Bayesian Estimation and Population Analysis. Objective. Population Data. 26 July Chapter 34 1

Σχετικά έγγραφα
519.22(07.07) 78 : ( ) /.. ; c (07.07) , , 2008

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review

Summary of the model specified

Biostatistics for Health Sciences Review Sheet

Other Test Constructions: Likelihood Ratio & Bayes Tests

Queensland University of Technology Transport Data Analysis and Modeling Methodologies

FORMULAS FOR STATISTICS 1

Επιστηµονική Επιµέλεια ρ. Γεώργιος Μενεξές. Εργαστήριο Γεωργίας. Viola adorata

Repeated measures Επαναληπτικές μετρήσεις

PENGARUHKEPEMIMPINANINSTRUKSIONAL KEPALASEKOLAHDAN MOTIVASI BERPRESTASI GURU TERHADAP KINERJA MENGAJAR GURU SD NEGERI DI KOTA SUKABUMI

Does anemia contribute to end-organ dysfunction in ICU patients Statistical Analysis

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ

Υπολογιστική Φυσική Στοιχειωδών Σωματιδίων

Άσκηση 10, σελ Για τη μεταβλητή x (άτυπος όγκος) έχουμε: x censored_x 1 F 3 F 3 F 4 F 10 F 13 F 13 F 16 F 16 F 24 F 26 F 27 F 28 F

Chapter 1 Introduction to Observational Studies Part 2 Cross-Sectional Selection Bias Adjustment

«ΑΝΑΠΣΤΞΖ ΓΠ ΚΑΗ ΥΩΡΗΚΖ ΑΝΑΛΤΖ ΜΔΣΔΩΡΟΛΟΓΗΚΩΝ ΓΔΓΟΜΔΝΩΝ ΣΟΝ ΔΛΛΑΓΗΚΟ ΥΩΡΟ»

MATHACHij = γ00 + u0j + rij

Supplementary figures

TABLES AND FORMULAS FOR MOORE Basic Practice of Statistics

5.4 The Poisson Distribution.

Statistical Inference I Locally most powerful tests

VBA Microsoft Excel. J. Comput. Chem. Jpn., Vol. 5, No. 1, pp (2006)

Lampiran 1 Hasil Kuesioner NO CI1 CI2 CI3 CT1 CT2 CT3 CS1 CS2 CS3 CL1 CL2 CL

Για να ελέγξουµε αν η κατανοµή µιας µεταβλητής είναι συµβατή µε την κανονική εφαρµόζουµε το test Kolmogorov-Smirnov.

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

Μαντζούνη, Πιπερίγκου, Χατζή. ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 5 ο

Supplementary Appendix

2. ΧΡΗΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΠΑΚΕΤΩΝ ΣΤΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ

χ 2 test ανεξαρτησίας

Αναερόβια Φυσική Κατάσταση

Instruction Execution Times

!"!"!!#" $ "# % #" & #" '##' #!( #")*(+&#!', & - #% '##' #( &2(!%#(345#" 6##7

w o = R 1 p. (1) R = p =. = 1

Εισαγωγή στην Ανάλυση Διακύμανσης

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

Module 5. February 14, h 0min

Presentation Structure

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011

Μενύχτα, Πιπερίγκου, Σαββάτης. ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 6 ο

Λογαριθμικά Γραμμικά Μοντέλα Poisson Παλινδρόμηση Παράδειγμα στο SPSS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS


Démographie spatiale/spatial Demography

Lampiran 1 Output SPSS MODEL I

1 (forward modeling) 2 (data-driven modeling) e- Quest EnergyPlus DeST 1.1. {X t } ARMA. S.Sp. Pappas [4]

EE512: Error Control Coding

ΚΕΦΑΛΑΙΟ 2. Περιγραφή της Κίνησης. 2.1 Κίνηση στο Επίπεδο

Μενύχτα, Πιπερίγκου, Σαββάτης. ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 5 ο

CE 530 Molecular Simulation

Generalized additive models in R

ΧΩΡΙΚΑ ΟΙΚΟΝΟΜΕΤΡΙΚΑ ΥΠΟΔΕΙΓΜΑΤΑ ΣΤΗΝ ΕΚΤΙΜΗΣΗ ΤΩΝ ΤΙΜΩΝ ΤΩΝ ΑΚΙΝΗΤΩΝ SPATIAL ECONOMETRIC MODELS FOR VALUATION OF THE PROPERTY PRICES

Α. Μπατσίδης Πρόχειρες βοηθητικές διδακτικές σημειώσεις

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 13. Συμπεράσματα για τη σύγκριση δύο πληθυσμών

Αν οι προϋποθέσεις αυτές δεν ισχύουν, τότε ανατρέχουµε σε µη παραµετρικό τεστ.

