!"#$ % &# &%#'()(! $ * +
|
|
- Κυρία Γλυκύς
- 8 χρόνια πριν
- Προβολές:
Transcript
1 ,!"#$ % &# &%#'()(! $ * +
2
3 ,!"#$ % &# &%#'()(! $ * + 6 7
4 57 : - - / :!", # $ % & :'!(), 5 ( -, * + :! ",, # $ %, ) #,
5 '(#,!# $$,',#-, 4 "- /,#-," -$ '# &",,#- "-&)'#45)')6 5! "- /,#-7 ",',8##! -#9,!")) 54! : 54 : *; 7 : *; 96 "- /,#-,'-<<,",#=-)>#45")$#,#- &",,#-<--6,+&-5-!, (,9"-6,+&-5)')6 4!,? *; 5 <,?*; 7 ' 4-9,")9") 5
6 --##!# $ **, % - ; *, ; - ;, ;, ( ;, - - :, - : % : - - -, ;?, : $ - ;, &, -, +, ; :;,, ; - - -, ;? --,, - *; #? - «-», «:», «-» *, - : -, ; ; : - * $ ;,,, * *; ) ; *- )#? 4
7 (,#!#($-(!( #/#!!"$ % f ( x ) f ( x ),? δ - x, x ( x δ ; x δ ) x x < f x f x ( f ( x) > f ( x )) 9 ; -, y = f ( x) x, ;-? 9, f ( x) = f ( x) 5?, ; x y = f ( x) ; - f ( x) ; (;), f ( x) x (), f ( x ) =, f ( x ), f ( x) x,, f ( x ) <, f ( x ) > f x X ;, * - # * 6 f ( x) [ a; b ],, :, -? ( a; b) - ;, f ( a) f ( b ); * *?* : )?;,,?, z = z x, y (,, ); ), - x y ; )?;, z = z x ; ;
8 4) ; ; 5) z = z( x) ; $?, (, ) * x, - (), * (*) ) * * # y = x 6x +, - ; y = x ( ) $ * * (( x, y ), ;? ; - (, ; - ;, y * = ( x * ) 6x * +, ( ( x ) * ; x * 6x * + " d = Ax + By + C A + B 6
9 * y = x?: x + y = ; A =, B =, C = x, y (, d ( ) * * * * * x + x 6x + + x 5x + = = + ( x ) ( x ) * * x 5x * * 5x + =, : D = 5 44 <, * * 5x + + > 9, * x, d ( x ) * * 5x + = * x R 9 d x, ;: * * * d ( x ) * * 9 d ( x ) =, d ( x ) * * x 5 ( x ) d = ;, >, * 5 * x 5 =, * x = 5 * x = d ( x ) -, * 9 * y = = 5 - d = 6 6 M (,4 ) ;,, ;, * 7
10 x a y + =, b a, b, a b, #, S = a + b - (,? ; b: a 4a + = ; = ; = ; b = a b b a b a a b S, ; - : ( a ) 4a S ( a) = a + = a + = a a a a ; a ( ; ) ; S ( a) -- S ' ( a) = 4 ( a ), ' 4 S =, ( a ) a a a =, = 4 = ; = 8
11 a = $ S ( a) = 8 ; S ( ) = 8 = ( a ) ( ) ;, a =, 4 * ; b = = 6 x y + = x + y = 6 6, l,, ;?; &,? *? $;? : R, α ( ) 9? S αr = P = R + L, L, L = Rα, 9 ( α ) P = R + Rα = R +, R l + = l α = R ( α )
12 α?: l R lr S = S ( R) = = R R S ( R ) ; : S ( R ) > l R ; &,, ; # ; S ( R) ( R) S = l 4 l S ( R) = R = <, R =, S ( R) R = l 4 -, * 9 l,? *, 4 4 # *?, x y + = a b $, 4 * ) x *, y * -,, x y x b a b a a * * * * * * + = ; ( y ) = b ; y = a ( x ), ( x * >, y * >, ) ) 9? ABCD * * * * * b * 4b * * S = x y = 4x y = 4x a ( x ) x a ( x ) a = a
13 4 * ; * S x x ( ; a) x * = x * = a ; - * S = S x ; * * 4b * * x 4b * S ( x ) = a ( x ) x a ( x ) a + * = a a ( x ) * * * * ( x ) 4b a ( x ) ( x ) 4b a ( x ) * = = a * a * a ( x ) a ( x ) a ( x ), - * * S ( x ) ;, * a x = a x = ± ; * * * a S ( x )? x = ± a 9 x = - * x - * S x ;, S ( R) - *, S ( x ) ABCD : * # ; a b a AB = = a BC = a b a =
14 5, * - 5 *? R, )$ )$CD a, $+ R ( 5) *,???, S R a π R = +, P = R + a + π R 5 ; 5, R + a + π R = 5, ; a?: a = 75 R π R ; π R π R S = R 75 R + π R = 5R R
15 5 ; R ; + π S R >, &,, π R R R >, 5 5 R ; + 5,, R ; + π # ; S : ( π ) S = 5 4R π R = R 5 ; R = 9 S = ( 4 + π ), 4 + π *, R S * +, - 5 * R = 4 + π 6$ * *?-,,?? +$ = a, )$ = )+ = b ) = R ( 6) 6
16 a 9 HB =,,, b, AK =, AKO? OK b 4 = R ab S = 4R,? S π R = a, b R ' : ABH HB KO AB = AO a R b 4 = b R ; ; b R b 4 b 4R b a = = ; R R S b 4R b = 4R - S, ; b ; ( ; R ) # ( b) ( 4 ) 4 b b R b b S ( b) = 4 b R b + = = 4R 4R b 4R 4R b ( ) 4 R b b b R b = = R 4R b R 4R b, 4
17 , S ( b) = b = R, b = S ( b) b = R # b ( ; R), b ( ; R) 9 b R, S ( b), S ( b)? = - ;, * #- *;? - *? S ( b ) R 4R R R R R = = = ; 4R 4R 4 R S 4 = = S π R 4π 7# x y 8,4 B, ( 7) # ; +;,? )$+ * + = A 7 + x y? - ABC S = AB AC 5
18 # AB AC : AB = {, 4} = {, 4 }; AC = x, y 4 ; { } i j k AB AC = 4 = y 4 4 x k = 4x + y k 9 x y 4 ( ) S = ( 4x + y ) = x + y 6 " : ) x + y 6 >, ; y > 6 x, + - () ( 7); ) x + y 6 < y < 6 x, + (), )$+ *;? + (), * ; S = x + y 6 = 6 x y +, - ; x + y = 8 y = ± 8 x y ; S, ; S x x = 6 ± 8 # * S ( x ) x [ ; ) # -,? : 4x x S = ± = ± 8 x 8 x S ;, : x ± = 8 x x ± = 8 x 6
19 $ : x 8 x = = = = = ± ; x 8 x ; x 8; x 6; x 6 $ ;? y : y y = 8 ± 6 = 6; = 8 ± 6 = 6 9, : M ( 6; 6 ), M ( 6; 6 ), M ( 6; 6 ), M 4 ( 6; 6 ), M - () S? x = ±,, $ S = 6 x y S ( 6; 6 ) = = ; S ( 6; 6 ) = = 6 6 ; S ( 6; 6 ) = = ; S ( ; ) = 6 + = # * S ( 6; 6 ) = 6 + 6, C ( 6; 6 ) * ABC 8 A V &, *?, l - a a, A V = l - l = V, 4 4 4V l = a a S = + al 4 7
20 ; l, a 4V a V S = + a = + a a 9, S - a, * : a > #, : S = a ; 8 V V V a = ; a = ; a = 4 V ; a = 4V a a 4V S = + >, a, * 9, - * - ; a = 4V 9 9 ;, S &, A *? R, H - S S = π RH + π R, ; H = R A π R V = π R H, H, R = S SR V = π R R = π R π R a S ;, R = π S V R R ; π ; V ( R ) >
21 # ; V ( R ): V S = R S ;, R =, 6π S S V = 6 π R, V <, R = V - 6π 6π,, -, * $, ;?; * A: π H S S 6π S S S S S S S = = = = = π S 6π π S 6π π 6π 6π 6π 6π p &-, A, -?,?, *? $ : )+=, )$ = $+ = b ( 8) 8 ; p, a + b = p, - a b = p A V = π R H 9
22 R, )+ a, R = ; H, )$+ 6, BCN : BN = BC CN a a H = p = p pa R H A a π = π = 4 V p pa a p pa ; V a - ( ; p ) 9 * $ ; V ( a) ; π p π a 4 p pa pa V ( a) a p pa a p pa p pa π p a( 4 p 5a) = 4 p pa = + = = ( a) V = a = 4 p 5 a = ; V ( a)? a = ; p $ - 4 p a = V ( a) ;, 5, V ( a) * A *, 4 p a = # ; : 5 a p p b = p = p = α - ( 9) α A *?
