Errata Sheet: Relativity Demystified (David McMahon, McGraw-Hill, 2006) Susan Larsen Friday, June 26, 2015

Σχετικά έγγραφα
Homework 8 Model Solution Section

Matrices and Determinants

Geodesic Equations for the Wormhole Metric

Review Exercises for Chapter 7

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

Homework #6. A circular cylinder of radius R rotates about the long axis with angular velocity

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Equations. BSU Math 275 sec 002,003 Fall 2018 (Ultman) Final Exam Notes 1. du dv. FTLI : f (B) f (A) = f dr. F dr = Green s Theorem : y da

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Areas and Lengths in Polar Coordinates

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81

Parts Manual. Trio Mobile Surgery Platform. Model 1033

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Section 8.3 Trigonometric Equations

Differential equations

Inverse trigonometric functions & General Solution of Trigonometric Equations

Second Order Partial Differential Equations

Αυτό το κεφάλαιο εξηγεί τις ΠΑΡΑΜΕΤΡΟΥΣ προς χρήση αυτού του προϊόντος. Πάντα να μελετάτε αυτές τις οδηγίες πριν την χρήση.

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Lecture 26: Circular domains

( y) Partial Differential Equations

Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l =

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Pairs of Random Variables

Areas and Lengths in Polar Coordinates

Answer sheet: Third Midterm for Math 2339

1 String with massive end-points

Laplace s Equation in Spherical Polar Coördinates

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Cosmological Space-Times


Derivation of Optical-Bloch Equations

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

CRASH COURSE IN PRECALCULUS

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

The Finite Element Method

D Alembert s Solution to the Wave Equation

4.6 Autoregressive Moving Average Model ARMA(1,1)

α A G C T 國立交通大學生物資訊及系統生物研究所林勇欣老師

2 Composition. Invertible Mappings

Second Order RLC Filters

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Graded Refractive-Index

Basic Formulas. 8. sin(x) = cos(x π 2 ) 9. sin 2 (x) =1 cos 2 (x) 10. sin(2x) = 2 sin(x)cos(x) 11. cos(2x) =2cos 2 (x) tan(x) = 1 cos(2x)

Variational Wavefunction for the Helium Atom

MathCity.org Merging man and maths

C 1 D 1. AB = a, AD = b, AA1 = c. a, b, c : (1) AC 1 ; : (1) AB + BC + CC1, AC 1 = BC = AD, CC1 = AA 1, AC 1 = a + b + c. (2) BD 1 = BD + DD 1,

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Statistical Inference I Locally most powerful tests

Homework 3 Solutions

16 Electromagnetic induction

Written Examination. Antennas and Propagation (AA ) April 26, 2017.


Higher Derivative Gravity Theories

derivation of the Laplacian from rectangular to spherical coordinates

19. ATOMS, MOLECULES AND NUCLEI HOMEWORK SOLUTIONS

The Pohozaev identity for the fractional Laplacian

!"#$ % &# &%#'()(! $ * +

Κύµατα παρουσία βαρύτητας

Solution Series 9. i=1 x i and i=1 x i.

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

Uniform Convergence of Fourier Series Michael Taylor

Section 7.6 Double and Half Angle Formulas

Example Sheet 3 Solutions

Lifting Entry (continued)

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

F (x) = kx. F (x )dx. F = kx. U(x) = U(0) kx2

CHAPTER (2) Electric Charges, Electric Charge Densities and Electric Field Intensity

ds ds ds = τ b k t (3)

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

Problem 3.16 Given B = ˆx(z 3y) +ŷ(2x 3z) ẑ(x+y), find a unit vector parallel. Solution: At P = (1,0, 1), ˆb = B

Διευθύνοντα Μέλη του mathematica.gr

Parametrized Surfaces

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Approximation of distance between locations on earth given by latitude and longitude

Errata (Includes critical corrections only for the 1 st & 2 nd reprint)

!! " &' ': " /.., c #$% & - & ' ()",..., * +,.. * ' + * - - * ()",...(.