Mean-Variance Analysis

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

HW 3 Solutions 1. a) I use the auto.arima R function to search over models using AIC and decide on an ARMA(3,1)

Si + Al Mg Fe + Mn +Ni Ca rim Ca p.f.u

ΠΑΝΔΠΗΣΖΜΗΟ ΠΑΣΡΩΝ ΣΜΖΜΑ ΖΛΔΚΣΡΟΛΟΓΩΝ ΜΖΥΑΝΗΚΩΝ ΚΑΗ ΣΔΥΝΟΛΟΓΗΑ ΤΠΟΛΟΓΗΣΩΝ ΣΟΜΔΑ ΤΣΖΜΑΣΩΝ ΖΛΔΚΣΡΗΚΖ ΔΝΔΡΓΔΗΑ

Consolidated Drained

Stabilization of stock price prediction by cross entropy optimization

Πεξηβάιινλ θαη Αλάπηπμε ΔΘΝΙΚΟ ΜΔΣΟΒΙΟ ΠΟΛΤΣΔΥΝΔΙΟ ΓΙΔΠΙΣΗΜΟΝΙΚΟ - ΓΙΑΣΜΗΜΑΣΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΔΣΑΠΣΤΥΙΑΚΧΝ ΠΟΤΓΧΝ (Γ.Π.Μ..) "ΠΔΡΙΒΑΛΛΟΝ ΚΑΙ ΑΝΑΠΣΤΞΗ"

Numerical Analysis FMN011

APPENDIX I PITTSBURGH NO. 8 WASHABILITY DATA AND RECOVERY- CURVES

Supplementary Materials for Evolutionary Multiobjective Optimization Based Multimodal Optimization: Fitness Landscape Approximation and Peak Detection

Group 2 Methotrexate 7.5 mg/week, increased to 15 mg/week after 4 weeks. Methotrexate 7.5 mg/week, increased to 15 mg/week after 4 weeks

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

Second Order RLC Filters

Improvement of wave height forecast in deep and intermediate waters with the use of stochastic methods

Πτυχιακή Εργασι α «Εκτι μήσή τής ποιο τήτας εικο νων με τήν χρή σή τεχνήτων νευρωνικων δικτυ ων»

6.3 Forecasting ARMA processes

Προβλέψεις ισοτιμιών στο EViews

Math 6 SL Probability Distributions Practice Test Mark Scheme

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Srednicki Chapter 55

Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής

Lampiran 2 Hasil Kuesioner No. BA1 BA2 BA3 BA4 PQ1 PQ2 PQ3 PQ4 PQ

Υγιεινή Εγκαταστάσεων Βιομηχανιών Τροφίμων

ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙO ΑΘΗΝΩΝ ΤΜΗΜΑ ΑΞΙΟΠΟΙΗΣΗΣ ΦΥΣΙΚΩΝ ΠΟΡΩΝ & ΓΕΩΡΓΙΚΗΣ ΜΗΧΑΝΙΚΗΣ

SECTION II: PROBABILITY MODELS

Thin Film Chip Resistors

5.6 evaluating, checking, comparing Chris Parrish July 3, 2016

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

S. pneumoniae Moraxella (Branhamella) catarrhalis Haemophilus influenzae. Key words. Streptococcus pneumoniae β Moraxella (Branhamella) catarrhalis

Matrices and Determinants

Εργαστήριο στατιστικής Στατιστικό πακέτο S.P.S.S.

