) FOR THE CURRENT DISTRIBUTION

P t s st t t t t2 t s st t t rt t t tt s t t ä ör tt r t r 2ö r t ts t t t t t t st t t t s r s s s t är ä t t t 2ö r t ts rt t t 2 r äärä t r s Pr r

r t t r t t à ré ér t é r t st é é t r s s2stè s t rs ts t s

A 1 A 2 A 3 B 1 B 2 B 3

E.E. Παρ. Ill (I) 429 Κ.Δ.Π. 150/83 Αρ. 1871,

Chapter 1 Fundamentals in Elasticity

MICROMASTER Vector MIDIMASTER Vector

ITU-R P (2012/02) khz 150

ΛΥΣΕΙΣ. 1. Χαρακτηρίστε τα παρακάτω στοιχεία ως διαµαγνητικά ή. Η ηλεκτρονική δοµή του 38 Sr είναι: 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 5s 2

Original Lambda Lube-Free Roller Chain

ON OPTIMIZATION OF MANUFACTURING OF AN AMPLIFIER TO INCREASE DENSITY OF BIPOLAR TRANSISTOR FRAMEWORK THE AMPLIFIER

Convection Derivatives February 17, E+01 1.E-01 1.E-02 1.E-03 1.E-04 1.E-05 1.E-06 1.E-07 1.E-08 1.E-09 1.E-10. Error

Q π (/) ^ ^ ^ Η φ. <f) c>o. ^ ο. ö ê ω Q. Ο. o 'c. _o _) o U 03. ,,, ω ^ ^ -g'^ ο 0) f ο. Ε. ιη ο Φ. ο 0) κ. ο 03.,Ο. g 2< οο"" ο φ.

Jeux d inondation dans les graphes

DISPLAY SUPPLY: FILTER STANDBY

(... )..!, ".. (! ) # - $ % % $ & % 2007

def def punctul ( x, y )0R 2 de coordonate x = b a

C 1 D 1. AB = a, AD = b, AA1 = c. a, b, c : (1) AC 1 ; : (1) AB + BC + CC1, AC 1 = BC = AD, CC1 = AA 1, AC 1 = a + b + c. (2) BD 1 = BD + DD 1,


1 B0 C00. nly Difo. r II. on III t o. ly II II. Di XR. Di un 5.8. Di Dinly. Di F/ / Dint. mou. on.3 3 D. 3.5 ird Thi. oun F/2. s m F/3 /3.

XHMEIA. 1 ο ΔΙΑΓΩΝΙΣΜΑ. ΘΕΜΑ 1 ο. Να δώσετε τη σωστή απάντηση στις παρακάτω περιπτώσεις.

Μάθημα 12ο. O Περιοδικός Πίνακας Και το περιεχόμενό του

Robust Segmentation of Focal Lesions on Multi-Sequence MRI in Multiple Sclerosis

ITU-R P (2009/10)

SWOT 1. Analysis and Planning for Cross-border Co-operation in Central European Countries. ISIGInstitute of. International Sociology Gorizia

ITU-R P (2012/02)


Αρµονικοί ταλαντωτές

➆t r r 3 r st 40 Ω r t st 20 V t s. 3 t st U = U = U t s s t I = I + I

SUPPLEMENTAL INFORMATION. Fully Automated Total Metals and Chromium Speciation Single Platform Introduction System for ICP-MS

Περικλέους Σταύρου Χαλκίδα Τ: & F: chalkida@diakrotima.gr W:

&+, + -!+. " #$$% & # #'( # ) *

Ó³ Ÿ , º 4(181).. 501Ä510

Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté

m i N 1 F i = j i F ij + F x

Αναπληρωτής Καθηγητής Τμήμα Συντήρησης Αρχαιοτήτων και Έργων Τέχνης Πανεπιστήμιο Δυτικής Αττικής - ΣΑΕΤ

Hygromécanique des panneaux en bois et conservation du patrimoine culturel. Des pathologies... aux outils pour la conservation

P P Ô. ss rt çã r s t à rs r ç s rt s 1 ê s Pr r Pós r çã ís r t çã tít st r t

Solving an Air Conditioning System Problem in an Embodiment Design Context Using Constraint Satisfaction Techniques