23 9 SB = R ;? SB ;,?, SB α = π KB Rα R α = π KB, ; KB = A π V = π KB SK = KB SB KB π,, V π R α R α = R = R α 4π α 4π 4π 4π - ; V ; α α ; π, R α V ( α ) = α 4π α α + 4π = 4π α R α ( 4π α ) α R α ( 8π α ) = = 4π 4 4π α π 4π α
24 ,, ;? - π α = α V α ;, π α =, * V 9, A *, π α = " ) $ ( ) 6 - MN # * s = s + s, a =, b =5, H =, h =5, L = 5 MN O M O x 9 PO = PM + MO = + x, OQ = PQ PO = 5 x = 5 x,, ; s = s + s # s s APO BQO APO : AO = AP + PO s = + + x = x + x + 5 ; BQO : BO = OQ + BQ s = 5 x + 5 = x 5x + 85
25 9 s x x x x = # s x * x 9 O - MN, MN = 5 = 5, *- s( x) x [ ; 5] $ ;: x + x 5 x + x 5 s = + = + x x x x x x x x ; ;, : ( x + ) ( 5 x) x + 5 x = ; = ; x + x + 5 x 5x + 85 x x x x ( x + ) ( x x + ) = ( x) ( x + x + ) ; ( ) x + 5 x + 5 = 5 x x ; ( x ) ( 5 x) 5( x ) 4( 5 x) ( 5 x) ( x) = + + ; ( x + ) = ( x) ( x + x + ) = ( x + x ) ; ; 75x 45x 75 ; x 4x + = + = & ; - ; 5, [ ] s( x) * - s = ; s 5 = = = 5 +, *, - N
26 $ + $ # *, R ( : 4 R 5 R 5 ) 5 5 $ ; l &,? *? l l ( :, ) 4 4 $ -, y = x x = 4, y =, *?; ( : S = 9 ) $ 4 # * A, S S S ( : V = ) 6π $ 5 # * A, R ( ) ( : 5R ) $ 6 $ * * A, * A*? ( : ) $ 7 $ * A - * A,? ( : 9 4 ) $ 8 # * A * * A, * ( : ) $ 9 $ *? *- *?, *? 4 ( : ) + 5 4
27 +* $* s = s t, t + t t v s( t ) s s t = = t t t + ( ) - v t = v t = s t, s = s t, t 6,, : t, - v( t ) = + = s ( t) v t s ( t) =, t * 9 - * s( t ), ; v = v( t) 9 v ( t) a t =, s s( t) a t = s t =, 4! "? α = α t 9 ( t) = ( t) ω α α ( t) a t = 5
28 s( t) = t + 6t + 7t + # *; -, * #: t 9 s t, t + 6t + 7t +, ( t )( t )( t ) + +, : t ( ; ] [ ;] t, t [ ;] #:, t [ ] = = v t t t t t t - ; ; * - ; #: v t = t + t + 7 = 6t +, 6t + =, t = $ [ ;] v = = 49, v = = 7, v = = 4 v = 49 4 s( t) = t + 5t + $;; 5 t = -, ;; t [ ;5] v s ( ) s 5 = = = =
29 ; t = v t = t + 5t + = 6t + 5, v = #,, t s t = te $ v t = te = e te = e t t t t t ( ) #:, ( v( t ) = ) e t ( t) =, t = $, e s = = 7 e 6 6 s( t) =, t $ ( t + ) -, 6 s ( t) = =, ( t ) + ( t + ) 64 a( t) = s ( t) = = t + t + 4 $ a 64 ( ) = = 8 8 ( + ) 4 7
30 7 ; s ( t) = 5t + t + 6 s ( t) = 4t + t ;- ;? $, #: 5t t 6 4t t = + +, t t =, t = t = 4 t = 4 t,, $ -, v t = 5t + t + 6 = t +, v t = 4t + t + 8 = 8t + #: ( 4) 4 4 v ( 4 ) = = 5 v = + =, 8 (,, t α ( t) = t t ()# ;? - t = 7, - 4, : ; t ω t = t t = t $ ; t = 7 ω ( 7) = 7 = 86 ( ) #: ( t),t =, 5 c t = 8 ( ω = )
31 4 * * * ( * * ) ; -, : 9 9 m = 5 h = 45 & k = 5 +, v =, g =,, *;;; mv & E k = ( m = m kt = 5 5t, v = v + gt = t 9 ( t)( t) mv Ek = = = ( 5 t 5 t ) 6 t, : h - gt gt h = vt + =, t, &, Ek h 45 t = = = g 4 Ek = ( 5 t 5 t ), 4 t t 5 5, 9
32 t, t ; [ ] - ; ; Ek Ek ( t) t [ ;] #: ; & 4 E k = ( t 5 t ) t 4 ( t) 5 =, t =, t = = = = * & [ ; ] $ E k E =, k E k = =, E = k Ek, * 7 = E max k = " # h, A - OA = a ( )??: *
33 ?: ( ) sinϕ E = k r #: AB - OAB AB = OA + OB r = a + h #: - OAB - OB h h sin OAB = sinϕ = = 9 AB r a + h E = k h ( a + h ) -, h [ ; ) - ; E = E ( h) * $ ; + + h a h E = k = k == ( a h ) + a + h a + h ( a h ) h ( a h ) h 5 #: a h =, a a h =, h = 9 h = a [ ; ) #: - a E,5 = = >, ( a) ( a) a (,5a) ( a + (,5a) ) a + (,5a) 5 5 a a a E = = < ( a + a ) ( a + a ) 5 5
34 a $ «+»,, - ;, *?: [ ) E ( h) # H, *? L ( ) 9 L = vt, v, t ;? v = gh, g, h v = g H x ', ; s, ( ) gt s =,
35 x = gt, x t = 9 g x L vt g ( H x) ( H x) x Hx x g = = = =, x [ ; H ]- ; L = L( t) * $ ; H x L = Hx x = Hx x # H x =, H x = & [ ; H ]#: - H H H H L = = = >, H H H H H H H H 4 L = = = < 4 H H H H ; «+», - [ ; H ], * H, - n, ;, a -, ( n a ) - 9,,
36 I = naε nr + a r, Ε?, r, R *, - a * - - = * $ ; -, a ( ; n] ; I I ( a) ( ) a nr a r ar a nr a r I n + = Ε = nε = nε + + nr + a r nr a r nr a r #: a nr = nr nr a r = r a r =, ( ;n] #: nr a = r nr nr nr r nr I r = nε = nε = Ε >, r nr nr 9R nr + r r nr nr r nr r nr I = nε = nε = Ε < r nr ( nr) 9R nr + r r 9 ; «+», - ( ;n ], - * nr a = r 4
37 -, - * a b # *, d N = kab, k -, k > -, a + b = d, b = d a 9 N = ka d a = k d a a -, a ( ;d )- ; N = N ( a) * $ ; & ( ) N = k d a a = k d a a d a =, d d = a = - ( ;d ) d #: - 5
38 d d d N = k d = k >, 4 4 d d d N k d = k < d ; N a 9 «+»,, ( ;d ), * d d b = d a = d = a = d $* 4 + # - * a b 9 = a b ; a + b =, b = a - ( ) = a a = a a - = a * - a ( ; ) - ; a ( ;) $ ; #: = a a = a a =, a = 5 & ( ; ) $ - ( a) 6
39 ( 4) = 4 = >, ( 6) = 6 = < ; «+»,, a = 5 9 ;, * - ( a) a = 5 9 b = 5 = : - * #,, * a, a, 54 a a = 54 a + = a a 54 a = 8a 6a #: a ;, a > a > 54 a > a ( ;8) - ; ( a) = * # ; & a a a a = 8 6 = 6 8 ( a) a 6 8 =, a =, a = & a = ( a) = 6 8 = 6 >, = 6 8 = 4 < 7 ;8 $
40 ; «+»,, a = 9 ;8, * a a =, *, 4, , - * # a, b 9 S = a + b - ; b = 5 a S a 5 a a 45 a = + = + #: a ;, 5 a > a > a ( ;5) -; S S ( a) = * - # ; & S a a a = + 45 = a =, a =, a = & a = ( ;5) $ S ( a) S,5 =,5 =, 5 <, S = = 9 > 8
41 ; S ( a) - «+»,, a = 9 a = ( ;5 ), * a = 9 b = 5 = 5 = t t -;, t -; + t + 6 5,? U ( t ), ; t U t t = t t #: t - t U t # t t, t t, t ( t + 6) t, 5 t + 6 t 5 6 ( t ) t t, t [ ;9] ; U ( t) * [ ] ; t 6 U ( t) = t = t ( t 6) - ;9 # -
42 #: 6 =, 5 ( t + 6) 6 = ( t + 6) 5 ( t + 6) = 4, t = 4 t = 6 $ U ( t) [ ;9] U =, 4 U ( 4) = 4 >, U 9 =,,, ; V +,, a,,? -, b *?? S = πr,? S = π rh 9 = π + π a r b rh -, V π = r h ; V h = 9 πr V bv = a πr + b π r = aπ r + πr r 4
43 r ( ; ) - ; = ( r) * $- ; aπ r bv bv π r r = + = a r #: bv aπ r =, r aπ r bv =, a π r = bv 9 4bV = aπ + r aπ >, bv a π r = 9 bv, * a π r = bv 5 V aπ b V h = = π bv a π #*, - * h b V = r a π 4
44 $ + $ 9 m s ( t) = ( t ) ', ;? : ; $ ( - + t x t = # t + t = ( : 65, -5) $ 9,? h ; v, gt h( t) = h + vt, h, t #, *, h =, v = 4 ( g = ( : 45 ) c ) $ 4 # AB, ;? - : A ( p ) B ( q ),,?;, AB = a (?: ) a p ( : A) p + q $ 5 - d & * b h,,, *? ($ ;* - ) ( : b = d, h = d ) $ *,,?, 4
45 F = cx ( a + x ), a, x, c = const x F *? a ( : x = ) $ 7 #, : *; ( : ) $ 8 # -, : ) *; ) * ( : ) ; ) 6 6) $ 9 t t -;, t -; + t +,5 49,? ( : ) +*5 $* * 6 $ ; -, &, *-, - " - 9 & 8? 4%, 5% - ; x ; % -,?? 4
46 $ 8 : () - 8 x 9 8 x + 8 x 4, ; :, ( x) ( x) ( x) ( x) = = 8 4 ' ( 5%): 5 x + x = x + 5x = 5x 9 - x, x 5x 6 5 x 5 x x x p, p % = # : i = p x x p x x x 5x 5x = 5x 5x i = 5x i, 6? ( ) : x S x x x i = 4( 8 ) + 5 ( ) ' * * [;7] ' ;: x x S x = + i = + i 4( ) 5 ( ) 4 5 ( ) 44
47 : : x 5 ( i) = 4 ; x,4 5 = ; i x 4 = 5 ; i 4 4 x = 5 = 5 i i 4, x = 5 9? * i [;7], -, < x < 7 : , 5, i, i 84 i > > i > 5 < 5 =, p i =, p < 84, p < 84, p<84 %,? U ( t ) : U t # $ t t + t : U = U ( t ) U + U 9 t z U = t t z = lim z = lim = U t t t 45 U ( t )
48 z (t) - ; ; ( ln y) = y y ; ; z $, ( ln z) = - z +:, A: u t u t = t + 6t + 6t + 4, t 8, t, #: ), : ; ) $ * " + - ) z( t) ( t) = u ( t) : z z ( t) = t + 6t + 6t + 4 = t + t + 6 # : ( ) = = 4 z + :; z t : ; z t ( t) = ( t + t + 6) =
49 # : ( ) = 4 + = z ' : z z ( t) 4t + = ( t) t + t + 4 : z z ( ) ( ) 4 + = = = )! z( t) = t + t + 6, +, * - * ' : * : b t = = =, z z = a ( ), ( t ) = ( ) = $* M ( ;4) 9-, : ; Ot ' z t ;: t + t + 6 =, t + 6t + 8 =, D = 6 4 ( ) 8 = 68, t = 7 t = ' ; Oz = ( ) = = 6 z t ( t) z : ( 4):, :, 47
50 4 ' x ; y -, x?, y?, y? - x 9 y = y (x) x lim x " ) ;? - :, : ; ; A:- Q P Q ;: Q < ( Q) = 9Q + 4Q + 88Q + 5, P( Q) = 44Q #: ) ;, A:, - ;? ; ), ;? ; ) [; 5]; ) * [; 5] ) ; : : A:? : ( Q) = Q P( Q) C( Q) = ( 44Q + 898) Q ( 9Q + 4Q + 88Q + 5)= = 9Q 576Q + 864Q 5 48
51 - ; *, : : ;: = 9 Q 576 Q = = 576Q 5Q #: ( = ) : 576Q 5Q = : 576, Q + Q 5 =, ± ± 8 Q, = =, Q = ; Q = 5 Q = 5, Q A:,, ; ;: = > ( 4) = <, : #: ;, ( Q) ( ) = = 4 5 #:, : ( ) = = P ) #:, ;? : ( ) = = 4 6 9, ; - : ( ) 46 C = = = 8 49
52 6 ; : $ Q = : ( Q) = 576Q Q ( ) = = 8 64 ) #:,? ) A: ( ), A:- 5 ( ) ) #*: ;: ( Q) = 576Q Q # C ( Q) = : 576Q + 864Q + 88 = : 88, Q + Q + =, ± 9 4 ± Q, = =, 4 4 Q = 5; Q =,?, - - * & Q = 5 Q = [; 5], 5: # C( Q) = = ( 5) = = 77 4,, * [; 5] * 75 *?; - & - -, 5