Wan Nor Arifin under the Creative Commons Attribution-ShareAlike 4.0 International License. 1 Introduction 1


ΤΜΗΜΑ ΦΥΣΙΚΩΝ ΠΟΡΩΝ & ΠΕΡΙΒΑΛΛΟΝΤΟΣ

Ηλεκτρονικοί Υπολογιστές IV

Προσομοίωση BP με το Bizagi Modeler

ΜΑΘΗΜΑΤΙΚΗ ΠΡΟΣΟΜΟΙΩΣΗ ΤΗΣ ΔΥΝΑΜΙΚΗΣ ΤΟΥ ΕΔΑΦΙΚΟΥ ΝΕΡΟΥ ΣΤΗΝ ΠΕΡΙΠΤΩΣΗ ΑΡΔΕΥΣΗΣ ΜΕ ΥΠΟΓΕΙΟΥΣ ΣΤΑΛΑΚΤΗΦΟΡΟΥΣ ΣΩΛΗΝΕΣ ΣΕ ΔΙΑΣΤΡΩΜΕΝΑ ΕΔΑΦΗ

Statistical analysis of extreme events in a nonstationary context via a Bayesian framework. Case study with peak-over-threshold data

Solution Series 9. i=1 x i and i=1 x i.

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Supplement of Using empirical orthogonal functions derived from remote-sensing reflectance for the prediction of phytoplankton pigment concentrations

In vitro και in vivo φαρμακοκινητική ανάλυση των παραγώγων ανθρακινόνης σε φυτικά σκευάσματα

Description of the PX-HC algorithm

ΠΣΤΥΙΑΚΗ ΔΡΓΑΙΑ. Μειέηε Υξόλνπ Απνζηείξσζεο Κνλζέξβαο κε Τπνινγηζηηθή Ρεπζηνδπλακηθή. Αζαλαζηάδνπ Βαξβάξα

Transcript:

Bayesian Estimation and Population Analysis Objective To Understand the Use of Population Parameters Values in Nomograms and Bayesian Estimations To Understand Methods of Analysing Pharmacokinetic Population Data Data Rich Sparse Data Population Data Use Population Data Nomograms Bayesian Analysis Analysing Population Data Data Rich Data by Two-step Method Sparse Data by NONMEM Analysis Chapter 34 1

Using Population Data Nomogram Used to Determine Initial Dose Use Population Results previously determined May be Based on Weight and Height May Also include other Covariates such as Renal Function, Cardiac Function, Liver Status, Smoking Status Using Population Data Dose, Vm Css Km From: Tozer, T.N. and M.E. Winter. "Phenytoin" in Applied Pharmacokinetics, ed. Evans W.E., Schentag, J.J., and Jusko, W.J. Applied Therapeutics, San Francisco, 1980 Population Based Parameters Information Available Population Parameter Values Population Parameter Standard Deviations Effective/Toxic Concentrations Chapter 34 2

Bayesian Analysis Requires: Population Values Patient (Subject) Data Different Objective Function Non-linear Regression Analysis Possible Programs include Boomer or ADAPT II Bayesian Analysis Example Population Values Theophylline example Cl 0.86 ± 0.35 ml/min/kg Half-life 8.1 ± 2.4 hr Bayesian Analysis Data Typical Data 6 5 Concentration (mg/l) 4 3 2 1 0 0 2 4 6 8 10 12 Time (hr) Chapter 34 3

Bayesian Analysis Objective Function ( ) 2 i=n ( Obj = Calci Obsi ) 2 j=m Calcj Popj + i=1 Variancei j=1 PVariancej Bayesian Analysis Data Weighting Accurate (Not just Relative) 1 Wt = a Cobs b 1 Wt = a + b Cobs c d (t last t) Bayesian Analysis Results - Table (Boomer) ** FINAL PARAMETER VALUES *** # Name Value S.D. C.V. % Lower <-Limit-> Upper Population mean S.D. (Weight) Weighted residual 1) kel.19163 0.695E-01 3600 1.0 0.8560E-01 0.2500E-01 40.00 4.241 2) V 26.393 15.0 57. 1.0 0.10E+03 42.20 15.00 0.6667E-01-1.054 AIC = 11.17 SC = 33.44 Final WSS = 35.97 R-squared = -2.400 Correlation Coeff = 1.000 Chapter 34 4