Γενικός ρυθμός μεταβολής οικονομικά ενεργού πληθυσμού χρονών - σύνολο

ο3 3 gs ftffg «5.s LS ό b a. L Μ κ5 =5 5 to w *! .., TJ ο C5 κ .2 '! "c? to C φ io -Ρ (Μ 3 Β Φ Ι <^ ϊ bcp Γί~ eg «to ιο pq ΛΛ g Ό & > I " CD β U3

Wb/ Μ. /Α Ua-, / / Βζ * / 3.3. Ηλεκτρομαγνητισμός Ι Μ. 1. Β = k. 3. α) Β = Κ μ Π 2. B-r, 2 10~ ~ 2 α => I = ~ } Α k M I = 20Α

Vers un assistant à la preuve en langue naturelle

F (x) = kx. F (x )dx. F = kx. U(x) = U(0) kx2

Αλληλεπίδραση ακτίνων-χ με την ύλη

Αυτό το κεφάλαιο εξηγεί τις ΠΑΡΑΜΕΤΡΟΥΣ προς χρήση αυτού του προϊόντος. Πάντα να μελετάτε αυτές τις οδηγίες πριν την χρήση.

ITU-R P (2012/02) &' (

COMPONENTS LIST BASE COMPONENTS


Automaatika. AJS-de liigitus 1. ja olulised muutujad. Automaatjuhtimine. e st. t rise. t reg


1. Από την αρχική σελίδα του web site του ΙΚΑ επιλέγετε την ελληνική σημαία για να εισέλθετε στην κεντρική σελίδα του ΙΚΑ.

Answers to practice exercises

( ) ( ) ( ) ( ) ( ) β ( ) ... Χ 2 Υ 11 Χ 12. Χ... p Χ 22 Υ 21 Υ 1. Χ... np ... ,..., ˆ. i,

Ατομικό βάρος Άλλα αμέταλλα Be Βηρύλλιο Αλκαλικές γαίες

Appendix B Table of Radionuclides Γ Container 1 Posting Level cm per (mci) mci

Forêts aléatoires : aspects théoriques, sélection de variables et applications

gr mol g lit mg lit mlit lit mol NaCl 96 NaCl HCl HCl

Parts Manual. Trio Mobile Surgery Platform. Model 1033

ITU-R SF ITU-R SF ( ) GHz 14,5-14,0 1,2.902 (WRC-03) 4.4. MHz GHz 14,5-14 ITU-R SF.1585 ( " " .ITU-R SF.

2?nom. Bacc. 2 nom. acc. S <u. >nom. 7acc. acc >nom < <

Š Œ -Ÿ Š ˆŸ Ÿ Œˆ ˆ Œˆ.ˆ. Ê ÉÒ²Ó ±

Μαθηματικά Β' Γυμνασίου ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ

ot ll1) r/l1i~u (X) f (Gf) Fev) f:-;~ (v:v) 1 lý) æ (v / find bt(xi (t-i; i/r-(~ v) ta.jpj -- (J ~ Cf, = 0 1l 3 ( J) : o-'t5 : - q 1- eft-1

ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. Θετικής - Τεχνολογικής Κατεύθυνσης Φυσική Γ Λυκείου ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ. Επιμέλεια: ΘΕΟΛΟΓΟΣ ΤΣΙΑΡΔΑΚΛΗΣ

ΣΥΝΟΨΗ 2 ου Μαθήματος

ΓΗΣ ΕΠΙΣΗΜΟΥ ΕΦΗΜΕΡΙΔΟΣ ΤΗΣ ΔΗΜΟΚΡΑΤΙΑΣ ύττ* *Αρ. 870 της 23ης ΑΠΡΙΛΙΟΥ 1971 ΝΟΜΟΘΕΣΙΑ

AC 1 = AB + BC + CC 1, DD 1 = AA 1. D 1 C 1 = 1 D 1 F = 1. AF = 1 a + b + ( ( (((

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΙΟΙΚΗΣΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥ ΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΙΠΛΩΜΑ ΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΜΕ. Ι..Ε.