Srednicki Chapter 55

Math221: HW# 1 solutions

Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz

Reminders: linear functions

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

Trigonometry 1.TRIGONOMETRIC RATIOS

1 m z. 1 mz. 1 mz M 1, 2 M 1

Exercises to Statistics of Material Fatigue No. 5

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines

SPECIAL FUNCTIONS and POLYNOMIALS

10/3/ revolution = 360 = 2 π radians = = x. 2π = x = 360 = : Measures of Angles and Rotations

d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n 1

cz+d d (ac + cd )z + bc + dd c z + d

Differentiation exercise show differential equation

Similarly, we may define hyperbolic functions cosh α and sinh α from the unit hyperbola

2x 2 y x 4 +y 2 J (x, y) (0, 0) 0 J (x, y) = (0, 0) I ϕ(t) = (t, at), ψ(t) = (t, t 2 ), a ÑL<ÝÉ b, ½-? A? 2t 2 at t 4 +a 2 t 2 = lim

The Simply Typed Lambda Calculus

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

m 1, m 2 F 12, F 21 F12 = F 21

Spherical Coordinates

Transcript:

In this fil you find all sorts of misprints. Thr ar quit many but it dos not man that th book is ntirly bad. On th contrary, it givs you th opportunity to carry out a lot of calculations, and it is a good starting point. If th misprint is markd by an astrix (*) it mans that you can find a mor thorough calculation in my fil lots of calculations on my hompag http://physicssusan.mono.nt/9035/gnral%0rlativity. Th list is not complt, it covrs th chaptrs -3 and th final xam, but I will post mor on my hompag as I gt along. I hav mad this list ntirly on my own, and should you find that I hav mad somthing wrong or missd somthing, which I am bound to, plas do not hsitat to contact m: logik.susan@gmail.com Contnt Contnts... Chaptr... Chaptr... Chaptr 3... Chaptr 4... Chaptr 5... 3 Chaptr 6... 4 Chaptr 7... 4 Chaptr 8... 5 Chaptr 9... 5 Chaptr 0... 6 Chaptr... 7 Chaptr... 7 Chaptr 3... 8 Final Exam... 0 Quiz and Exam Solutions... Bibliografi... Contnts p.ix l.7 Eddington-Finklstin Coordinats Th Radial Null Godsic Chaptr p. l.0 oprator to th right-hand sid of (.), w obtain p.6 l.6-7 clock at tim t, and th rflctd bam arrivs at th location of clock at tim t₂.

p. l. ct = p.6 l.3 β (β₁ + β₂) 3 = ( + β₁β₂) l.5 β₁ + β₂ β 3 = + β₁β₂ Chaptr p.9 l.8 Vf = (V a a )f = V a a p.33 l.7 as shown in Fig. -5 p.34 l.4 ds = dr + r dθ + r sin θ dφ (.9) p.40 l.5 g yx x + g yy = 0 l.6 g yy = x g yx p.4 l. W x = x (0) + () = l. W y = (0) () = l.3 W a = (, ) p.4 l. S b = l.3 = g ac T b c = l.4 = g a R bcd p.44 l. r = x r x + y r y + z r z Chaptr 3 p.49 l.5 U. A point p that blongs to th manifold M (say in U ) p.55 l.3 Q b = S a b T b Chaptr 4 p.67 l. = ( Ab x a + Γ b ca l.5 b A a = Aa x p.7 l.9 Γ abc = ( g ab b +Γ bc A c ) b a A c (4.6) + g ac x a ) (4.5) l. Γ abc = ( g ab + g ac x a ) + C abc + C acb C bca p.73 l.7 Γ abc = ( g ab + g ac x a ) l.8 Γ bca = ( g bc x a + g ba g ca x b ) l.0 Γ abc + Γ bca = ( g ab + g ac x a ) + ( g bc x a + g ba g ca x b ) l. = ( g ac x b g ca x b + g ab + g ba g bc x a + g bc x a ) l. = ( g ab ) = g ab l.7 a Γ bc = gad ( g db + g dc x d ) (4.6)