53 @ ; y = f ( x) * y x : $ % E x ' y x f x x ( y ) = lim : = x y x f x E p ( q ) = dq p dp q ( ) - - ; ; $ dq I EI ( q) = di q (z) & " ; z = f (x, y) (z, ; E x, ) E y $- z x z y Ex( z) =, Ey( z) = x z y z ; z = f ( x, y) x y 6 E x (z) z, x %, y ) - #, P z A E B P B, () ), $ %, ) : q( p) S ( p) : p + 8 q ( p) =, S( p) = p + 5, p +, q S - #: ) ;; 5
54 ) + - ; ) 5% ( ) ", : p p = p + 5; 5 p + 8 = ( p + ) p + = p + p + ; 5 5 p = p + p + 8 = p + p 7 ; p + p 7 = ; p = 7 p = ) E p ( q) p = q p q 5 ( p) p + 8 p + ( p + 8) 6 $ q p = = = p + ( p + ) ( p + ) p 6 p 6 p E ( q) = q = = p q( p) p + p + 8 p + p + 8 p + = p 6 E ( q) = = ( + )( + E p ( S) p = S p S ( p) S p p $ = ( + 5) =
55 E ( S) = 9 E ( q) ( S) p p p = S p = S ( p) p +, 5 E ( S ) = = < E <, : ; % * %, - 8% ) 5% * 5% ( 5 = 5), 5% $ + $ A: u ( t) = t + 4t + t + $ - 4 ( : ; ) 5, - $ A: - Π = x + 4x + # A:-, ( : ) $ ; A: t Q < ( Q) ( Q) = t + 5t + #, A: 5 ( : 7) $ 4 A: - K = x x + # A:, ; 8 - A:, - K 5 = 75 ) ( :, : [5,,, 6; 6, IV, ; 7,, II; 8,, 5, ; 9, 4, 5;,,, 7;,, 6, 68]
56 (,#!8(##9!!()(!&#) + : - - b a ( ξ ) f x dx = Lim f x n, max x i= i n i i $ : - ;? ; ; - ; Q, ;?; : [ ; ] a b, Q, - [ a; b], Q Q, ;? - dq Q, ;? [ x; x + x], dq = q( x) dx ;?- #, ; - ;, ; ; *, dq,, dq Q, ; - dq ; ; [ a; b] b Q = q x dx a ) * 7 :! '? - y = f x,, y = f ( x), x = a x b =, - : b a S = f x f x dx 54
57 $,, x = x( t), y = y( t), t [ t ; t ],, «+» x( t ) x( t ) x( t ) x( t ) t t S = ± y t x t dt, > t > t ; < t > t?,,, ϕ ρ ( ϕ ) ρ ( ϕ ) dϕ, ϕ S = ρ = ρ ( ϕ ), ρ ρ ( ϕ ), ϕ [ ϕ ; ϕ ] = * - $?, y = x x +, y = x! y = x x + * ( ; ),! y = x - ( 5) 5 55
58 #: x x x + =, x 4x + =, x =, x = -,? S = x x x + dx = x + 4x dx = 4 x = + x x = 4#? x = acost, y bsin t =, t [ ;π ]? S,? S 9 S = 4S ( 6) 6 $?, π π π S = 4S = 4 b sin t a sin t dt = 4ab sin tdt = ab cos t dt = π = abt sin t = π ab 56
59 5 $?, ; ( cosϕ) ρ = ρ = cosϕ ρ = ( cosϕ), cosϕ, ; ρ = cosϕ (;) ( 7) 7 -? S S=S, S *? S -? S S, ; : #: ϕ, ( ϕ ) cos = cosϕ, π cosϕ =, cos ϕ =, ϕ =? S (ϕ π ) π π π 4( cos ) ( cos cos ) S = ϕ dϕ == ϕ + ϕ dϕ = + cos ϕ = ( cos ϕ + ) dϕ = = ( ϕ sinϕ + ϕ + sin ϕ) = 4 7 = π 4 π 57
60 ? S (ϕ π π ) π π 4cos ( cos ) S = ϕdϕ == + ϕ dϕ = π π π π = ( ϕ + sin ϕ) = 6 4 π S=(S + S )= 7 π 7π π + = $?, ; x 4x + y =, x 8x + y = x y =, y = x ( 8) ' :?; - x = ρ cosϕ y = ρ sin ϕ x 4x + y = ρ cos ϕ 4ρ cosϕ + ρ sin ϕ = ρ = 4cosϕ, x 8x + y = ρ cos ϕ 8ρ cosϕ + ρ sin ϕ = ρ = 8cosϕ, x ρ cosϕ π y = ρ sinϕ = tgϕ = ϕ =, 6 y = x ρ sin ϕ = ρ cosϕ tgϕ = π ϕ = 58
61 ρ = 4cosϕ ρ = 8cos ϕ, π π ϕ 6 8 6? * - π S = ( 64cos ϕ 6cos ϕ ) dϕ = = ( + cos ϕ) dϕ = π π 6 6 π = ( ϕ + sin ϕ) = π π 6 π, y = y( x), y ( x) [ a; b ], L ;-?? b ( ) L = + y x dx a, L, x = x( t), y = y( t), t [ t; t] x ( t), y ( t),, t L = x + y dt t 59
62 ϕ, L ρ ρ ( ϕ ) [ ϕ ; ϕ ], ρ ( ϕ ), =, ϕ L = ρ + ρ dϕ ϕ 7 $ y = x (;) (4;8) - y = ± x 9 - (;) (4;8) y >, x y = = x y = x = x #: ; 4,, 4 -, x 4 + 9x 4 + 9x L = + x dx = + dx = dx = dx = = + = + = = ( 4 9x) dx ( 4 9x) ( 4 4 ) ( 4 4 8) [ ;] x 8 $ y e + e $ ; x x x x y = e e = e e -, x x x x x x x x =, L = + e e dx = + e e e + e dx = 4 6
63 4 x x + e + e x x x x = + e + e dx = dx = e + + e dx = 4 4 x x x x x x x x x x x x ( e e ) dx ( e e ) ( e e ) = e e e e dx e e dx + + = + = = + = = = e e e e = e e = e e 9 $ = ln cos x + y, x π 6 $ ; y = ( ln cos x + ) = ( sin x) = tgx cos x #:, dx cos x >, x [ ; π 6] tg xdx dx π 6 π 6 π 6 π 6 dx + = = = = = cos x cos x cos x = cos x cos x π 6 x π π π π = ln tg + = ln tg + ln tg + = π π = ln tg ln tg = ln ln = ln 4 4 $ ( ) ( t) x = 9 t sin t y = 9 cos t [ ;π ] $ - xt = t t = t y t = ( 9( cost )) = 9sin t ( 9( sin )) 9( cos ) 6
64 #:, π π L = 8 cost + 8sin tdt = 8 cost + cos t + sin t dt = t cost π π sin =, = 9 costdt = 9 costdt = = t sin = cost t π π t π, π, π t t t = 9 sin dt = 8 sin dt t 8 sin dt = = = sin >, t t sin sin = π t 8 ( ) cos = 6( cosπ cos ) = 6( ) = 7 4$ $ $ x = 5cos t y = 5sin t, t π x t = 5 cost sin t = 5sin t yt = 5 sin t cost = 5sin t π π L = 5sin t + 5sin tdt = 5 sin tdt = π π sin t >, t π, = = 5 sin tdt = 5 cos t = sin t = sin t 5 = ( cosπ cos ) = 5 ( ) = 5 6
65 4$ x = cos t y = sin t 9 ( 9) Ox Oy, :;, 4 t ; π - [ ;π ] π, [ ] 9 $ = = = = xt cos t sin t 6cos t sin t yt sin tcost 6sin tcos t -, : L, L = 4L π π L = 6 cos t sin t + 6sin t cos tdt = 6 cos t sin t cos t + sin t dt = = 6 π cos t sin tdt = 6 cost sin tdt = sin tdt = cos t = π π π = ( cos π cos ) = L = 4L = 4 = 4$ ( ) x = cost cos t y = sin t sin t, t π
66 π $ π ( t) ( ) x t = sin+ sin yt = cost cos t L = 9 sin+ sin t + 9 cost cos t dt = = 9 4 sin t sin t sin t + sin t cos t cost cos t + cos t dt = π 6 sin cos sin cos sin sin cos cos π = t + t + t + t t t + t t dt = = 6 sin t sin t + cost cos t dt = 6 costdt = cos = cos t ( t t) t π π sin >, t π, π t t t = 6 sin dt = 6 sin dt sin dt = = t t = sin = sin t = 4cos π π = 4cos cos = 4 π ( ) = 4 44 $ ρ ( cosϕ ) = 9, L = L, L, ϕ - π 64
67 #: ;, π ρ = cosϕ = sinϕ - L = 4 cosϕ + 4sin ϕdϕ = cosϕ + cos ϕ + sin ϕdϕ = π π π cos cos sin ϕ = ϕdϕ = ϕdϕ = dϕ = π π π ϕ ϕ ϕ π = 4 sin dϕ = 4 sin dϕ 8cos 8 cos cos 8( ) 8 == = = = b π π 45# ρ = a e ϕ, ϕ b b ϕ ab $ ; ρ = ae = e, : π ϕ - ϕ π,5π b b,5π ϕ ab ϕ bϕ a b bϕ L = ae + e dϕ = a e + e dϕ = 4,5π,5π,5π b b + ϕ + ϕ,5π 65,5π 4a a b 4a a b = e dϕ e = = b 4a + a b = e e b bπ bπ 4 4,5π 46 $ ρ 5( sinϕ ) #: ; π = +, ρ = 5 + sinϕ = 5cosϕ $ L = 5 + sinφ + 5cos ϕdϕ = 5 + sinϕ + sin ϕ + cos ϕdϕ = π π = 5 + sinϕdϕ = 5 + sinϕdϕ = sinϕ = cos ϕ = π π
68 π π π ϕ ϕ ϕ π π ϕ 5 + cos d = 5 cos d = 4 π ϕ π ϕ π π π = cos dϕ = sin = sin sin = π π = sin sin = = 4 4 π (;7 '()? S x, ;, Ox x [ a; b] x + x dv = S ( x) dx ( ) ' A: x, A: (- Ox ) V b = S x dx a, ;,, '()!,? Ox, y f x y = f x, x = a x = b, =, = π S x f x f x -, Ox b a V = π f x f x dx 66
69 ,? Oy, Oy b a V = π f y f y dy 47 $ A:, x y z =, z a + b = x y z = a + b -, Oz z =, - xoy,? : : ; z = const, xoy $ x a x za y + b = z, y + zb = 67
70 za zb? (? S z = π za zb = π abz -, A: ) b a z π ab V = S z dz = π abzdz = π ab zdz = π ab = 48$ A:,? Ox y = sin x,, y = sin x, x π ( ) -, π π VOx π 4sin x sin x dx π sin xdx = = = π π ( cos x) dx x sin x = π = π = π 49$ A:,? Oy, y = x x +, x =, y =, ;?, - ( 4)! y = x x +, -, * ( ; )! x =, Oy * y = x x + x = f ( y) - ( x ) y =, x = ± y 68
71 4 9 ;, x = + y ' A: π VOy = π + y dy = y y dy = 4 y 7 = πy y y = π 6 5 $ A:,? - Ox ( sin ) ( ) x = a t t y = a cos t ; t [ ;π ] -, dx = x dt = a( cost) dt, Ox π π ( cos ) ( cos ) π ( cos ) V = π a t a t dt = a t dt = π ( cos cos cos ) = a π t + t t dt = π = a πt sin t + t + sin t sin t sin t = 5a π t 69
72 : :?,? y f x x a; b, Ox =, [ ] b S = π f x + f x dx a, x x( t) =, y = y t,?,? Ox, t S = π y t x t + y t dt, t t t t, ;? 5$?,?- Ox y = x, : x = * y = f ( x) (,? y f x = x = $?, x = x 9 4x + S = π x + dx = π x dx = x 4x π x 4x + = π dx = π 4 + = $? R? Ox y R x,? =, x [ R; R] - 7
73 R x S = π R x + dx = R R x R R R R x R = π R x dx = π Rdx = 4 π R R 5 $?,?- Ox = y = a t x acos t sin ' AB? Ox -? ( 5) #:?,? AB Ox, 5 #: $ A( a;) t =, t = $ B( ; a) x = a cos t = a, cos cost =, π t = $ = = y ( a t = ) = a t t x acos t a cos t sin t sin sin cos x a t = cos =, 7
74 $ π 4 4 sin 9 cos sin 9 sin cos S π a t a t t a t tdt = + = π π 5 4 sin t 6 = 6π a sin t costdt = 6π a = π a 5 5 $? S 5 = π a $ + $ $?, y = x, x =, x = ; Ox ( : S = ) $ $?, ρ = 4( + cosϕ ), ρ = cosϕ ( : S = 8π + 9 ) $ $ A:, x y + =, z = y, z = 4 ( : V = 8) $ 4 $ A:,? Ox, y = x, x + y =, y = ( : VOx = π ) $ 5$ A:,?, y = sin x, - ;? ( : VOy = π π ) 4 π $ 6 $ y = ln cos x +, x 6 ( : L = ln ) 7
75 $ 7 $, x = 5cos t π y = t t 5sin, ( : L = 5 ) $ 8 $?,?- Ox y = x +, ; - x =, x = 7 ( : S = π ) 7 < * * + -? ds dp = γ hds, γ, h - ds 6 ' ") * " 6, - Ox (Ox, *), Oy ; ( 7) 7