2013/2012. m' Z (C) : V= (E): (C) :3,24 m/s. (A) : T= (1-z).g. (D) :4,54 m/s

Αριθμός 235 Ο ΠΕΡΙ ΠΟΛΕΟΔΟΜΙΑΣ ΚΑΙ ΧΩΡΟΤΑΞΙΑΣ ΝΟΜΟΣ (ΝΟΜΟΙ 90 ΤΟΥ 1972 ΚΑΙ 56 ΤΟΥ 1982)

635 Κ.Δ.Π. 205/77. ζ?=>> ο ο' ο ο 6. ΖΖΖΖ_, 3 -^ ~> 3 ^w^-~- ν^ 3. XfS fs <>* ts oo C? ;>_. ^.>>>>> x s> X.XXXXX ίϊχχ. xxxxxxuxx xxxxxx»xx

Points de torsion des courbes elliptiques et équations diophantiennes

Transcript:

9. UIIAREA RASFORMAEOR APACE ŞI Î SUDIU SEMAEOR rform Forr (ră ş vră) rlă o rformr rprăr ml oml mp î oml frvţă ( ω) ş vr. Grlâ vrbl mgră ω omplă: σ ω (frvţ omplă), obţ mol m grl rprr mllor, m rform pl. 9.. RASFORMAA APACE BIAERAĂ F mll r îplş oţ: α M pr < < ; β M pr > A grl: α > β ( ): B 9.. (9.) σ ω B (9.) mş rform pl blrlă mll. Coţ ovrgţă grl (9.) : σ < ω (9.3) Pr rm oml ovrgţă rform pl blrl, vlă grl (9.): B < ( ασ) ( βσ) lm lm ασ βσ < M M. α σ β σ Pr ovrgţă, v ă l oă lm rb ă f l, rg pă oţl: α σ > β < σ < α (9.) β σ < Pr rm rform pl blrlă vră, po obrv ă (9.) σ rpră pr rform Forr mll y : F σ ω ( y ) : ( σ ω) S po obrv ă pobl ă po rformă Forr, r y, oţ rpăr oţ ovrgţă (9.). Î oform (6.), orgll y obţ rlţ: y σ F ( ( σ ω) ) ( σ ω) π ( σ ω) ω σ π ω ω ω Dr σ ω ω ; m < ω < σ < < σ, fl ă:

σ B ( B ), (9.5) π σ pr rpră rform pl blrlă vră (forml vr Mll-Forr), oţ σ ă îplă oţ ovrgţă (9.). D mov, σ m mş ş for ovrgţă. Î fgr 9. rpr oml ovrgţă l rform pl blrl, pr l β < ; α >. Smll poă mbl rform (Forr ş pl) ă oml ovrgţă l ş mgră. 9.. RASFORMAA APACE UIAERAĂ Î l ş pror mlor ş rlor lr, mll ţ (orgll) ob l pr < (ml l). U fl ml po f r ş b form:, (9.6), mll rpă (Hv). Î fl r foloş rform pl lrlă, fă pr rlţ: ( ):, (9.7) î r lm froră grr oră, pr p ţ o ş mplrl Dr δ pr î l vllor oăţ î moml. Cm rform Forr mp rţ orgll ă f l, p vr m pţ rrvă. Coţ ovrgţă (9.3) v: σ <, (9.8) r oţ (9.) p r rb ă o îplă orgll rformă î: < M ; R (9.9) (ă o poţlă î rpor r rş m rp); m mş ş rşr l mll. Vlor mmă l, r rformă (9.9) î gl, mş bă ovrgţă bolă ş oă σ. Alfl p, σ vlor mmă vrbl σ pr r îplă oţ ovrgţă (9.8). Coţ ovrgţă rform Forr <, (9.) rg pă rţ lm, p â î l rform pl (lrlă blrlă), lm rpvă po f lă, orgll volâ, oform (9.9), b poţl. C rmr, pl vr l ovrgţ, rform Forr m rrvă â rform pl lrlă. rr l rform pl lrlă l rform Forr ş vr po f pr bţl oă oţ: Fg. 9. Doml ovrgţă l rform pl blrl ω, rpv ω, m ă îpl ml β ω α σ 9.