p.75 l. th last trm φ l.3 Γ bc φ l.5 Γ φθ = gφφ ( g φb = gφφ ( g φφ θ + g φc x b ) + g φθ φ ) = p.76 l.3 Γ abc = ( cg ab + b g ac a g bc ) l.6-7 Looking at Γ abc = ( cg ab + b g ac a g bc ) p.77 (*) l. Γ xxu = ( ug xx + x g xu x g xu ) = ug xx = [( u)] = u l.4 Γ uxx = ( xg ux + x g ux u g xx ) = ug xx = [( u)] = + u l.8 Γ uyy = + u l.9 Γ yyu = u l. thir last two l.3 Γ abc = Γ acb p.80 l.6 (aα + bβ) γ = aα γ + bβ γ p.8 l.7 L V W = V b b W W b b V or altrnativly (L V W) a = V b b W a W b b V a (4.7) l.9 L V T ab = V c c T ab + T cb a V c + T ac b V c (4.8) p.8 l.0- p.83 (*) l.8 This should b omittd: W can writ (4.33) in th mor convnint form: d x a ds + Γ a bc d φ ds + r τ p.85 (*) l.3 Γ ξτ dr ds dx b dx c ds ds = 0 dφ ds = 0 = ξ = Γ τ τξ p.86 l.6 R abcd = g a R bcd (*) l.8 R abcd = c Γ abd d Γ abc Γ ac Γ bd + Γ ad Γ bc (4.4) l. Γ ac Γ bd + Γ ad Γ bc (4.43) p.87 l.3 All togthr, in n dimnsions, thr ar n (n )/ indpndnt nonzro componnts l.0 R ; R 33 ; R 33 ; R 3 ; R 3 = R 3 ; R 33 = R 33 p.88 l. of th Rimann tnsor in two dimnsions ar p.9 (*) Q Γ θφφ = ( θg φφ ) = ( θ(r sin θ)) = r cos θ sin θ p.9 (*) Q7 v Γ xx = + u Chaptr 5 p.05 l.7 α β = ( ) pq β α (5.3) p.0 (*) l.4 R (*) Q3 r Γ φφ = a + k a = (Λ ) r Γ (*) Q4 u v Γ v v = Γ u v = + u p. Q5 Whr ar th hats? φλ φ Λ = ( r ) (r sin θ) = r sin θ 3

(*) Q7 G = R [ RΨ (R Ψ + R + R R ) R Ψ R + + R ] Chaptr 6 p.30 l.5 Cass and 3 in our p.33 l.5 L u η a = u b b η a η b b u a = 0 l.9 c a S b = a S c c b + Γ ads d d c b Γ bas d l.4 b a V c = b ( a V c + p.34 l.4 a ( b V c c Γ bv ) b ( a V c + (6.) p.35 l. c = R dabv d (6.3) p.36 l. Howvr, sinc u a is th tangnt p.37 l. a Γ bc = gad ( g db + g dc x d ) (4.6) p.39 l. ds = dt + b(t,r) dr + R (t, r)dφ p.4 (*) l.8 = R ω ω R R t R r b(t,r) ω ω p.43 l.3 Γ = l.7 = R a b c d ω c ω d p.44 l.0 Ω = p.46 l.4 w writ out Ω = l.6 Ω = l. R = l. All togthr, th indpndnt nonzro componnts p.47 l. Using th rsults of Exampl 6- (*) l.5 R = R c l.8 R = R c = R R + R + R b (6.) (6.9) p.49 (*) l.5 G = b(t,r) R t r + b(t,r) R R t r l.8 ds = dt + b(t,r) dr + R (t, r)dφ, this is asy nough: 0 0 a (*) l.9 Λ b = ( 0 b(t,r) 0 ) (6.33) 0 0 R(t, r) (*) l.5 G tt = Λ tλ tg = ()()G (6.35) (*) l.8 ()( b(t,r) )( b(t,r) R + b(t,r) b R ) (6.36) R t r R t r p.53 l.0 Γ l.5 Γ Chaptr 7 p.55 l.9 tnsor and nrgy-momntum tnsor intrchangably. p.59 l.4 γ = ( v c ) 4