Bayesian Analysis Results - Table (ADAPT II) Initial Final Parameter Value Estimate CV(%) Confidence interval (95%) V 35.00 41.37 9.525 28.83, 53.91 (N) [ ] Ke (N).8000E-01.2628E-01 32.81 [ -0.1156E-02, 0.5371E-01 ] Lam1.8000E-01.2628E-01 32.81 [ -0.1156E-02, 0.5371E-01 ] T1/2 8.664 26.38.8621 [ 25.66, 27.10 ] Lam1 CL 2.800 1.087 24.75 [ 0.2309, 1.943 ] Y( 1) Obs.Num. Time Data Model Est. Residual Variance 1 1.500 9.500 8.855 0.6451 1.000 2 10.00 11.00 12.24-1.238 1.000 3 24.00 17.00 16.40 0.6006 1.000 Population Data Analysis Two Step Method Data Rich Study Traditional PK Study Combine Multi-Subject Results Two Step Analysis Typical Data Pharmacokinetic Study Bioavailability Study Analyse Individual Data Combine Results Simple Mean and Standard Deviation Chapter 34 5

Population Analysis NONMEM Analysis Data-Sparse Study (1-3 samples per subject) Combine Results from all Subjects Simultaneous Fit to the Data from ALL the subjects NONMEM Analysis Typical Data - Some Examples Clinical Data Include Patient Covariates Renal, Cardiac, Liver Function Assessment Weight, Height, Sex Bioavailability Data Relative Bioavailability Small Animal Study Rats, Mice Few samples per animal possible NONMEM Analysis Three Examples Clinical Study Bioavailability Study In Vitro Binding Study Chapter 34 6

NONMEM Approach Analysis includes Variability between Subjects and Variability within Subjects Analysis also includes Data Variability (Error or Variance) NONMEM Analysis Cp = Dose yij = D Vj e kel V e kel t + ErrorTerm ε i t ij +εij kel = ( a + b Cl CR ) ErrorTerm η keli = [ θ1+θ2 RFi] 1+ηi kel var( ηi kel ) = ω 2 kel ( ) ( ) Vi = V 1+ηi V var( εij) = σ 2 var( ηiv) = ω 2 V NONMEM Procedure Prepare CONTROL and DATA Files Run NMTRAN to create NONMEM Files Run Make and Build to create executable Run NONMEM on File from NMTRAN Chapter 34 7

Example ONE Clinical Study One Compartment Model Drug Given by IV Infusion Multiple Patient Data Simulated Example Data - Clinical Study Data Model Estimation Output Example Data - Clinical Study k0 V kel $PROBLEM Aminoglycoside example - Eta on Typical kel only $INPUT ID AMT RATE TIME DV CRCL $DATA TEST $SUBROUTINES ADVAN1 $PK TA = THETA(1) TB = THETA(2) TK = TA*CRCL + TB K = TK*(1.+ETA(1)) V = THETA(3)*(1.+ETA(2)) S1 = V $ERROR Model Specification Y = F*(1. + ERR(1)) Chapter 34 8

Example Data - Clinical Study Data Specification $INPUT ID AMT RATE TIME DV CRCL $DATA TEST Typical Data 1 70 70 0.0 0.0 72.34 1 0.0 0.0 1.50 3.4272 72.34 1 0.0 0.0 8.00 0.4081 72.34 2 80 80 0.0 0.0 83.53 2 0.0 0.0 2.50 1.80792 83.53 2 0.0 0.0 9.00 0.05992 83.53 3 70 70 0.0 0.0 63.51 3 0.0 0.0 1.25 3.78868 63.51 3 0.0 0.0 9.00 0.22855 63.51 4 140 140 0.0 0.0 20.91 4 0.0 0.0 1.25 8.9859 20.91... Example Data - Clinical Study Estimation and Output Specification $THETA (0.,.005,0.1) (0.,.01,1.0) (1,15,100) $OMEGA.2.2 $SIGMA.2 $ESTIMATION PRINT=5 MAXEVALS=900 $COVARIANCE $TABLE ID TIME AMT DV $SCAT PRED VS DV UNIT $SCAT WRES VS DV TIME CRCL Example Data - Clinical Study Estimation Step CUMULATIVE NO. OF FUNC. EVALS.: 179 PARAMETER: 0.9863E-01 0.1259E+00 0.9983E-01-0.2210E-01-0.9608E-02-0.1539E-01 GRADIENT: -0.5304E+03-0.3488E+02 0.2824E+03 0.6209E+01 0.2114E+03 0.1876E+03 ITERATION NO.: 25 OBJECTIVE VALUE: -0.1255E+04 NO. OF FUNC. EVALS.: 8 CUMULATIVE NO. OF FUNC. EVALS.: 219 PARAMETER: 0.9857E-01 0.1275E+00 0.9982E-01-0.2210E-01-0.9956E-02-0.1528E-01 GRADIENT: -0.3205E+03-0.1915E+02 0.9722E+02-0.8242E+01 0.1142E+03 0.9623E+02 ITERATION NO.: 30 OBJECTIVE VALUE: -0.1255E+04 NO. OF FUNC. EVALS.: 0 CUMULATIVE NO. OF FUNC. EVALS.: 278 PARAMETER: 0.9887E-01 0.1216E+00 0.9986E-01-0.2214E-01-0.1024E-01-0.1517E-01 GRADIENT: 0.1829E+02 0.3513E+00-0.5171E+02-0.1679E+02-0.7762E+00-0.1330E+00 MINIMIZATION SUCCESSFUL NO. OF FUNCTION EVALUATIONS USED: 278 NO. OF SIG. DIGITS IN FINAL EST.: 3.4 Chapter 34 9