mll l; b ovrgţă bolă lă ( σ ), mplă îplr rlţ (9.). Rlţ fţ rform pl lrl vr (9.5), î r rb îplă oţ σ > σ. Crb pll ompl p r gră î (9.5) (orl Bromwh) pră î fgr 9.. Îrâ rform pl lrlă m foloă, î or v rţ l rbl lrlă f mă p r or rform pl. 9.3. RASFORMAA F ml l pr < (ml l). Smll şo ( pro π şor ; π f ), [], f pr rlţ (8.), po ω prm m o: ( ) δ( ) ( ) δ( ) (9.) rform pl mll şo po ll por l (9.7), ţâ o propr lr (r vă): ( ) ( ) ( δ( )) (9.) Dr (pă m v ră lror, prr ă proprăţl rform pl ş morţl măăor l orpăor l rformăr Forr): δ (9.3) Rlă ă: ( ) ( ) (9.) C oţ: :, (9.5) îlo- î (9.) obţ: : ( ), (9.6) r rpră rform mll şo: ( ) ( ( )): ( ) (9.7) Obrvţ:. Dă r (9.7) ă ş ovrgă pr (ă ş pr vlor gv), pr orpăor mş rform blrlă. D ob îă lră ml rm, fl ă rform lrlă,, p r, rform ;. Sr (9.7) ovrgă ă r R, oă mă om ovrgţă, pă m po obrv î fgr 9.3; R Im ω Fg. 9. Corl Bromwh R Fg. 9.3 Doml ovrgţă rform r σ σ R 9.3

O 3. Rlţ (9.5) rpră o rformr oformă pll ( y) pll ( σ ω) Im σ î, fp m mplă r l, ş m rr b form rgoomră măr ompl: σ σ ω σ ω (9.8) rg ω S vor pr oă mpl rformr or ror î pll î l orpăor î pll : 3..F vrl σ î pll. ror orpăor î pll σ rl ră R (fgr 9.) ; 3..Corl ( Γ ) bof r orp fâş bă ( lăţm ω ) î mpll âg l pll, rformă îr- r ( R pr ă σ ), l oă ăr orp gmlor orol f ş b (fgr 9.b).. rformărl rorlor rfră (ş) oml ovrgţă l rform pl (blrlă lrlă) î pll î oml ovrgţă l rform (blrlă lrlă) î pll. Pr rmr rformăr vr, porş o l rform pl. Afl, mll orgl po rm orl rform l pl orl (9.5): Dă îloş, (9.5) v: σ ( ): (9.9) π σ Folo bţ (9.5) î (9.9) ş ţâ o rlţl v: l (r rformă oml âg rp σ, σ fgr 9. î rorl rl fgr 9.b), rlă: R Im Im f ω C σ Γ R R O b ω b ) b) Fg. 9. ror orpo î pll ş π C Dr ( σ ω ) 9. (9.), - or fâş bă pll, pr opr l (rmr vlor prplă fţ ompl l). Îlo lm rlţ î (9.) ş lâ, rlă: (9.) π C Epr (9.) fş rform vră. f Im O R

9.. PROPRIEĂŢI AE RASFORMAEOR APACE ŞI Îrâ proprăţ măăor, ş morţl lor, l vor f pr r. S vor folo oţ pl pr mll l ăror l orp rform pl pl () ş oţ pl [] ( ) pr mll şo pro şor, ăr î orp rform ([]) (( )). S vor pr î l rmă âv l m mpor proprăţ l rformlor pl ş. 9 r (9. ) (9. ) ofţ oţ. Dmorţl v, râ- l lr grl, rpv m (r). 9 orm îârr (plăr î mp) Dă mll îâr r, rpv mll îâr pro şor, : (9.3 ) Dmorţ: ) pl: ( ) ( [ ] ) ( ) Coform (9.7): ( ( ) ) ( ) ( ) 9.5 Dr mll () l ( ) ( ) ( ( ) ) ( ) b) : <, fl ă: ( [ ] ) ( ) ( ( ) ) C oţ p, rlă:. p p ( [ ] ) ( p ) ( p ) p, îrâ pr <. Obrvţ: S po rpr - f oprorl îârr o proă. 9..3. orm plăr î frvţă ( îmlţr o poţlă) Dmorţ ) pl: ( ) ( ) ± m ( ) p ( ) ( ) ( ) (9.3 ) (9. ) (9. )

9.6 b) : ± ± m m 9 Mofr ăr rprr (orm măăr) (9.5 ) (9.5 ) Dmorţ ) pl: b) : 9..5. Drvr orgll (orm păr vl î mp) (9.6 ) (9.6 ) Dmorţ: ) pl: lm Dr, oform (9.9) rlă ă M σ σ <. Cm > σ, rlă ă lm, fl ă (9.6 ) moră. Grlr: (9.7 ) Dmorţ po f şrţă pr ţ. b) : Dă oă, rlă: 3. Grlr: (9.7 ) Dmorţ măăor m, mofr f ă v, l mr,, vră îr ş, pr obţ rform rb roş ş oş mă rm, ă (9.7 ).