76 9 h x x, ( ) 7 ( ) =, ds = y ( x) y ( x) dx, γ x x ( ) P = γ x y x y x dx, dp = x y x y x dx x x, ; y x, ; ;, y x, " 6 - γ, Ox, Oy - ; ( 8) 9 h x =, π ( ) 8 ds = y + y dx k P = πγ xy + ( y ) dx, k, y y( x) =,?- Ox 74
77 54 $, ( 9) 9 $ 6 y ( x) y x, -,, - ; ; 5 : ( y y ) = p( x x ), ( x, y ) * &, * (5, ) - y = p x 5 p 9 (, ), ; ; : ( ) p( 5) 4 = p( 4), =, p =, ( y ) ( x 5) = 75
78 ; ( y ) = 5 x, y = ± 5 x, y = 5 x, y = 5 x + + ' ( γ = ) P = ( ) x x x ( y ( x) y ( x) )dx P = x 5 x + 5 x + dx = x 5 xdx = x 5 xdx = $ 5 x = t,5 x = t, x xdx = = t t tdt = t t dt = x = 5 t, dx = tdt 4 5 ( 5 ) ( ) ( 5 ) ( 5 x) 5 ( 5 x) t t = 4 = x x 5 5 x 5 xdx = 4 = ( 5 5) 5 ( 5 5) ( 5 ) 5 ( 5 ) 46 = 4 = ", :; 76
79 $ + $* (;), - x = p y (-;) : : p = 9 : ( y ) x =, y = x, y = + x ' ( γ = ) P = x x x ( y ( x) y ( x) )dx 4 P = x xdx = 5 56 " γ, :; $ 4 77
80 ",, ;? - P P 4 $ P +,? A ( 5;), B ( ;) ( AB ) B ( ;), C ( ;) ( BC ) $,? : x x y y = x x y y 9 AB : x 5 y = 5 ; x y = 5 BC : x y = ; y = x + x 6 y ( x) y ( x) x = + = x ; x 6 P = γ x xdx = γ = γ
81 $ P +,? C ; ( AC ): A( 5;) 9 x 5 y = 5 ; y = x + 5 x 4 y ( x) y ( x) = x + 5 = x + 4 ; P = γ x x + 4dx = γ x x = γ P = P + P = γ + γ = 4γ $,, - ( 5) 5 $ AD BC 6 79
82 ,? A( ;) D( 5;) (?): : x y = 5 ; y = x 5,? B( ;7) C ( 5;5) x y 7 = ; y = 7 x 5 $ x P = γ x( y ( x) y ( x) ) dx = x7 x x dx = 5 5 x 5 x 4 x 5 = 7 = $ ( γ ),, ;? R "- ; $ 7 7 8
83 ", ;? Ox AB + AB '- ; R x + y = R ; y = ± R x 9 AB ( R ;), AB # y : y = R x y = R x x R R x R P = πγ x R x + dx = πγ x R x dx = R x R x R R xrdx R = πγ = πγ = πγ 59 $ ( γ = ), ;?,?: * 5 $ $ 8 8 8
84 &, ;?- Ox AB +,?- B ; ( ;) A y = ( x ) x, y = 5 9 y = 5 ( x ) ( x ) 9 P = π x + dx = π x dx = = π x( x ) π 5 = 5 + F - s " A A = F s *" 6, - ; γ h : 9 ( Ox, - *) dp dx 9 dp γ dv γ S x dx S x? da = =,,, ;, dp x + h 8
85 9 9 dp x + h, da = dp ( x + h) = γ ( x + h) S ( x) dx x x A = γ x + h S x dx, S ( x )? x, x, x, ;? () 6, *- ; A: m H, Mm F( r) = G, r G, M, r - $: 4 4 8
86 F ( x), x :, a( x ) x F ( x) = ma( x), x = ( ) a( x) = g = 9,8, F = ma = mg +, -, mm mm F ( x) = G, F = G R x R ( + ) mm mm ma( x) = G, mg = G R ( R + x) - M gr = 9 G F m gr mgr ( x ) = G = R x G R x ( + ) ( + ), da,, ; F x x 9 mgr da = F x dx = dx 84 ( R + x) ", * H - :, H mgr A = dx ( R + x) " 6, - ;, s ( - : k ),! F = ks, F, ;? 6 dx da = F x dx 9 ; s s A = F x dx,
87 4 6, - ; R H, PV = PV P A- : V = π R H P( x )? * x ( 4) 4 A: V ( x) π R ( H x), π π PV = P x V x P R H = P x R H x = 9 - P( x) P π R H P( x) = H x? * dx - P π R H da = P( x) dx = dx 9 ;- H x a a P π R H dx π, A = dx = P R H H x H x a,? * 85
88 6 $ ;, γ, R H $: 4 4 S ( x)? x #: r ( x ) " BOC AOD - AD BC OB = H, 9 OA OB = 9 AD r ( x) r x x xr =, r ( x) = R H H x R S ( x) = π r ( x) = π H -, H H x R π R π R H π H H 4 A = x + dx = x dx = =, BC = R, OA = x, 6 /,, ; γ $, ; ' 5, * 4, 4 86
89 $: 4 4? x S ( x ) +, a = 5 #: ; x = 4 y y = 4 x, y = 4 x, b = y y = 4 x 4 x = 4 x $? S ( x) = a b = 5 4 x = 4 x #, A = γx 4 xdx = γ 4 x 4 x = γ 5 6 = +,, *; *, * ( 4, ) 5 $ dx A = π dx = π 56 = x x 5 = π 56 ln x = π 56 ln = π 56 ln 4' 5 87
90 6 $, ;,,, : # #: : -! 5 F = ks, F = s = k = : = -, 5 5 A = xdx = = ' $* " ;, ;? v = v t 9, t t " [ t; t t] : ds = v( t) dt - [ ; ], : + t t, s t = v t dt t + " - [ t ; t ] x = x t y = y( t) 6,,, - : t ( ) ( ) t s = x + y dt 88
91 64 ( - v t = 6t + 4t + c #, ; [ ; ] +, s = 6t + 4t + dt = t + t + t = αt v( t) = te #, β, β, β αt s te dt = - : αt β u = t dv = e dt β αt t αt s = te dt = = e αt du = dt v = e α α β t t β β α αt αt β αβ α α α α α α e dt = e e = + e + 66 $;;, - t ;6, [ ] x = t sin t + t cost y = t cost + t sin t 89
92 6,, - ( ) = + = y = (( t ) t + t t) = t t x t sin t t cost t cost cos sin sin,, t [ ;6] t s = t cos t + t sin tdt = t dt = = 7 $ ;; v s 7 = = = t 6 -* = " ; ; y = f ( x), x [ a; b] ( x) ρ = ρ ( 44), 44 $ dl dm = ρ x dl -, ( ) dl = + y dx, b a m = ρ x + y dx 9
93 , % A? I = mr, m A, r -? + ; - b I = ρ x x + y + y dx, a Ox Oy - x b b ρ, y ρ a a I = x y + y dx I = x x + y dx A M = mr, m A, r - + ; - b M = ρ x x + y + y dx, a Ox Oy x b b ρ ( ), y ρ ( ) a a M = x y + y dx M = x x + y dx 4 - * M x = myc M y = mxc %- C ( x ; y ) C C x C b b ρ x x + y dx ρ x y + y dx a a =, y b C = b ρ x + y dx ρ x + y dx a a 9
94 " ;, ; y f x x a; b ρ = ρ x ( 45) =, [ ], 45 $? ds 5, dm = ρ ( x) ds - - ;; :, b = a m ρ x f x dx 6 + ;, % b a I = ρ x x + f x f x dx, Ox Oy - x b b ρ, y ρ a a I = x f x dx I = x x f x dx 7 + ; ( ), - b a M = ρ x x + f x f x dx, Ox Oy x b b ρ, y ρ a a M = x f x dx M = x xf x dx 9
95 8 & % ( ; ) C x y ; C C x C b b a C b a b a xρ x f x dx ρ x f x dx a =, y = ρ x f x dx ρ x f x dx 67$ - ( ρ = const ) x + y = R 9 y = ± R x, y = R x x, R R x dx = 4 ρ + = 4 R x ρ = R x πρ, I R dx R R R R x dx = 4 ρ + = 4 R x ρ = R x πρ M R dx R R 68 $ - ( ρ = const ), y = 5 x, y = ; ( 46) 46 - Ox, x C = ' yc 8-9
96 y C x 5 dx 5x x 5 5 x 5 x dx 5x 5 ( x ) 5 5 = = = = 5 5 ( ) $ - y = x, x, ρ ( x) = + x ' ' y = x = x, ( ) x m = + x + x dx = + x dx = x + = 6 : ( ) x x 5 + x x + x dx = x + x dx = + = 6, x x + x dx = x + x dx = x + x = $ 4 x C 5 6 = : =, yc = : = $ + $ $ (, 47), :;, γ = ( : 468 ) 94
97 47 $ +,t v = te #, - 4 ( : ) $ $, ;,, ;? ; - ; 5,?:- ;* ( : 8 ') $ 4, *; A: 6 ( 7 (" 6 68, g = ) 9 ( : 89 ') $ 5 $ ( γ = ), ;?, 5,?:* + ; ( : 9π ) $ 6 $ y = ln x, ;: - x =, x = 8, - ( : 9 ) $ 7 $, y x, x, y ρ x = x = = =, ( : 8 5 ) $ 8 #, y = sin x, y =, x π ( : π π ; 8 ) 95
98 7 < 5 - * * 56 " y - y = f x x, ;?,, ; +?; f ( x ) (, 48) 48 f ( x) OA? O fa,? - OAB - : ' *, - ; ' 67, ; ; ' 67,? 7, 5 y =,, $- x ' 96
99 ? fa, :? OAB ( 49) ' S 49 OAf OAB OfAB OAB OfAB OfAB OfAB k = = = = = = S OAB S S S OAB ( S OAB = ab = : : = S S OAB S S OAB S S S OAB S OfAB ) $? OAfB?; - = 5 dx 5 = = = 5 S OfAB dx dx ln x x x x = ( ln ln ) = ln 69 = 4; k = 4 = 94 9 ' *, (;7 + 6 '*6 -, f ( t), t,, f ( t) 9, U T = f t dt ( [ ] ;T 6 * - %,,,,? $ ; () 97
100 9, [ a; b ], c [ a; b], b f c = f t dt = L b a a 6 L f (t) [ a; b ] - 7 $ f ( t) = t + 6t + 7 #: ) A: [;4] ) + [;4] t t, ; - ; ) " ) A: [;9] - U 4 t 6t =( t + 6t + 7) dt = + + 7t 4 = = ) + f ( t) [;9] F ( c) = ( t + 6t + 7) dt = = t -, *: t, 5 4 t + 6t + 7 =, t 8t + =, = 5 t = 45 [ ; 4] f t = t, : 98
101 6 t -, : * f ( t) = t + 6t + 7 ( *, ): b 6 t = = = a ) ' : ; *: ( t ) = f ( ) = ( ) = 6 f, * ( ;6) ; Ot : t + 6t + 7 = ; D = 64 t =, t = 7 #: ( 5)!,? *, - ;? A: 4,?- OABC,, ;
102 7 # K = x + x + 7, - A: A: -, ; " - + K ( x ), A: - m n,, x x l = ( x + x + 7) dx = + + 7x = = 4 6 A:, ;, *: x 4 x + x + 7 =, 6x + 6x + = 4, 6x + 6x =, [ ;] 6 + = x = 48! K = x + x + 7, #: * : b x = = = =, a 4 ( x ) = K( ) = ( ) + ( ) + 7 = K ( 5): K ( ) = =, K( ) = = 6
103 5 #,? ABCD, [ ;],,?* + ;, -, t p ( - ) 9 - ;? P f ( t ), i = 9 K T T it K f t e dt =, N m, f ( t) = N + mt 7 & 4 p=6%, -, lim K T # T
104 $: ; f ( t) = N + mt, N -, m ; -, f ( t) = + t ' 9 K = T f it ( t) e dt, 6 i = p = = 6, u = + t, 6t ( + t) e dt = = t du = dt, dv = e 6t 4 K = 6 4 = 6 6 = v = e 6 6t 6t ( + t) e e dt = ( + t) 6 e 6t e 6t = e + e #: K( T ) lim K T lim : T ( T ) = lim( + t) = lim T T 6 6 e 6t 6T ( + T ) e ( + ) 6 e T e 6T 6 4 e e dt = 6t 6 T =
105 , lim 6 T = 6 e lim = T e T : lim K ( T ) = T = 6 ( 6) = $ + $ &, ;?, : y = x $ ' ( : k=) $ $ f ( t) = t + 6t # A: - [;] ( : 48) $ # K = 6x + 8x, A: 5 ( : ) $ 4 & "=8%, - 8, lim K T # T ( : 555; 575) : [5,, 9,; 7,, III; 9,,, ]
106 (,#!#>>##!=?!" -!#! #/#!>$%#')#(#&%#'$ % ' * - ;? : ), -, ;?; ) ; )? * ; 4) * ; 5) - (, ) - ; 6)? ; 7) $ * --% *! ' *!, f ( x) dx = g ( y) dy & *; ;? - ' --% '-, (, ) y = f x y, f ( x, y), f ( kx, ky) f ( x, y) = y +?; u = ( y = ux, y = u x + u ), u = u( x) x, ; - ;? 4
107 , ;? y + p( x) y = q( x) ' * y = u v ( y = u v + uv ), u = u( x), v v( x) = ) * *, : < $,,? -, ; (? ;? ) /, y = f ( x) - ( 5), y ( x) = tgα, α ; Ox M ( x; y ), Ox #,? M (, ), - k = 5