Example Data - Clinical Study Estimation Output MINIMUM VALUE OF OBJECTIVE FUNCTION -1255.007 a FINAL PARAMETER ESTIMATE THETA - VECTOR OF FIXED EFFECTS TH 1 TH 2 TH 3 4.89E-03 1.48E-02 1.50E+01 V OMEGA - COV MATRIX FOR RANDOM EFFECTS - ETAS b ETA1 ETA2 ETA1 ETA2 9.81E-03 <- 9.9 % 0.00E+00 2.10E-03 <- 4.6 % SIGMA - COV MATRIX FOR RANDOM EFFECTS - EPSILONS EPS1 EPS1 4.60E-03 <- 6.8 % Example Data - Clinical Study 1 PRED VS. DV -1.00E-01 1.66E+00 3.42E+00 PRED 5.18E+00 6.94E+00 8.70E+00. -2.00E-01..8M2.. DSH622.. 66DCA2.. 44753 Plot Output.. **222****.. **6332 5*.. 3522.. * 4*.2.. * * ******. 1.68E+00. 23.3*... ****.** *.. *.*2 **.. * * *23*2**3.. ** ***4*4.. * 33.****.. * 323* * *.. **2*33 * **.. * * *2*.* * *.. * * 4*2.2 2** *. 3.56E+00. 2* 3**.* ***... 4* * 2 * *.. * *** *.2.. * * 3*.. * ** *2* * *. DV. * *** *3 ** *.. * * ** *2. * 2 *.. * **2.* *.. * 2 * ** 2 2* 2 *.. 2 ***. *2. 5.44E+00. * ** 2* * * 2* * *... *2* *2 * *.. ** * 23. *.. * * * * ** *.. * * * *.*.. * 2 *2 * *.. * ****. *. * * **.. *. *. 7.32E+00. * *. *.... *. *.... *. 9.20E+00.. Predicted vs Observed Example Data - Clinical Study 1 WRES VS. DV -2.70E+00-1.62E+00-5.40E-01 WRES 5.40E-01 1.62E+00 2.70E+00. -2.00E-01.. * * * ** * * 2** 3*2* *3 2 * ** * * * * *.. * * * 23* *** Plot *2*****32*62**2*****223* Output 2 **2* 2* * 2 * * * *.. 2 *22 *24 * **4**23* 2* ** * *** 2* * *2* * * *.. * ** **22 *.**** ** * * * * * * *.. * * * * *. * * * * * * *.. * 2 * ** * * * 2 * ** * ** * * ***.. * *2 * ** ** * * *.. * * * * 2 * *.. * * * *. * * * *. 1.68E+00. ** * *. * * 2 *... 2 *. * * * *.. * * ** *. *.. * * *2 * * * **2* * * *.. *** * * * *** * * * * *.. * * * *. 2 * 2* *..* * * 22. 2 * * *.. * * * *** * 2 2 2 *.. * * *. 2 * * * *.. * * * * 2 * * *. * ** * * * *. 3.56E+00. * * * * *. * * * * * * *... * * * *. * ** ** *.. * *. * * ** *.. * ** 2 *.. * * 2 * *. * * *. DV. * * 2 ** 2 2 *.. * * * *.*** ** * *.. * * 2*. * *.. * * * 2 ** *. * * * * * *.. * 2 * 2 * *. 5.44E+00. * * * ** * * 2 * * * *... * * * *. * * * **.. * *.* 2 * * * *.. * * * *. * * *.. *. * * * *.. * *. ** * * * *. 2 * * *. *.. *. ** *.. *. *. 7.32E+00. *. * *... *. *...... *. 9.20E+00.. Wresid vs Observed Chapter 34 10