9..6. orm vlor ţl ( ) lm Dmorţ: ) pl: (9.8 ) lm (9.8 ) Dă oă î org ( ) ( ) (9.6 ), rlă: lm 9.7 ş î oform lm( ( ) lm lm { 3 Dă oă î org, ( ( ) ( )) rv î org v ( ( ) ( )) δ( ) (9.6 ), obţ: ( ), fl ă. Iroâ î ( ( ) ( )) δ ( ( ) ( )) δ ( ) ( ) ( ) lm. 3 b) : Emâ (9.6), obrvă ă ă, lă oţ rm mă, (or pol gv), pţ prml,, rlă (9.8 ). 9..7. orm vlor fl lm lm lm( ) lm( ( ) ) Dmorţ: ) pl: Coform morţ orm (9.8 ), rlă: ( ) Rlă ă: lm (9.9 ) ( ) ( ) lm { ( ) lm lm ( ) lm (9.9 ) b) : S v or frţ ( ) îr oă şo ov l mll (r proporţolă rv ră): ( ) ( ( ) ) ( )

S v rm rform ml p oă ă: ) ( ( ( ) ) ( )) [ ( ( ) ) ( )] D, rlă ă: [ ( ( ) ) ( )] lm ( ) lm D (9.3) b) Folo (9. ) ş (9.8 ), D prmă fl: D ( ( ) ) ( ( )) ( ), rlă ă: D lm D lm (9.3) D (9.3) ş (9.3) rlă (9.9 ). Obrvţ: D pră b form (9.3), oră f rform rv r mll. 9..8. orm rvăr î frvţă (mlplr î mp) ( ) (9.3 ) ( ) (9.3 ) Dmorţ: ) pl: ( ) ( ) ( ) Grlr: ) (9.33 ) b) : ( ) ( ) ( ) (9.3) Dr, oform fţ (9.6), mmbrl âg l rlţ (9.3 ) : ( ) ( ) ( ) (9.35) D (9.3) ş (9.35) obţ rlţ (9.3 ). Grlr m l fl mplă î l rform pl. D mov, î l rvlor or pror po pro rrv, î mpll rmăor : ( ) ( ( )) ( ( )) Pr lll rform ( 3 ) proă măăor, por l pr blă m, ş..m.. 9.8

9.9 9..9. orm grăr orgll (măr) (9.36 ) p (9.36 ) Dmorţ: ) pl: S plă mo grăr pr părţ: v v. Fpl ă moră prr pro mlr l folo î prgrfl 9..5. b) : Fţ p proporţolă grl ră mll. Rlă ă: p p p p 3 3 Obrvţ: o î lgără m şolor, vă (ş) rmăor rlţ: lm (9.37) oă ş b ml orm m. A rl obţ m (9.6), orâ. 9 orm grăr mg (măr) p p (9.38) Dmorţ: F Y p p Y Φ Φ Φ.

F m y orgll mg Y. Coform (9.3 ), rlă ă: Y y y y y ( ) ( ) ă 9 Prol ovolţ p p. orm moră. Prol ovolţ oă ml log, ş, fo f (7.) ş v f rm î or: f ( ) : Cm mll ş l, rlă ă ( ) >, fl ă prol ovolţ v: ( ) Î l mllor şo, ş pr < (9.39) (l m), prol ovolţ fş măăor, grl v mă: f ( ) (( ) ): Prol ovolţ omv: Dmorţ: ) pl: Coform (9.39), ( ) C hmbr vrblă, rlă: ; ;, Afl ă obţ: b) : ( ) ( ) ( ) ( ) ( ) (( ) ) C bţ, rlă: (( ) ) ( ), (9.) Î mo v, - obţ (9.), vrr or î r mă rm. C ş î l rform Forr, prol ovolţ r propr rmrblă ă po f p î lgără prol mglor pl, rpv. Afl: ( ) ( ) (9. ), (9. ) ă rforml (pl, rpv ) prol ovolţ gl prol lgbr l rformlor (pl, rpv ) l mllor ovol, rl o ş b ml orml prol ovolţ î oml mp. 9.