108 !, y x y( x) x ; M x y x - y = kx y = x - -,? * y = x dx = x + C -, M (, ) y = *, C : = + C C = 8 * : y = x 8, x = y =? 75 #,? M (,4 ), - k = -, y = y dy dx = y ", : y ydy = dx ydy = dx + C = x + C y = x + C ; ; ; 4 -, ;, y = 4 C : 6 = 4 + C, C = * : y = 4x + y = 4( x + ) & - * A(,), ; Ox -, ( 5) 6
109 5 76 # ;,?; M,, ;, ;, * : ( Oy ) 54 M ( x, y)? y y( x) = - Ox α, tgα = y $ MBN MBN = 8 α, MN tg MBN = MN = y, NB, NB MBN AMP, : NB = MB ; NB = NB = PM = x PM AM PM 7
110 MBN, : y y y y tg (8 α) = ; tgα = ; y = ; y = x x x x " - : dy y dy dx dy dx = ; = ; = + ; ln = ln + dx x y x y x C y x C C 9, y =, ;? x y ( ) =, M, : = = ; * : y = x 77 #,? M (, ),, ;, * ; M ( x, y ) $ MON MON α ( 55), ; Ox, tgα = y ' MPN* : MP tg MNP = PN # MNP MON : MNP = 8 9 α = 9 α MP = y ; PN = ON OP = x + x = 8
111 9, y y y tg ( 9 α ) = ; ctgα = ; = ; tgα = ; y = tgα y y 55 ", *?*: 9 y 4x C = + M,, y =, = 4 + C C = 4 56 y 4( x ) * 9 = # - M,, ; Ox, ( 56)
112 - ;?;, ; M MN Oy ; Oy ; 78#;,?; M (, ) 57-9 M x, y : M ( x, y), M ( X, Y ) Y y = y x X x 9 N (, YN ) ( 57); -, N ( ) Y y = y x x Y = y xy +, PN = yn yp = YN y N ; PN =, - Y y = Y = y N Y N, - : N y xy = y y = x
113 -, : dx y = + ln C; y = ln x + lnc x -? * ;,?; M : (, ) = ln+ lnc ln C =, y = ln x + 79 #,? -, ; [, x]?, ;?, 58 + ; x = y( x) y t dt ' x, y = y y, y = y
114 ",? - *: dy = ; ydy = dx ; ydy = dx; y = x + C; y = x + C dx y y =, C =,? : * y = x 8 #;,?; A ( ;), -, ; Oy, - -, ( Oy ) 59 M ( x, y ) ; MN M ; Oy N ( 59) + - ;, ON = OM # OM = x + y, ON Y y = y X x, X =, Y = ON = y xy
115 -, ; y x + y = y xy = ux, : du du dx x + u x = ux x( u x + u) ; x = x + u ; = dx + u x ; ln u + + u = ln C ln x u C x + + u = y u =, x ( ) x = C C y (, ; Oy ) A?*, - = C ( C ) ; C = C = *, C = Oy -, - x 4( y) = 8 #;,, - ;, ; M ( x, y ), M ( X, Y ) - ON,, - M ( 6) ; ON = ± xy, N (, Y N ), : ON = xy YN = ± xy +, * M x, y : Y y = y x X x
116 6 $ N (, YN ) YN y = xy, YN = y xy Y N, - y xy = ± xy y y y = ±, x x y ux,,?*: dx du u x + u = u ± u; u x = ± u; = ± ; ln x = ± u + ln C x u x = Ce ± u y $ ; u =, x, ;? : x Ce ± y x = 8,? P(, ) ;? ;? :?, - - ;, ;, 4
117 6 $ ;? : M ( x, y ) -, M ( X, Y )? OMA ( 6 ) SOMA = OA MB MB = y, OA, Y y = y x X x A: A( X, A ), y y = y ( X A x); X A = x y, OA S OMA : = X ; S =, *;? A OMA S OMA y = y x = y 5
118 : y x y = 4; y = x ; y = y ; dx = xy ; x x = y y y xy 4 dy y y y 4 4 4, x x y x = uv u = u y, v = v y =?; ( ) -: v v = ; uv 4 v 4 y u v + uv = ; u v + u v y y y = y 4 u v = ; y dv v dv dy () = ; = ; ln v = ln y; v = y; dy y v y () u y = ; u = ; u = dy C; u C; y y + = + y y x = uv = y + C Cy = + y y - P (, ), x = C +, C = +, x = xy = y =,, $ + $ #,? M (, ), - k = 5 ( : y = 5ln x + ) $ #,? M (, ), ; k = ( : y = e x ) 6
119 $ #;,, - ; -, ; x = C y + C ) ( : $ 4,, - ; ; y = C x + y ) ( : $ 5 #,? M (, ),?,, -, ( : y x = x ) >* *, : < <:+ + T, T ( t) t, ;? 9 t #; - dq, dt, ;?,, ( ) dq = k T T dt, T > T k ;, dq #, Q = mc( T T ), m ; c ' -,,?, - dq = mcdt +, ( ) mc dt = k T T dt 7
120 , ;; mc, - ;? dt dt k = ( T T ) mc ", dt k = dt T T mc -, **: k t mc T = T + C e, C t = T = T 9,, C = T T - ;? ( ) kt mc T t = T + T T e +, T > T,, ;? ( ) * kt T t = T + T T e, k k = ; mc ), ( ) t ;? ( 6) 8
121 6 8 $ ; T = T = 6 T = 5 # - 5,, T ( t), dt dt * - ;? : dt k ( T T ) dt = dt k ( T ) dt = ", * dt T = kdt, *?*: dt k dt C; ln ( T ) kt C; ln ( T ) kt C T = + = + = ; kt kt T = Ce ; T = Ce 9
122 -, T T =, = 5 -?* : T = Ce = C =, ; C = 8 T = 8e kt ; T e k k k 5 k 5 = 8 = 5, ; 8e = 5, e =, e = 8 8 T ( t) t 5 = 8 8 $ 5 : T 5 5 = , 5 +, - 5 ', ;? dt ( T ) k T dt =, T, T =, : dt k ( T ) dt = ": dt dt kdt; k dt C; ln ( T ) kt C; T = T = + = + T = + Ce kt
123 # C k - T = 6 : T =, T = + Ce = C = 8 T = + 8e kt ; t k k T = + 8e = 6 e = 5, e = 5, T ( t ) = + 8 ( 5) t $, 5 +, * t = 5 t t t 8 ( 5) 5; ( 5 ) ; ( 5) ( 5 ) 4 t = = = ; = 4 t = 8 6 9, m F T ; F # t =, v = v ; t, v, F = f ( v), F g ( v) T = + + #;,,, ; : dv m F dt =, dv, F -, ;? dt $ * F = FT F - * dv m F F T dt =
124 - ; ; ; - S ( t), v( t) dv mv ds = F T F ds dv =, = dv ds = v dv dt dt ds dt ds 85 9, - ; v t # ;, 5 /, 6 / -, *: a = kvt dv dt = kvt ( ;? ) v = 5, v = 6 ( ; ) -, dv dv kt = ktdt; = k tdt + C ; ln v = + C ; v t = C v v kt e?* : kt v = Ce = C = 5 C = 5; v t = 5e ; = = = k k v e e 9 ; 9 v t = 5 t
125 86 ( - ; v = / # ; 4 * v =8/ #;, ; F = kv, ; v = ma = F dv m kv dt = ; v = 8 9 #?* : dv k dv k = dt; = dt + C ; v t = C v m v m k t m e? *, - : v Ce C ; v t e m = = = = ; v = e = e = = 9 k k 9m m ; v t 4 k t 9 $ =, v = ( 4) = 8 (/) t
126 87*; 8 + k = 4 - *; 64 * *;: ma = mg F dv mg 4v = dt m h( t ) *; -, dh dt dv dv dh dv = v( h) = = v, dt dh dt dh *; dv mg 4v v = dh m " : 4
127 vdv = dh vdv ; = dh + C ; mg 4v m mg 4v m 8h m e h 8h ln mg 4 v = + C; ln mg 4v = 8 C; mg 4 v = C ; 8 m m e 8h 8h m m 4v = mg C v h = mg C,, *; v =, C : ;, v = mg C = C = mg v( h) e C,, *; - : = 8 98 = 4 8h h 8 v h e e ' *;, v : v h e e = 4 = 4 4 / 9, *; 4 / 88, P, ( ) + F + W ( W = Pf + kv) #, ; ( f, k - ) 5
128 65 : ma = F W, Pa = F Pf kv dv P F Pf kv dt =, : S, v v( S ) dv dv ds dv = = v, dt ds dt ds = * - dv Pv F Pf kv ds = ", v dv ds F Pf kv F + Pf ds = ; dv = ; F Pf kv P k F Pf kv P F Pf k F Pf k = ds; v + ln( F Pf kv) = S + C F Pf kv P k P - v S =, = ; C : F k Pf ln( F Pf ) = C, 6
129 : F Pf k F Pf v + ln F Pf kv = S + F Pf k P k ln F Pf kv k v + ln = S k F Pf P ; v + ; F = βmv, β, m, v A + ; ' m - F P = mg, g t, h( t ) -, v( t) ; dv dt #;, dv m ( P F ) dt = +, 7
130 , ;, ( 66) - F P, dv m = mg + βmv dt dv dt ( g βv ) = +, dh v( h) dt = dv dv dh dv v dt dh dt dh = =, * dv v = ( g + βv ) 9 t =, v, - ;, * v = v # *, ;? ; v = v " -, : vdv g + βv = dh -: vdv g + βv h = dh + C; ln g + βv = h + C; g + βv = Ce β ; β h Ce g v( h) β = β 8
131 -, C : C g v = = v C = g + βv β * v h h g + v e β g ( β ) = β $ * ( h = H ),, ;, v( H ) =, - *; A: ( β ) e g + v v H = g = ; g + v = g; = g ; β H β H β H ( β ) e e β g + βv g H = ln β g + βv 9 9 m ; -, ( - k )&,, - ; ( - k )#, t = v 67 v( t), dv dt * dv dt = mv + kvt = kt, m kt kvt 9
132 + v = yz y = y t, z = z t, : ( ) z + zt = k k k k m + + = ; + + = ; m m m m k y z yz yzt t y z y z zt t y z = dz k dz k k = zt = tdt z = t z = e dt m z m m k t m k t m () ; ; ln ; ; k k k t k k t k t m m m () y e = t ; y = t e ; y = t e dt = m m m ; ; k m t = p, t = p, m k k m km tdt pdp, tdt dp = = k k p p = = e pdp = p e dp = m m m k k k km km km t k = p e e dp e p C e t C k = + = + k k m p p p m 9, km k km k v( t) = yz = t + C = t + C k m k m k k k t t t m m m e e e - v v = +: km km v = + C = v C = v + k k *, ;? - : km k km km k v( t) = t + v + = t + + v k m k k m k k k t t t m m m e e e
133 9 (* m F ( F = const ), +,,, α ; (α β ; ) # t + β *,, t = v = 68 * v( t ), * dv dt *, dv α m = F v dt t + β αv v + = m t ( + β ) F m v = yz y = y t, z = z t -:, * α z z + = ; α yz F α z F m( t + β ) y z + yz + = ; y z + y z + = ; m( t + β ) m m( t + β ) m F y z = ; m α dz α z dz α α () = ; = dt; ln z = ln ( t + β ) z = ( t + β ) m ; dt m t z m t m ( + β ) ( + β ) α α α F F F () y ( t + β ) m = ; y = ( t + β ) m ; y = ( t + β ) mdt + C m m m
134 ( t + β ) α + m α F F + y = + C = ( t + β ) m + C ; m α + α + m m ( + β ) F F t v( t) = ( t + β ) ( t + β ) + C = + C ( t + β ) α + m α + m α α α + m m m?* v =, C : α + m α Fβ Fβ m v = + Cβ = C = α + m α + m * *: v t α + α α m + F m ( t + β ) Fβ ( t + β ) m F β = = t + β α α + m α + m α + m ( t + β ) m 6 *, 6 6 *, R, I? E + L,? E = Esinω t, E ω 9 t,, t = ;: I = -, I R - IR ' L di L : dt di E = IR + L dt?; E,, I ; - : di R E + I = sinω t ( ) dt L L