Example Data Model Estimation Output { } C = F Dose ka V ( ka kel) e kel t e ka t Model Specification $PROB Simulated Data - Two Dose PO (REF V-55,75) $INPUT ID AMT PROD TIME DV EVID $DATA PO $SUBROUTINE ADVAN2 $PK KA1 = THETA(1)*(1.+ETA(1)) KA2 = THETA(5)*(1.+ETA(5)) F2 = THETA(4)*(1.+ETA(4)) KEL = THETA(2)*(1.+ETA(2)) VD = THETA(3)*(1.+ETA(3)) F1 = (2-PROD)*1.0 + (PROD-1)*F2 KA = (2-PROD)*KA1 + (PROD-1)*KA2 K = KEL S2 = VD $ERROR Y = F*(1.+ERR(1)) $PROB $INPUT $DATA Data Specification Simulated Data - Two Dose PO (REF V-55,75) ID AMT PROD TIME DV EVID PO $SUBROUTINE ADVAN2 Typical Data 1 250 1 0.0 0.0 1 1 0.0 1 0.25 4.99 0 1 0.0 1 0.5 8.45 0 1 0.0 1 1 12.07 0 1 0.0 1 2 13.74 0 1 0.0 1 4 12.19 0 1 0.0 1 6 10.06 0 1 0.0 1 9 7.78 0 1 0.0 1 12 5.87 0 1 0.0 1 24 1.91 0 1 250 2 0.0 0.0 4 1 0.0 2 0.25 1.69 0 Chapter 34 11

Estimation and Output Specification $THETA (0.5,1.5,5) (.001,0.1,1) (1,15,100) (0.5,0.75,1.25) (0.25,1,2.5) $OMEGA.10.10.10.10.10 $SIGMA.10 $EST PRINT=5 MAXEVAL=1500 $COVAR $TABLE ID PROD DV $SCAT DV PRED VS TIME $SCAT PRED VS DV UNIT $SCAT WRES VS TIME Estimation Step ITERATION NO.: 75 OBJECTIVE VALUE: -0.1389E+04 NO. OF FUNC. EVALS.:24 CUMULATIVE NO. OF FUNC. EVALS.: 1065 PARAMETER: 0.8811E-01 0.9391E-01 0.1003E+00 0.1063E+00 0.8318E-01 0.3413E-01 0.1818E-01-0.3041E-02 0.2953E-01 0.2234E-01 0.3287E-02 GRADIENT: 0.1332E+02 0.4338E+02 0.5042E+03-0.8576E+01 0.6322E+01 0.7123E+01-0.1558E+02 0.3528E+02 0.1821E+01 0.4132E+00-0.5080E+03 ITERATION NO.: 76 OBJECTIVE VALUE: -0.1389E+04 NO. OF FUNC. EVALS.: 0 CUMULATIVE NO. OF FUNC. EVALS.: 1065 PARAMETER: 0.8811E-01 0.9391E-01 0.1003E+00 0.1063E+00 0.8318E-01 0.3413E-01 0.1818E-01-0.3041E-02 0.2953E-01 0.2234E-01 0.3287E-02 GRADIENT: 0.1332E+02 0.4338E+02 0.5042E+03-0.8576E+01 0.6322E+01 0.7123E+01-0.1558E+02 0.3528E+02 0.1821E+01 0.4132E+00-0.5080E+03 MINIMIZATION SUCCESSFUL NO. OF FUNCTION EVALUATIONS USED: 1065 NO. OF SIG. DIGITS IN FINAL EST.: 3.3 Estimation Output MINIMUM VALUE OF OBJECTIVE FUNCTION -1388.533 FINAL PARAMETER ESTIMATE THETA - VECTOR OF FIXED EFFECTS ********************* TH 1 TH 2 TH 3 TH 4 TH 5 1.29E+00 8.87E-02 1.51E+01 7.78E-01 7.90E-01 OMEGA - COV MATRIX FOR RANDOM EFFECTS - ETAS ******** ETA1 ETA2 ETA3 ETA4 ETA5 1.17E-02 ETA1 <- 10.8 % ETA2 0.00E+00 <- 5.7 % 3.30E-03 ETA3 0.00E+00 0.00E+00 9.25E-05 <- 1.0 % ETA4 0.00E+00 0.00E+00 0.00E+00 8.72E-03 <- 9.3 % ETA5 0.00E+00 0.00E+00 0.00E+00 0.00E+00 4.99E-03 <- 7.1 % SIGMA - COV MATRIX FOR RANDOM EFFECTS - EPSILONS **** EPS1 EPS1 1.08E-04 <- 1.0 % Chapter 34 12