l.6 = γ ρ t + (ρux ) γ + γ (ρuy ) + γ (ρuz ) x y z l.7 = γ ρ t + γ (ρu ) p.60 l.8 T ab = Au a u b + Bg ab (7.8) l. T ij = δ ij P (7.9) p.6 l.3 T ij = Bη ij l.6 = Au 0 u 0 + Bη 00 = l.9 = (ρ + P)u a u b Pη ab (7.0) l. = (ρ + P)u a u b Pg ab (7.) l.4 = (ρ + P)u a u b + Pη ab l.5 = (ρ + P)u a u b + Pg ab (7.) p.6 l.5 G a b Λη a b = 8πT a b (7.4) l.3 Putting this togthr with (7.4) and (7.3), w hav p.65 l.0 worldlinss Chaptr 8 p.68, xampl 8-: Altrnativ solution (*): Calculat th Li-drivativ of g ab (4.8) and using (4.8) you gt: L X g ab = X c c g ab + g cb a X c + g ac b X c = a (g cb X c ) + b (g ac X c ) = a X b + b X a If L X g ab = 0 this implis that a X b + b X a = 0, which is th Killing quation. p.7 l.6 c θ X θ = θ X θ Γ θθx c = θ X θ Γ θθx θ Γ θθ p.7 l.7 θ X φ = θ [ sin θ cos θ f(φ )dφ + g(θ)] p.74 l.8 P(t) = p(t )dt l.0 y(t) = P(t) P(t ) r(t )dt + C P(t) l.4 P(θ) = l.6 P(θ) = l.7 From this w dduc that P(θ) = p.76 l.0 X θ = g θθ X θ = a X θ l. X φ = g φφ X φ = a sin θ X φ p.77 l.6 = a (A cos φ + B sin φ) θ + a [C cot θ (A sin φ B cos φ)] φ l.7 = A cos φ θ A cot θ sin φ φ + B sin φ θ + B cot θ cos φ φ + C φ l.8 = +A L x + B L y + C L z l.0 L x = + cos φ cot θ sin φ θ φ p.78 l.5 b T ab = 0 φ X φ Chaptr 9 p.88 l. = r sin θ 5

p.90 l. m m = m a m a = l.3 δ = m a a p.98 (*) l. v Γ uu = gvd ( u g du + u g ud d g uu ) = gvu ( u g uu + u g uu u g uu ) = gvu ( u g uu ) = () ( H u ) = + H u p.99 l.8 Now b l a = and so w can immdiatly l. Having a look at th Christoffl symbols (9.9), w s (9.9) Chaptr 0 p.04 l.0 This tlls us that th mtric lin lmnt will not p.05 l. = Cr dθ + Cr sin θ dφ n l.6 = C ( r dc r + ) dr c dr p.07 (*) l.9 Γ = Γ θ = Γ = 0 (0.6) θ p.08 (*) l.5 Γ = Γ θ θ = Γ θ = 0 (0.7) ϕ (*) l.9 Γ ϕ = Γ = 0 (0.8) p.0 l. = R l.7 All togthr, th indpndnt nonzro componnts of th l.9 = R p. l.4 c R a b = R a c b p.6 l.3 largrangian p.7 (*) l.8 = 4m m r + (r m) (r ) r p.8 (*) l. = m r (t ) + ( m r ) ( m r ) (r ) r(θ ) r sin θ (φ ) p.0 l.9 = r sin θ dφ dφ = r dτ dτ p.6 l. rspct to φ r a scond tim l.9 and using yr 0 = r sin φ l.0 = r sin φ = yr A 0 l. th constant /A rprsnts th p.7 l.5 u p = D sin φ + E cos φ l.7 u p = l.8 u p = l.0 This lin should b omittd: u p + u p = D sin φ + 4D sin φ = 3D sin φ l. p u + p u = l.4 p u + p u = A sin φ l.7 p u + p u = A sin φ p.8 l.7 and stting this u qual to zro p.30 l. so w put ct in plac of t and G m c r r (0.48) 6