135 I * dv R + v =, dt L du E sin t ω = dt Lv t, = uv, u( t) v( t) R t L e ; v = u t :, du dt R E = sinω t e L L t -, R E u = sinω t e dt + C L 9? ( ) : R R t E t L L I = e sinω t e dt + C L # t R Rt L Le ( Rsinω t Lω cosω t) L e sinω t dt =, R L t + ω L E I = ( Rsinω t Lω cosω t) + C R + ω L - ( t = I = ), ; C : e R t L ELω C = R L + ω
136 E I = Rsinω t Lω cosω t Lωe + R + ω L R t L * L ω = tgϕ ( ϕ ;?), : R Rsin t L cos t R L sin t ω ω ω = + ω ω ϕ, I R ELωe t L E sin( ω t ϕ ) = + R + ω l R + ω L +,, : ( sin ω t ϕ ) ( 4 R t L e ); - 9@ ; E= $,? R=5 & L=! # $ - ; t : di IR + L = E dt ;, ;?: I + 5I = I + 5I ; I = u( t ) v( t) ( I = u v + uv ) : u v + uv + 5uv = u v + u v + 5v =
137 , v + 5v =, u v = dv dv v v v dt v t v e dt v 5t + 5 = ; = 5 ; = 5 ; ln = 5 = ; = = = + 5t 5t 5t u e ; u e u e C 9, I t e e C Ce 5t 5t 5t = + = +, t = I =, C : ;, I = + Ce = + C =, ; C =, 5 e I t t = : I 5 e = 9865 ()) <: + ", - ;?,, x( t )?, dx dt hm ( h > ), #;, - d x dx m = k mx hm dt dt d x dx + h + k x =, x( t ) -? dt dt 5
138 @, z + hz + k = z = h + h k z = h h k,, -,, h k <, h k = ω, z = h + ωi, z = h ωi? - *: ( ω ω ) ht x = e C cos t + C sin t, t = dx x = x, = x o dt $ ; h ( ω ω ) x = C cos + C sin e C = x ; dx dt ( cosω sinω ω sinω ω cosω ) = + ht e Ch t Ch t C t C t, ;, : C x + x h ω = 9, ht x + xt x = e x cosωt + sinωt ω *; 6 ht x = ρe sin ωt + ϕ, ωx ρ = x ω + x + x h, ϕ = arctg ω x x h +
139 -, T π π = = ω k h π + T =,, k T > T x x x = 9 = h ht sin ρ = x + e ωt + ϕ ω t t =, t = π π, t, ω = ω,, : ω x = x ; x = x e ; hπ x hπ ω = x e ; hπ ω x4 = x e ; ;, ;, - ;?, - ; ;?; ; ; - hπ ω, ;? - x( t)
140 ", : h k > & z z?- zt zt = + x C e C e ( x = x, dx = x t = ) -, dt C C : C + C = x, zc + zc = x, : C x x z, C x z x = = z z z z * : x x z x z x x t e e z z z z zt = + - *, x : x x z x z x z z x xz zt x t = e + e z t ( z ) z t dx dt ; * dx x x z zt x z x z = z e + dt z z x x z z e ( z ) z t, xz x x x z >, 8
141 x( t ), dt ;?, -, xz x x x z <, dt ", h k = 5- z = z = h - x( t ), dx?* x = C + C t e ht : C = x, C = x + x h $ **: ( ) x = x + x + x h t e ht ),, - t ;? &,, * ;? ', ;? h k > h k =, * - (, - ) 9
142 $ + $ & +?, 5 + +, ln ( : 75 +, t = 5 ) ln 4 ln $ ( ) +? ( : 7 ) $ 9 m ; v =, - # ;? v( t) ; t ( ) ( : v t = mg e t m ) $ 4, # - #, ** 5,, v = /, S = * v =8 / ( : 9 /) $ 5 -, # - 5 /, 4 / #, - * / ( : 5, 5 ) 4
143 $ 6 F m # - v, F = b kv, v ; b, k - # t, - t = F = F = b kv k t m ( : F = Fe ) $ 7 9 m ; -, ( k ) &,, - ( k ) # -, t = ; kt k m m m ( : v = t + k k k e ) $ 8 = R=6 I t, - L=! I I =, % I R t L e ( : I ( t) I, t 7 = = ) $ ;-, ;? E, - R, L ;, ; t = # I R E L ( : I = e t ) R $ 9 96, *, #,, / # $ 5 5t x = 5e 5t + ) ( : 4
144 * 9 $ A?, B ; M M N, - N * #? T x( t) x? t + x t + t, x < t > ( ) A t V ( t ): x V ( t) = B + Mt Nt &? t,, V [ t, t t] +? ; x, x Nx x N t = t V B + M N t? x : t dx dt, Nx dx = dt B + M N t M - ;? > N,?*: dx Ndt dx dt = ; = N + C; x B + M N t x B + M N t 4
145 N ln x = ln B ( M N ) t ln C M N + + x t = C ( ) N B + M N t M N - x = A t =, C - * *: C A = C = A B ( B + ( M N ) ) N M N N M N B x( t ) = A B + ( M N ) t N M N t = T,? T : N M N B x( T ) = A B + ( M N ) T 94 $,? - $ ; 5 /, ; & +? x( t) t $ *?, M = N, * : Nx dx = dt B ;, B =, N = 5, x dx = dt ; 4
146 #?*: dx x dt = = + = t ; ln x t ln C; x Ce ( ) t = x = x =, = Ce C = 9, t = x t =6, e x 6 6 e e 5 = = () 95 = 6 4 -, ;?, -,? '* %-, ;? v -,? h : v = σ gh g = 98 /, σ (- ),? ( σ 6) t *- h dt? dh ( dh < ) A, * - dt 44
147 7 +, A dv A dh, r ( r = ) 9, dv π r dh π r dh = = +, A A,, vdt ( v ), ρ ( ρ = ), = πρ = πρ σ dv vdt gh dt A, - ; σρ r dh = gh dt ", r dh r h dt = t C σρ g h = σρ g t = h =6, h = 6 ; 6r C = σρ g 45
148 9, t h ( 6 h ) r t =, σρ g T, h =: 6r t = σρ g - (r =, T 6 77 ρ =, σ 6, g = 98 / ), 6 (), P t = P 9 P t 9 dp dt, ;*: dp kp dt = ±, k > ; + ; "-, : dp kdt P = ±,,,?* P = Ce ±kt, C 46
149 , t = C = P P = P e ±kt, P kt = P e, P = P e kt ),, - () P # -, - 8, - ; + P( t ) 9 dp dt dp ; = kp (, - dt *) # P = ; 8,, P = 8 9 P ( ) ;? dp kp dt =, P = 8 P =, - dp P dp = kdt; = k dt; ln P = kt + C ; P = Ce P kt 47
150 # C k - : P P = Ce = C, ; C = P = e kt ; k e k k = = 8, ; e 8, e ( 8) = = ; * P( t ) = ( 8) t 9 : 5 P = 8 = , -,, (, ) 59 m( t), dm dt + ;, dm km dt = ' * ;?, kt Ce m t = 48
151 m, m, = m -, 59, m( 59) = m? *, m = Ce = C, C m m t = m e kt ; = 59k m( 59) = me = m, e 59k k 59 = 5, e = 5 59 m m t = 5 t $ m : 59 m = m 5 = 965m 9, m 965m 965%,, %- 965%=85% $ + $ + - * $, 65,, 6 - ( : ) $ $, A,,? $ - ; /, ; - ;,, + *? &? & -? (& - *) ( : 97 ; 68 t = ) 49
152 $ = 6, - - ;?? ( : 84 ) : [,,, 4; ; 4,, IV, ; 6, XIV,, ; 6; 8,, 9, ;,, 5, 5, 5, 55, 56;,,,, ] 5
153 &# & ( $* / ) # & : &--, (, - - / : $ # ),! + % & : '!(), (, - / : ) #, + ) &, % #! * & : '!(), , #$* 6 I, II /, ', )!, 9 7 & ( : $* *, $* / # & ( : %, 47 )!+ /! # % ( : #, /A, B $? : B & CC '- B B B BDE B E " / ( C B, 9 $ &, $ ( & & : B, I, II / ) $,, % ' ( : #, , - -$? : B / $ $, # ' : +, 496 " *; * 6 I, II /, -! ( : $** *, * 6 I, II / ) ( : $** *,
154 !B$ %B &# &%!()(! B$ *A A A+ C B B B B B B (#**) *A: (-#!'? C 5
d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n 1
d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n1 x dx = 1 2 b2 1 2 a2 a b b x 2 dx = 1 a 3 b3 1 3 a3 b x n dx = 1 a n +1 bn +1 1 n +1 an +1 d dx d dx f (x) = 0 f (ax) = a f (ax) lim d dx f (ax) = lim 0 =
!!" #7 $39 %" (07) ..,..,.. $ 39. ) :. :, «(», «%», «%», «%» «%». & ,. ). & :..,. '.. ( () #*. );..,..'. + (# ).
1 00 3 !!" 344#7 $39 %" 6181001 63(07) & : ' ( () #* ); ' + (# ) $ 39 ) : : 00 %" 6181001 63(07)!!" 344#7 «(» «%» «%» «%» «%» & ) 4 )&-%/0 +- «)» * «1» «1» «)» ) «(» «%» «%» + ) 30 «%» «%» )1+ / + : +3
F (x) = kx. F (x )dx. F = kx. U(x) = U(0) kx2
F (x) = kx x k F = F (x) U(0) U(x) = x F = kx 0 F (x )dx U(x) = U(0) + 1 2 kx2 x U(0) = 0 U(x) = 1 2 kx2 U(x) x 0 = 0 x 1 U(x) U(0) + U (0) x + 1 2 U (0) x 2 U (0) = 0 U(x) U(0) + 1 2 U (0) x 2 U(0) =
m i N 1 F i = j i F ij + F x
N m i i = 1,..., N m i Fi x N 1 F ij, j = 1, 2,... i 1, i + 1,..., N m i F i = j i F ij + F x i mi Fi j Fj i mj O P i = F i = j i F ij + F x i, i = 1,..., N P = i F i = N F ij + i j i N i F x i, i = 1,...,
C 1 D 1. AB = a, AD = b, AA1 = c. a, b, c : (1) AC 1 ; : (1) AB + BC + CC1, AC 1 = BC = AD, CC1 = AA 1, AC 1 = a + b + c. (2) BD 1 = BD + DD 1,
1 1., BD 1 B 1 1 D 1, E F B 1 D 1. B = a, D = b, 1 = c. a, b, c : (1) 1 ; () BD 1 ; () F; D 1 F 1 (4) EF. : (1) B = D, D c b 1 E a B 1 1 = 1, B1 1 = B + B + 1, 1 = a + b + c. () BD 1 = BD + DD 1, BD =
A 1 A 2 A 3 B 1 B 2 B 3
16 0 17 0 17 0 18 0 18 0 19 0 20 A A = A 1 î + A 2 ĵ + A 3ˆk A (x, y, z) r = xî + yĵ + zˆk A B A B B A = A 1 B 1 + A 2 B 2 + A 3 B 3 = A B θ θ A B = ˆn A B θ A B î ĵ ˆk = A 1 A 2 A 3 B 1 B 2 B 3 W = F
d 2 y dt 2 xdy dt + d2 x
y t t ysin y d y + d y y t z + y ty yz yz t z y + t + y + y + t y + t + y + + 4 y 4 + t t + 5 t Ae cos + Be sin 5t + 7 5 y + t / m_nadjafikhah@iustacir http://webpagesiustacir/m_nadjafikhah/courses/ode/fa5pdf
m r = F m r = F ( r) m r = F ( v) F = F (x) m dv dt = F (x) vdv = F (x)dx d dt = dx dv dt dx = v dv dx
m r = F m r = F ( r) m r = F ( v) x F = F (x) m dv dt = F (x) d dt = dx dv dt dx = v dv dx vdv = F (x)dx 2 mv2 x 2 mv2 0 = F (x )dx x 0 K = 2 mv2 W x0 x = x x 0 F (x)dx K K 0 = W x0 x x, x 2 x K 2 K =
m 1, m 2 F 12, F 21 F12 = F 21
m 1, m 2 F 12, F 21 F12 = F 21 r 1, r 2 r = r 1 r 2 = r 1 r 2 ê r = rê r F 12 = f(r)ê r F 21 = f(r)ê r f(r) f(r) < 0 f(r) > 0 m 1 r1 = f(r)ê r m 2 r2 = f(r)ê r r = r 1 r 2 r 1 = 1 m 1 f(r)ê r r 2 = 1 m
Sheet H d-2 3D Pythagoras - Answers
1. 1.4cm 1.6cm 5cm 1cm. 5cm 1cm IGCSE Higher Sheet H7-1 4-08d-1 D Pythagoras - Answers. (i) 10.8cm (ii) 9.85cm 11.5cm 4. 7.81m 19.6m 19.0m 1. 90m 40m. 10cm 11.cm. 70.7m 4. 8.6km 5. 1600m 6. 85m 7. 6cm
!! " &' ': " /.., c #$% & - & ' ()",..., * +,.. * ' + * - - * ()",...(.