Plot Output 1 DV VS. TIME 1.00E+00 3.80E+00 6.60E+00 DV 9.40E+00 1.22E+01 1.50E+01. -1.00E+00.. 2 *38343 * 2**363322.. 2 * 27*2224* * 3 ** 2262 5 *.. ** * *22322*223 * * ** ****24*522 *.. ** * * 3232 23*2* * * *2 45522* *. 4.20E+00. ** * * *5 2332* 2 * *264344... * 2 **3 2*44** ** 245442*2*.. * 2 * 2322332 *2253542 3. 9.40E+00. TIME. * 2 * 2233233*7424*4*2. 1.46E+01. 1.98E+01..* 359775622*. 2.50E+01.. Observed versus Time Plot Output 1 PRED VS. DV 1.00E+00 3.60E+00 6.20E+00 PRED 8.80E+00 1.14E+01 1.40E+01. 0.00E+00. *. 9 *.. 8. 82.. 5 98.. * 68. *5 3.00E+00 2.. * *. * *. 9 *.. 3.2 3.. 7 6. * 9.7 **.. 5 5. *.. 5. * 2.. 2. 6 **. 6.00E+00. 7 *... * 5.65 *.. 5 43.. 75. 2 2 2.. *3. 2 *. DV. *4.* 3 *.. * 4.8 * *.. * 8 8.4 *.. 5 5 2. * 9. 3. 9.00E+00. 2 6 *... * 2.5 *.. * 2 *. * 6 7. *.. * 3.B.. 3 7. 2.. * 3. *.. * 2.2.. 3. 7 1.20E+01. 6. 4... * A *.. * 8. 2. 2. *.. 9.. 8.. 2.. *. 1.50E+01.. Predicted versus Observed Plot Output 1 WRES VS. TIME -3.10E+00-1.88E+00-6.60E-01 WRES 5.60E-01 1.78E+00 3.00E+00. -1.00E+00.... ** *2 ** *2 ****3 2 * **3 2 **2*3 *** 2* *** * * * *.. * **** ** 2 *2 *3 * 2 *2**2 *22*3** ** 4 * * ** *..* ** **2 2 2*** *3 * ** 3* 23 2**2 **223 ** *... * * ** * 2 *2 ** 2*** * *32* **. * **223 **222 * **.... 4.20E+00. * 2 22 2** 3 ** 32* 2**2* 42 2 2 ** *3 * 2..... * * *2 *2 *2322 *2 42 **2*2*22 * **** * * * *....... ** 3 2*** 3 * **2234 *.*2*2** 2* 2* 2 * * * *. 9.40E+00...... TIME. * 2** * * * 32* * *2 *2*4 *.2 32 ** 22*2 * 2 * *..... 1.46E+01........... 1.98E+01.......... * * * * * *22 *** *** * *322* *2* 2*2 * ***2* * * * * **.. 2.50E+01... Wresid versus Time Chapter 34 13