l.3 ct = dr r 0 r ( + m r G c mr 0 G r 3 c ) l.7 ct = r p r 0 r r 0 + m G c ln (r p + r p r 0 )(r + r r 0 ) r 0 l.0 m G c [ r p r 0 r p r r 0 ] r Using th variational mthod dscribd in Exampl 4-0, th nonzro Christoffl symbols for th gnral Schwarzschild mtric ar p.3 (*) Q (b) R rt = r (dλ) dt (*) Q3 (b) Γ 3m Λr = 3 r 3/ 9r 8m 3Λr 3 p.36 l.7 Eddington-Finklstin Coordinats Th Radial Null Godsic p.38 (*) l.0 t t 0 = 3 m (r3/ r 3/ 0 + 6m r 6m r 0 ) + m p.39 (*) l. r m = (r 0 m) (t t 0)/m Chaptr p.45 l.6 ds = ( m Σ ) dt + 4amr sin θ dtdθ (.9) Σ p.46 (*) l. g φφ = (Δ a sin θ) (.3) ΣΔ sin θ p.47 l.4 In this cas, θ = π,which l.5 mans that sin θ = and p.5 l.3 R = r + a + m3 r Chaptr p.58 l. Suppos that S rprsnts th spaclik p.6 l.4 f = (.9) C kr (.4) l.5 To find th constant C = C, w can us th l.3 = C + Kr Kr = C + Kr l.5 C + Kr = Kr or C = 0 C = p.68 l.3 Th dtail wr workd out in Exampl 7-3 P.73 l.0 ds = dt Λ 3 t [dr + r dθ r sin θ dφ ] p.74 Fig. -5 Th vrtical coordinat is a not R l. Th d Sittr solution rprsnts a univrs without mattr and without radiation. p.75 Fig. -6 Th vrtical coordinat is a not R da dτ l.0 = C sin τ cos τ dt dt p.76 Fig. -7 Th vrtical coordinat is a not R l.3 Intgrating th lft sid bcoms p.77 (*) Q r ν(r) = A + Br + 3 k Λr 3 7

(*) Q3 B = k (*) Q4 dl dr = m r + + r dθ + r sin θ dφ 3 Λr Chaptr 3 p.80 l.5 a Γ bc p.8 l.6 a Γ bc = gad ( g bd = gad ( g bd l.7 = ε gad ( h bd + g cd x d ) + g cd x d ) + h cd x b h bc x d ) l.8 = ε (ηad εh ad ) ( h bd l.9 = (εηad ε h ad ) ( h bd l. = εηad ( h bd + h cd x b h bc x d ) + h cd x b h bc x d ) p.83 l.3 = c [ εηa ( h b x d + h d x b h bd )] x l.4 d [ εηaf ( h bf l.5 = ε (ηa h b x + h cd x b h bc x d ) (3.3) + h cf x b h bc x f )] + h d ηa h bd ηa d b x l.6 ε h bf (ηaf x d + ηaf xc x d x l.7 Lt s rlabl it as f l. Th first trm will cancl h cf ηaf b x ) h bc x d x f) l.3 = εηa ( h bd x f + h df x b + h bc x d x f h cf x d xb) (3.4) c l.5 c R ab = c Γ ab b Γ ac p.87 l. ψ a a b,a = ψ b,a φ b b l.4 Wφ a = ψ a,b p.88 l.3 ψ a b,a l.6 εwψ ab l.8 Wψ ab = 0 = l.4 Wψ ab = W (h ab η abh ) = Wh ab Wη abh = 0 l.6 0 = Wψ ab = η ab Wψ ab l.9 Wh ab = 0 = W(η ab ψ ab ) = W(ψ b b ) = Wψ = Wh tnsor can b shown to b a function of h xx, h xy, h yx and h yy alon, in th Einstin gaug. p.89 l. drivativs with rspct to y and zx vanish p.93 (*) l. ds = d t d x d y d z + εh xy dxdy (3.9) p.94 (*) l. ds = dt ( εh xy )dx ( + εh xy )dy dz (3.0) p.99 l.5 (s Quiz) 8