..,.. 00 !!.6 7 " 57 +: #$% & - & ' ()",..., * +,.. * ' + * - - * ()",.....(. 8.. &' ': " /..,... :, 00. c. " *+ ' * ' * +' * - * «/'» ' - &, $%' * *& 300.65 «, + *'». 3000400- -00 3-00.6, 006 3 4.!"#"$
Parts Manual. Trio Mobile Surgery Platform. Model 1033
Trio Mobile Surgery Platform Model 1033 Parts Manual For parts or technical assistance: Pour pièces de service ou assistance technique : Für Teile oder technische Unterstützung Anruf: Voor delen of technische
Κεθάιαην Επηθακπύιηα θαη Επηθαλεηαθά Οινθιεξώκαηα
Δπηθακπύιηα Οινθιεξώκαηα Κεθάιαην Επηθακπύιηα θαη Επηθαλεηαθά Οινθιεξώκαηα Επηθακπύιηα Οινθιεξώκαηα θαη εθαξκνγέο. Επηθακπύιην Οινθιήξωκα. Έζηω όηη ε βαζκωηή ζπλάξηεζε f(x,y,z) είλαη νξηζκέλε πάλω ζε κία
..., ISBN: :.!". # -. $, %, 1983 &"$ $ $. $, %, 1988 $ $. ## -. $, ', 1989 (( ). '. ') "!$!. $, %, 1991 $ 1. * $. $,.. +, 2001 $ 2. $. $,, 1992 # $!
!! " 007 : ISBN: # $! % :!" # - $ % 983 &"$ $ $ $ % 988 $ $ ## - $ ' 989 (( ) ' ') "!$! $ % 99 $ * $ $ + 00 $ $ $ 99!! " 007 -!" % $ 006 ---- $ 87 $ (( %( %(! $!$!" -!" $ $ %( * ( *!$ "!"!* "$!$ (!$! "
γ 1 6 M = 0.05 F M = 0.05 F M = 0.2 F M = 0.2 F M = 0.05 F M = 0.05 F M = 0.05 F M = 0.2 F M = 0.05 F 2 2 λ τ M = 6000 M = 10000 M = 15000 M = 6000 M = 10000 M = 15000 1 6 τ = 36 1 6 τ = 102 1 6 M = 5000
L A TEX 2ε. mathematica 5.2
Διδασκων: Τσαπογας Γεωργιος Διαφορικη Γεωμετρια Προχειρες Σημειωσεις Πανεπιστήμιο Αιγαίου, Τμήμα Μαθηματικών Σάμος Εαρινό Εξάμηνο 2005 στοιχεοθεσια : Ξενιτιδης Κλεανθης L A TEX 2ε σχεδια : Dia mathematica
Ταλαντώσεις 6.1 Απλή Αρµονική Ταλάντωση σε µία ιάσταση Ελατήριο σε οριζόντιο επίπεδο Σχήµα 6.1
6 Ταλαντώσεις 6.1 Απλή Αρµονική Ταλάντωση σε µία ιάσταση 6.1.1 Ελατήριο σε οριζόντιο επίπεδο Υποθέτουµε ότι το ελατήριο έχει αρχικό µήκος µηδέν, ιδανικό ελατήριο. F=-kx x K M x Σχήµα 6.1 ιαστάσεις µεγεθών
HONDA. Έτος κατασκευής
Accord + Coupe IV 2.0 16V (CB3) F20A2-A3 81 110 01/90-09/93 0800-0175 11,00 2.0 16V (CB3) F20A6 66 90 01/90-09/93 0800-0175 11,00 2.0i 16V (CB3-CC9) F20A8 98 133 01/90-09/93 0802-9205M 237,40 2.0i 16V
(... )..!, ".. (! ) # - $ % % $ & % 2007
(! ), "! ( ) # $ % & % $ % 007 500 ' 67905:5394!33 : (! ) $, -, * +,'; ), -, *! ' - " #!, $ & % $ ( % %): /!, " ; - : - +', 007 5 ISBN 978-5-7596-0766-3 % % - $, $ &- % $ % %, * $ % - % % # $ $,, % % #-
C M. V n: n =, (D): V 0,M : V M P = ρ ρ V V. = ρ
»»...» -300-0 () -300-03 () -3300 3.. 008 4 54. 4. 5 :.. ;.. «....... :. : 008. 37.. :....... 008.. :. :.... 54. 4. 5 5 6 ... : : 3 V mnu V mn AU 3 m () ; N (); N A 6030 3 ; ( ); V 3. : () 0 () 0 3 ()
y(t) S x(t) S dy dx E, E E T1 T2 T1 T2 1 T 1 T 2 2 T 2 1 T 2 2 3 T 3 1 T 3 2... V o R R R T V CC P F A P g h V ext V sin 2 S f S t V 1 V 2 V out sin 2 f S t x 1 F k q K x q K k F d F x d V
γ n ϑ n n ψ T 8 Q 6 j, k, m, n, p, r, r t, x, y f m (x) (f(x)) m / a/b (f g)(x) = f(g(x)) n f f n I J α β I = α + βj N, Z, Q ϕ Εὐκλείδης ὁ Ἀλεξανδρεύς Στοιχεῖα ἄκρος καὶ μέσος λόγος ὕδωρ αἰθήρ ϕ φ Φ τ
Κεφάλαιο 1 Πραγματικοί Αριθμοί 1.1 Σύνολα
x + = 0 N = {,, 3....}, Z Q, b, b N c, d c, d N + b = c, b = d. N = =. < > P n P (n) P () n = P (n) P (n + ) n n + P (n) n P (n) n P n P (n) P (m) P (n) n m P (n + ) P (n) n m P n P (n) P () P (), P (),...,
( () () ()) () () ()
ΑΝΑΛΥΣΗ ΙΙ- ΠΟΛΙΤΙΚΟΙ ΜΗΧΑΝΙΚΟΙ ΦΥΛΛΑΔΙΟ /011 1 Έστω r = r( t = ( x( t ( t z( t t I = [ a b] συνάρτηση C τάξης και r = r( t = r ( t = x ( t + ( t z ( t είναι μία διανυσματική + Nα αποδείξετε ότι: d 1 1
Διευθύνοντα Μέλη του mathematica.gr
Το «Εικοσιδωδεκάεδρον» παρουσιάζει ϑέματα που έχουν συζητηθεί στον ιστότοπο http://www.mathematica.gr. Η επιλογή και η ϕροντίδα του περιεχομένου γίνεται από τους Επιμελητές του http://www.mathematica.gr.
ΑΝΑΛΥΣΗ ΙΙ- ΠΟΛΙΤΙΚΟΙ ΜΗΧΑΝΙΚΟΙ ΦΥΛΛΑΔΙΟ 2/2012
ΑΝΑΛΥΣΗ ΙΙ- ΠΟΛΙΤΙΚΟΙ ΜΗΧΑΝΙΚΟΙ ΦΥΛΛΑΔΙΟ /0 Έστω r rx, y, z, I a, b συνάρτηση C τάξης και r r r x y z Nα αποδείξετε ότι: d dr r (α) r r, I r r r d dr d r (β) r r, I dr (γ) Αν r 0, για κάθε I κάθε I d (δ)
a; b 2 R; a < b; f : [a; b] R! R y 2 R: y : [a; b]! R; ( y (t) = f t; y(t) ; a t b; y(a) = y : f (t; y) 2 [a; b]r: f 2 C ([a; b]r): y 2 C [a; b]; y(a) = y ; f y ỹ ỹ y ; jy ỹ j ky ỹk [a; b]; f y; ( y (t)
692.66:
1 69.66:6-83 05.05.05 -,, 015 .. 7... 8 1.... 19 1.1.,.. 19 1.. 8 1.3.. 1.4... 1.4.1.... 33 36 40 1.4.. 44 1.4.3. -... 48.. 53.,.. 56.1., -....... 56..... 6.3.... 71.. 76 3.,.... 77 3 3.1.... 77 3.1.1....
Προβολές και Μετασχηματισμοί Παρατήρησης
Γραφικά & Οπτικοποίηση Κεφάλαιο 4 Προβολές και Μετασχηματισμοί Παρατήρησης Εισαγωγή Στα γραφικά υπάρχουν: 3Δ μοντέλα 2Δ συσκευές επισκόπησης (οθόνες & εκτυπωτές) Προοπτική απεικόνιση (προβολή): Λαμβάνει
(ii) x[y (x)] 4 + 2y(x) = 2x. (vi) y (x) = x 2 sin x
ΕΥΓΕΝΙΑ Ν. ΠΕΤΡΟΠΟΥΛΟΥ ΕΠΙΚ. ΚΑΘΗΓΗΤΡΙΑ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ «ΕΦΑΡΜΟΣΜΕΝΑ ΜΑΘΗΜΑΤΙΚΑ ΙΙΙ» ΠΑΤΡΑ 2015 1 Ασκήσεις 1η ομάδα ασκήσεων 1. Να χαρακτηρισθούν πλήρως
' ( )* * +,,, ) - ". &!: &/#&$&0& &!& $#/&! 1 2!#&, #/&2!#&3 &"&!3, #&- &2!#&, "#4 $!&$3% 2!% #!.1 & &!" //! &-!!
..!! "#$% #&" 535.34 ' ( )* *,,, ) - ". &!: 1.4.7 &/#&$&& &!&11 5.7.1 $#/&! 1!#&, #/&!#&3 &"&!3, #&- &!#&, "#4 $!&$3%!% #!.1 & &!" //! &-!!% 3 #&$&/!: /&!&# &-!!%, "#&&# 56$.., //! &-!!% ).. &$ 13 .
Molekulare Ebene (biochemische Messungen) Zelluläre Ebene (Elektrophysiologie, Imaging-Verfahren) Netzwerk Ebene (Multielektrodensysteme) Areale (MRT, EEG...) Gene Neuronen Synaptische Kopplung kleine
( () () ()) () () ()
ΑΝΑΛΥΣΗ ΙΙ- ΜΗΧΑΝΟΛΟΓΟΙ ΜΗΧΑΝΙΚΟΙ ΦΥΛΛΑΔΙΟ /011 1 Έστω r = r( t = ( x( t, ( t, z( t, t I = [ a, b] συνάρτηση C τάξης και r = r( t = r ( t = x ( t + ( t z ( t είναι μία διανυσματική + Nα αποδείξετε ότι:
σ (9) = i + j + 3 k, σ (9) = 1 6 k.