Binding Study Data Model Estimation Output Example Data Example Data - Binding Study ( Ka Ct 1 Ka Pt)+ Ka Ct 1 Ka Pt Cf = ( )2 + 4 Ka Ct 2 Ka Model Specification $PROB $INPUT $DATA $PRED OSU BINDING DATA ID TOTL DV BIND CT = TOTL KA = THETA(1)*(1 + ETA(1)) PT = THETA(2)*(1 + ETA(2)) T1 = KA*CT - 1.0 - KA*PT T2 = T1*T1 + 4*KA*CT T3 = T1 + SQRT(T2) CF = T3/(2*KA) Y = CF*(1 + EPS(1)) Example Data - Binding Study Plot Output $INPUT $DATA ID TOTL DV BIND Typical Data 1.000000504.000000177 1.00000501.00000181 1.0000191.00000820 1.0000336.0000209 1.0000494.0000324 1.0000609.0000481 1.0000772.0000590 2.000000499.000000182 2.00000477.00000205 2.00001751.00000974 2.0000337.0000208 2.000048.0000338 Chapter 34 14

Example Data - Binding Study Estimation and Output Specification $THETA (100,10000,500000) (.00001,.00004,.001) $OMEGA.05.05 $SIGMA.10 $EST PRINT=5 $COVAR $TABLE ID TOTL DV $SCAT PRED VS DV UNIT $SCAT WRES VS TOTL Example Data - Binding Study Estimation Step CUMULATIVE NO. OF FUNC. EVALS.: 83 PARAMETER: 0.2613E+00 0.6894E-01 0.1131E+00 0.7717E-01-0.1677E-01 GRADIENT: -0.5063E+02-0.2090E+03 0.4602E+02 0.6172E+02 0.1390E+03 ITERATION NO.: 15 OBJECTIVE VALUE: -0.1159E+04 NO. OF FUNC. EVALS.: 7 CUMULATIVE NO. OF FUNC. EVALS.: 118 PARAMETER: 0.2668E+00 0.7066E-01 0.4218E-01 0.2805E-01-0.1837E-01 GRADIENT: -0.8741E+01-0.6836E+02-0.7686E+01-0.4136E+01 0.1264E+03 ITERATION NO.: 18 OBJECTIVE VALUE: -0.1159E+04 NO. OF FUNC. EVALS.: 0 CUMULATIVE NO. OF FUNC. EVALS.: 138 PARAMETER: 0.2667E+00 0.7095E-01 0.4397E-01 0.2799E-01-0.1870E-01 GRADIENT: 0.1155E+01 0.1722E+01 0.4752E-01 0.3432E+00-0.2226E+02 MINIMIZATION SUCCESSFUL NO. OF FUNCTION EVALUATIONS USED: 138 NO. OF SIG. DIGITS IN FINAL EST.: 3.1 Example Data - Binding Study Estimation Output MINIMUM VALUE OF OBJECTIVE FUNCTION -1158.662 FINAL PARAMETER ESTIMATE THETA - VECTOR OF FIXED EFFECTS TH 1 TH 2 6.77E+04 2.52E-05 OMEGA - COV MATRIX FOR RANDOM EFFECTS - ETAS ETA1 ETA2 ETA1 9.67E-03 <- 9.8 % ETA2 0.00E+00 3.92E-03 <- 6.3 % SIGMA - COV MATRIX FOR RANDOM EFFECTS - EPSILONS EPS1 EPS1 3.50E-03 <- 5.9 % Chapter 34 15

Example Data - Binding Study Plot Output 1 PRED VS. DV -1.00E-06 1.16E-05 2.42E-05 PRED 3.68E-05 4.94E-05 6.20E-05. -1.00E-06... 6. 6..... *.. 3. 2 1.14E-05....... *.. 3. 2. 2.38E-05...... DV *. **.. *. **. 3.62E-05...... *... 2*.. *. 4.86E-05. *..... *. *. 2.. **. 6.10E-05... Predicted versus Observed Example Data - Binding Study Plot Output 1 DV VS. TOTL -1.00E-06 1.12E-05 2.34E-05 DV 3.56E-05 4.78E-05 6.00E-05. -2.00E-06.. 6.. *5. 1.50E-05.. *.. *3*. 3.20E-05.. *22.. *. TOTL. *. 4.90E-05. **... 2*.. *.. *.. * 2. 6.60E-05. *... *2*.. *.. *. 8.30E-05.. Observed (free) versus Total Objectives To Understand the Use of Population Parameters Values in Nomograms and Bayesian Estimations To Understand Methods of Analysing Pharmacokinetic Population Data Data Rich Sparse Data Chapter 34 16