9. Dmorţ: ) pl: S proă l morr lş orm pr rforml Forr:.3 S- folo propr lor oă ml f l ( prm rr prol ovolţ b form foloă î rl morţ) ş - l pobl vrăr or grr. b) : S porş l prol rformlor. p p p D m, b l ovolţ po f or ş mgl (pl ) mllor, fţ p oţlor lor ţă: π (9. ) π C (9. ) U, m σ σ >, r C rb mţoă î (9.) î fgr 9.. C ş î l rform Forr, ovolţ mglor r propr rmrblă ă po f p î lgără prol orgllor. Afl: (9.3 ), (9.3 ) rl o ş b ml orml ovolţ î oml frvţă. Dmorţ: ) pl: π π π Shmbâ or grr, obţ:

π ( ) ( ) π π π ( ) ( ) ( ) (. ) b) : Afrmţ (9.3 ) po f moră măăor. D mov v pr lă morţ, po f pă ş pr fr rlţ (9.3 ). Afl, ţl orm hvl ( ), v ll rform prol: ( ) I 3 ( ) π C vrâ or mr/grr, rlă: π C 3 ( ) ( ) ( ) 9.6. EERGIA SEMAEOR EŞAIOAE prol lor : F C şol mll ş P ( ) ( ) ( ) ogl lor. rform Rlă ă P rpră rg mll şo: E ( ) ( ) (.3 ) π C Cm ml l, rlă ă C po or rl, pă m - vă î (9.) î fgr 9.. Rlă ă po f hmbr vrblă: θ θ ; π θ π, ϕ( θ) fl ă () v ( θ) Î mo, pr rg mll şo v: E π π π ϕ( θ) ϕ( θ) θ ( θ) ( θ) { Î fl, ţâ o ş ă ( θ) ( θ) θ θ 3, obţ rl mş orm l Prvl pr ml şo, bl- fl o lgără îr rg lor ş moll rform, vl p rl : π E ( θ) θ π π (9.) 9.

9.7. EOREME DE IVERSIUE Pr rmr fţlor orgl, rpv, - pf rlţl grl (9.5), rpv (9.) rforml pl, rpv vr. A f f grl l or fţ ompl, rlă ă pr vl ăţ or oşţ (m) v lă omplă, mpl orm rrlor. Cm î m mr pr plţlor hă rforml pl pră b form or frţ rţol, ă orm pf, r fp r prlr l orm rrlor. Dfţ A Dă : m m b b b b B m ror l rform pl, r răăl ţ, răăl ţ A B m pol rform pl. Alog pr rform. Obrvţ: Dă mll l, m (mărăorl r grl l ml gl grl morl). U pro r po f l î orr ompr fţ î frţ mpl, l ăror rform vr ro pr îo. ormă (Hv) Dă pol fţ rfr,,, M, fr l mlplă m, m,, m M or, : M ( m ) A m lm (9.5) m! B Î l î r pol fţ rfr mpl, (9.5) v: m A ( ) (9.6) B ( ) Pr rmr rform vr, po obrv ă fă o r pr. Rlă ă mo prplă volr pr î r pr. Î l î r o fţ rţolă, po pro l ompr î frţ mpl fţ : A A A m A A A m m m. D ă formă, rlă r b form m poţl. Î l î r ă pol mlpl, î pr (ş) rm form A ( ) p, ăror l po pl rvr î frvţă (9.3 ). O lă moă po f plă împărţr (mărăorl l mor), r pr o volr î r pr: m m, m. Rlă ă b b b b î mo - rm şol mll :,., ( ) O lă moă po f vă î vr lr prol ovolţ. 9.3