p.300 l. a a XdudX l. = b ( b b Ydu + b dy) = b b YdudY p.303 l.4 Th curvatur tnsor Wyl scalar p.304 l. ds = δ(u)(x Y )du + dudr dx dy (3.4) l.3 (s Problm 7) p.305 l.5 (3.45) p.306 l.3 = νg xx l.4 = ν ( [ νθ(ν)] ) l.5 = ( νθ(ν)) ν ( νθ(ν)) l.6 = ( νθ(ν)) ( Θ(ν) ν dθ dν ) l.7 = ( νθ(ν))(θ(ν) νδ(ν)) l.9 f(ν)δ(ν)dν = f(0) p.307 l.7 sinc n u is null l.8 n a = (,0,0,0) p.308 l.3 m a = ( 0, 0, ( νθ(ν)), i ( + νθ(ν)) ) l.4 m a = ( 0, 0, ( νθ(ν)), i ( + νθ(ν)) ) p.309 l. m xm x = ( ( νθ(ν)) ) ( ( νθ(ν)) ) p.3 fig 3- u + v = p.35 (*) l.6 m a = (0, 0, cos aν, +i cosh aν) (3.56) p.37 l. σ = a (tan aν + tanh aν) l.6 Ψ 0 = +Dσ σρ (3.57) l. = ν [a (tan aν + tanh aν)] (*) l. = a ( + tan aν + tanh aν) l.4 Ψ 0 = +Dσ σρ l.5- (*) 8 = a ( + tan aν + tanh aν). = a p.38 l.7 Nariai l.8 R ab = Λg ab (*) l. if R ab = g ab Λ Ω should rightfully b Ω = + Λ 4 (x + y ) (*) l.8 l.6 g νν = +Λν ν Γ uν u = Γ uu ν = Λν; Γ uu y = Γ yy = Λy Ω = Λ ν 3 x ; Γ xx y = Γ yx x = Γ yy = Λx Ω ; Γ x y xy = Γ xx 9

l.3 m a = ( 0, 0, Ω, i Ω ) ; m a = ( 0, 0, Ω, i Ω ) l.4- Ths lins should b omittd 5 p.39 l.3 n a = (, + Λν, 0, 0) l.4 m a = (0, 0, Ω, iω); m a = (0, 0, Ω, iω) l. Λν l. l a;b n a n b = l u;u n u n u = Λν l.9 m x = i Ω l. γ = l u;un u n u = Λν An xrcis shows that all rmaining nonzro spin cofficints vanish ar α = p.30 (*) l. Λ (x iy); β = Λ (x + iy) l.5 = ρμ σλ + αα + ββ αβ + γ(ρ ρ ) + ε(μ μ ) Ψ + Λ NP + Φ (3.59) l.8 = ν ( Λν) = Λ l.0 = Λ (3.6) l.8 Λ = l.9 = Λ (3.64) p.3 l. Ψ = 6 Λ and Φ = 4 Λ (3.65) p.3 Q l. usd in Exampl 3- x Q l.3 = μ ( x + y + i y x + y ) Q3 l.5 usd in Exampl 3- l.8 Φ = δν Δμ μ λλ μ(γ + γ ) + ν π ν(τ 3β α ) (9.4) Final Exam p.33 E (*) l. Δs. E = (,3,,4) (*) l.3 E = (4,0,,) p.34 E6 (*) l.5 Γ aba = Γ aab = g aa x b E7 (*) u u ν Th nonzro Christoffl symbols ar: Γ uu = Γ νν = Γ uν = u ; Γ ν (u +ν ) νν = ν u Γ uu = Γ νu = ν ; Γ u (u +ν ) θθ = uν ; Γ ν (u +ν ) θθ = u ν ; Γ θ (u +ν ) uθ = ; Γ θ u νθ = ν ψ p.35 E9 (*) l. Γ θθ ψ = cosh ψ sinh ψ, Γ φφ = cosh ψ sinh ψ sin θ E0 (*) ψ Th non-zro Ricci rotation cofficints ar: Γ θ θ p.36 E (*) coth ψ Γ ψ =, Γ θ sin θ = Γ θ l. Ψ = r 4rm + 3 r 4 = cot θ sinh ψ θ = Γ ψ θ ψ = coth ψ, Γ = 0

E4 (*) (*) l.6 ds = ω ((dt + x dz) dx dy x dz ) l.8 T ab = ρ 0 0 x ω { 0 0 0 0 } 0 0 0 0 x 0 0 x Quiz and Exam Solutions p.330 l.3 (*) 7.b p.33 l.7 (*) 5.c l.9 (*) 3.a Bibliografi McMahon, D. (006). Rlativity Dmystifid. McGraw-Hill Companis, Inc. http://n.wikipdia.org/wiki/g%c3%b6dl_mtric