9.8. APICAŢII 9.8.. F mll (mpll vo) fgr 9.5. Să ll rform pl ş rform Forr. Dpă m - m pro ş ror, po f prm m r o rpă ră povă ş gvă, îâră: ( ). Aplâ lr (9. ) ş îârr î mp (9.3 ), rlă ş orâ U ( ): ( ) ( ) ( ) U - U Fg. 9.5: Impll vo Rlă ă Cm mll l ş vlor fă grl moll, rform Forr l po obţ rform pl, bţ ω: ω ω ω ω ω ω ( ω) ω ω S po roş rll obţ pr lll r l rform Forr. 9.8.. F ml l b form r mplr ră ş proă (fgr 9.6). Să rm rform pl mll. D plţ roră, rlă ă rform pl prml mpl. Impll l moml Fg. 9.6 r mplr > obţ pr îârr prml mpl ş v v rform pl (9.3 ). Pr rmr: 3 3 (3.85) progr gomră q A ml r vlor fă grl moll, îplă oţ ţă rform Forr. Î oţă, oră plr bţ ω pr rm fţ prlă mll. Dpă m ş l rform Forr, ml ( or ml pro) r r Forr ş rformă Forr. 9.8.3. Să rm rforml pl ş pr mll rmăor; î l rform, mll oră şo pro : < ) 9.

9.5, or lm ă > σ (b ovrgţă bolă ) S- obţ o progr gomră, ăr rţ q. Rlă oţ ovrgţă: q > <, r om oml ovrgţă. lm b) < (rp ) S po obrv ă ă, mll poţl l p. ) v. Rlă ă: lm U (- rgă rll l problm 9.8.) lm U, ovrgă pr >. Ş rl po vrf pr ll r: U ) < Dor, r rforml mll poţl o l p. ), rlă ă: o Î mo măăor, pr mll o, obţ: o

( ) ( ) o ( o( ) ) o < (rp îâră ) ( ) pro şor) Coform (9.3) orm îârr, rlă: U U ; ovrgă pr >. ) b ( ) Dă oă y ( ),, î oform (9.) orm plăr î frvţă îmlţr o poţlă, rlă: Y( b) b b b Y b b ( ) o Î mo măăor, pr b o( ) ( b b o( ) ) ( b) ( ) b b b o o b b o( ) b o( ) b b o( ) b obţ: b o 9.8.. Să rm orgll orpăor rmăorlor rform pl: ) l. Să rm. b l l b b b ( ) b K b) ω K ω r o pol mpl: ; ω ω ω ω ω K ω K o ω ω ω b 9.6

9.7 ) 5 6 5 75 3 Dompâ î frţ mpl, obţ: 6 3 3 5, î r po roş rforml pl l fţ o, r l f plă î frvţă. Rlă ă : o 5 o 3 ) M. : Dă omp î frţ mpl, rlă:, F E D C B A Pr fr, obţ m (6) ţ, ol A, B,, F. M mpl: Î ă formă, po roş rmăorl: U 9.3 o 9.36 Î fl obţ fţ orgl: o 8 3 8 6 o 8 3 6 M. : S plă orm l Hv orpăor lor 3 pol bl ( ; 3 ; 3 ) fţ :!!! ),

î r ro rforml l mllor şo ş poţl. Rlă ă obţ : ( ) δ ( ) δ( ) f) l, < Dvolâ î r pr, obţ: l, Ifâ ă rlţ fţ (9.6) rform, ofţ vrbl -, v, şol fţ. Rlă ă: δ( ) 9.8.5. Să rm prol ovolţ l rmăorlor ml: pr < < ) ;, < < lfl ( ) Dă <,. Rlă ă: ( ) l Dă,. Rlă ă: Î ol: l l ( ) ( ) pr pr < < b) ; ( ) (( ) ) Dă l l l, < <, f pro şor., ( ),, (( ) ) ( ) Dă >, ( ),,. Rlă ă:. Rlă ă: ( ) 9.8

9.9 Î ol : pr pr Obrvţ: C m bă moă pr vrf or rolvăr problm îr (o) lă moă. Î l fţă, po folo omv prol ovolţ: ) Dă <, < < ş. Rlă ă: l l Dă, pr <. Rlă ă: l l S obrvă ă - obţ lş rl î l pr. b) Dă, ş,,. Rlă ă: Dă >,,,. Rlă ă: Ş î, rll l obţ ror.