Ασκήσεις από το Διανυσματικός Λογισμός των Marsden - romba και από το alculus του Apostol. 1. Βρείτε τα διανύσματα της ταχύτητας και της επιτάχυνσης και την εξίσωση της εφαπτομένης για κάθε μία από τις
ΘΕΩΡΙΑ - ΠΑΡΑ ΕΙΓΜΑΤΑ ΑΝΑΛΥΤΙΚΑ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ
ΘΕΩΡΙΑ - ΠΑΡΑ ΕΙΓΜΑΤΑ ΑΝΑΛΥΤΙΚΑ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΑΘΗΝΑ 996 Πρόλογος Οι σηµειώσεις αυτές γράφτηκαν για τους φοιτητές του Εθνικού Μετσόβιου Πολυτεχνείου και καλύπτουν πλήρως το µάθηµα των
Λ. Ζαχείλας. Επίκουρος Καθηγητής Εφαρμοσμένων Μαθηματικών Τμήμα Οικονομικών Επιστημών Πανεπιστήμιο Θεσσαλίας. Οικονομική Δυναμική 29/6/14
1 Λ. Ζαχείλας Επίκουρος Καθηγητής Εφαρμοσμένων Μαθηματικών Τμήμα Οικονομικών Επιστημών Πανεπιστήμιο Θεσσαλίας Οικονομική Δυναμική 9 Συνεχή δυναμικά συστήματα Μέρος 1 ο Λουκάς Ζαχείλας Ορισμός Διαφορικής
ψ (x) = e γ x A 3 x < a b / 2 A 2 cos(kx) B 2 b / 2 < x < b / 2 sin(kx) cosh(γ x) A 1 sin(kx) a b / 2 < x < b / 2 cos(kx) + B 2 e γ x x > a + b / 2
Σπουδές στις Φυσικές Επιστήµες ΦΥΕ 40 Κβαντική Φυσική 014-015 ΕΡΓΑΣΙΑ 3 η Υπόδειξη λύσεων ΑΣΚΗΣΗ 1 Η άρτια κυµατοσυνάρτηση θα δίνεται από (x) = A 3 e γ x x < a b / A cos(kx) B sin(kx) a b / < x < b / A
a; b 2 R; a < b; f : [a; b] R! R y 2 R: y : [a; b]! R; ( y (t) = f t; y(t) ; a t b; y(a) = y : f (t; y) 2 [a; b]r: f 2 C ([a; b]r): y 2 C [a; b]; y(a) = y ; f y ỹ ỹ y ; jy ỹ j ky ỹk [a; b]; f y; ( y (t)
Το άτομο του Υδρογόνου
Το άτομο του Υδρογόνου Δυναμικό Coulomb Εξίσωση Schrödinger h e (, r, ) (, r, ) E (, r, ) m ψ θφ r ψ θφ = ψ θφ Συνθήκες ψ(, r θφ, ) = πεπερασμένη ψ( r ) = 0 ψ(, r θφ, ) =ψ(, r θφ+, ) π Επιτρεπτές ενέργειες
Διευθύνοντα Μέλη του mathematica.gr
Το «Εικοσιδωδεκάεδρον» παρουσιάζει ϑέματα που έχουν συζητηθεί στον ιστότοπο http://www.mthemtic.gr. Η επιλογή και η φροντίδα του περιεχομένου γίνεται από τους Επιμελητές του http://www.mthemtic.gr. Μετατροπές
! " #$% & '()()*+.,/0.
! " #$% & '()()*+,),--+.,/0. 1!!" "!! 21 # " $%!%!! &'($ ) "! % " % *! 3 %,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0 %%4,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,5
Έργο Κινητική Ενέργεια. ΦΥΣ 131 - Διαλ.16 1
Έργο Κινητική Ενέργεια ΦΥΣ 131 - Διαλ.16 1 Είδη δυνάµεων q Δύο είδη δυνάμεων: Ø Συντηρητικές ή διατηρητικές δυνάμεις και μή συντηρητικές ü Μια δύναμη είναι συντηρητική όταν το έργο που παράγει ασκούμενη
Εφαρμοσμένα Μαθηματικά ΙΙ 5ο Σετ Ασκήσεων (Λύσεις) Διανυσματικά Πεδία Επικαμπύλια Ολοκληρώματα Επιμέλεια: Ι. Λυχναρόπουλος
Εφαρμοσμένα Μαθηματικά ΙΙ 5ο Σετ Ασκήσεων (Λύσεις) Διανυσματικά Πεδία Επικαμπύλια Ολοκληρώματα Επιμέλεια: Ι. Λυχναρόπουλος. Να υπολογιστεί το ολοκλήρωμα I = x ds, όπου c το δεξιό ημικύκλιο x + = 6 α) κινούνοι
B G [0; 1) S S # S y 1 ; y 3 0 t 20 y 2 ; y 4 0 t 20 y 1 y 2 h n t: r = 10 5 ; a = 10 6 ei n = ỹi n y i t n ); i = 1; 3: r = 10 5 ; a = 10 6 ei n = ỹi n y i t n ); i = 2; 4: r = 10 5 ; a = 10 6 t = 20
u = 0 u = ϕ t + Π) = 0 t + Π = C(t) C(t) C(t) = K K C(t) ϕ = ϕ 1 + C(t) dt Kt 2 ϕ = 0
u = (u, v, w) ω ω = u = 0 ϕ u u = ϕ u = 0 ϕ 2 ϕ = 0 u t = u ω 1 ρ Π + ν 2 u Π = p + (1/2)ρ u 2 + ρgz ω = 0 ( ϕ t + Π) = 0 ϕ t + Π = C(t) C(t) C(t) = K K C(t) ϕ = ϕ 1 + C(t) dt Kt C(t) ϕ ϕ 1 ϕ = ϕ 1 p ρ
ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. Θετικής - Τεχνολογικής Κατεύθυνσης Φυσική Γ Λυκείου ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ. Επιμέλεια: ΘΕΟΛΟΓΟΣ ΤΣΙΑΡΔΑΚΛΗΣ
ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ Θετικής - Τεχνολογικής Κατεύθυνσης Φυσική Γ Λυκείου Επιμέλεια: ΘΕΟΛΟΓΟΣ ΤΣΙΑΡΔΑΚΛΗΣ e-mail: info@iliaskos.gr www.iliaskos.gr - f= f= f t+ 0 ) max
ΦΥΕ14-5 η Εργασία Παράδοση
ΦΥΕ4-5 η Εργασία Παράδοση.5.9 Πρόβληµα. Συµπαγής οµογενής κύλινδρος µάζας τυλιγµένος µε λεπτό νήµα αφήνεται να κυλίσει από την κορυφή κεκλιµένου επιπέδου µήκους l και γωνίας φ (ϐλέπε σχήµα). Το ένα άκρο
http://www.mathematica.gr/forum/viewtopic.php?f=109&t=15584
Επιμέλεια: xr.tsif Σελίδα 1 ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΓΙΑ ΜΑΘΗΤΙΚΟΥΣ ΔΙΑΓΩΝΙΣΜΟΥΣ ΕΚΦΩΝΗΣΕΙΣ ΤΕΥΧΟΣ 5ο ΑΣΚΗΣΕΙΣ 401-500 Αφιερωμένο σε κάθε μαθητή που ασχολείται ή πρόκειται να ασχοληθεί με Μαθηματικούς διαγωνισμούς
1ος Θερμοδυναμικός Νόμος
ος Θερμοδυναμικός Νόμος Έργο-Έργο ογκομεταβολής Αδιαβατικό Έργο Εσωτερική ενέργεια, U Πρώτος Θερμοδυναμικός Νόμος Θερμότητα Ολική Ενέργεια Ενθαλπία Θερμοχωρητικότητα Διεργασίες Ιδανικών Αερίων ΕΡΓΟ Κεφάλαιο3,
= (2)det (1)det ( 5)det 1 2. u
www.maths.gr, Ενδεικτικές Λύσεις ης Εργασίας ΦΥΕ4 έτους -. Οι Λύσεις είναι για την βοήθεια των φοιτητών, σε ΘΕΜΑ ο 5 6 4 6 4 5 det 4 5 6 ()det ()det ()det 8 9 7 9 7 8 7 8 9 ()( ) ()( 6 ) ()( ) 5 4 4 det
GENIKA MAJHMATIKA. TEI SERRWN SQOLH DIOIKHSHS KAI OIKONOMIAS Tm ma Logistik c
GENIKA MAJHMATIKA ΓΙΩΡΓΙΟΣ ΚΑΡΑΒΑΣΙΛΗΣ TEI SERRWN SQOLH DIOIKHSHS KAI OIKONOMIAS Tm ma Logistik c 26 Μαΐου 2011 Συνάρτηση f ονομάζεται κάθε σχέση από ένα σύνολο A (πεδίο ορισμού) σε σύνολο B με την οποία
Φυσική για Μηχανικούς
Φυσική για Μηχανικούς Απλή Αρμονική Ταλάντωση Εικόνα: Σταγόνες νερού που πέφτουν από ύψος επάνω σε μια επιφάνεια νερού προκαλούν την ταλάντωση της επιφάνειας. Αυτές οι ταλαντώσεις σχετίζονται με κυκλικά
ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗΣ ΣΤΗ ΦΥΣΙΚΗ
ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 4// ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗΣ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ α) Για δεδομένη αρχική ταχύτητα υ, με ποια γωνία
ΙΑΦΑΝΕΙΕΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ ΦΥΣΙΚΗ Ι ΜΙΧΑΗΛ ΒΕΛΓΑΚΗΣ, ΚΑΘΗΓΗΤΗΣ ΦΥΣΙΚΗΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΚΑ ΗΜΑΪΚΟ ΕΤΟΣ 007-8 ΙΑΦΑΝΕΙΕΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ ΦΥΣΙΚΗ Ι ΜΙΧΑΗΛ ΒΕΛΓΑΚΗΣ, ΚΑΘΗΓΗΤΗΣ ΦΥΣΙΚΗΣ ΕΓΧΕΙΡΙ ΙΑ: α) R. A. SERWAY, PHYSICS FOR SCIENTISTS & ENGINEERS,
-! " #!$ %& ' %( #! )! ' 2003
-! "#!$ %&' %(#!)!' ! 7 #!$# 9 " # 6 $!% 6!!! 6! 6! 6 7 7 &! % 7 ' (&$ 8 9! 9!- "!!- ) % -! " 6 %!( 6 6 / 6 6 7 6!! 7 6! # 8 6!! 66! #! $ - (( 6 6 $ % 7 7 $ 9!" $& & " $! / % " 6!$ 6!!$#/ 6 #!!$! 9 /!
#%" )*& ##+," $ -,!./" %#/%0! %,!
-!"#$% -&!'"$ & #("$$, #%" )*& ##+," $ -,!./" %#/%0! %,! %!$"#" %!#0&!/" /+#0& 0.00.04. - 3 3,43 5 -, 4 $ $.. 04 ... 3. 6... 6.. #3 7 8... 6.. %9: 3 3 7....3. % 44 8... 6.4. 37; 3,, 443 8... 8.5. $; 3
Απειροστικός Λογισμός ΙΙ, εαρινό εξάμηνο Φυλλάδιο ασκήσεων επανάληψης.
Απειροστικός Λογισμός ΙΙ, εαρινό εξάμηνο 2016-17. Φυλλάδιο ασκήσεων επανάληψης. 1. Για καθεμία από τις παρακάτω συναρτήσεις ελέγξτε βάσει του ορισμού της παραγωγισιμότητας αν είναι παραγωγίσιμη στο αντίστοιχο
r r t r r t t r t P s r t r P s r s r r rs tr t r r t s ss r P s s t r t t tr r r t t r t r r t t s r t rr t Ü rs t 3 r r r 3 rträ 3 röÿ r t
r t t r t ts r3 s r r t r r t t r t P s r t r P s r s r P s r 1 s r rs tr t r r t s ss r P s s t r t t tr r 2s s r t t r t r r t t s r t rr t Ü rs t 3 r t r 3 s3 Ü rs t 3 r r r 3 rträ 3 röÿ r t r r r rs
ιανύσµατα A z A y A x 1.1 Αλγεβρικές πράξεις µεταξύ διανυσµάτων 1.2 Εσωτερικό γινόµενο δύο διανυσµάτων ca = ca x ˆx + ca y ŷ + ca z ẑ
1 ιανύσµατα Ο ϕυσικός χώρος µέσα στον οποίο Ϲούµε και κινούµαστε είναι ένας τρισδιάστατος ευκλείδειος γραµµικός χώ- ϱος. Ισχύουν λοιπόν τα αξιώµατα της Γεωµετρίας του Ευκλείδη, το πυθαγόρειο ϑεώρηµα και
ds ds ds = τ b k t (3)
Γενικά Μαθηματικά ΙΙΙ Πρώτο σετ ασκήσεων, Λύσεις Άσκηση 1 Γνωρίζουμε ότι το εφαπτόμενο διάνυσμα ( t), ορίζεται ως: t = r = d r ds (1) και επιπλέον το διάνυσμα της καμπυλότητας ( k), ορίζεται ως: d t k
Μαθηματικά προσαματολισμού Β Λσκείοσ
Μαθηματικά προσαματολισμού Β Λσκείοσ Ο κύκλος Στέλιος Μιταήλογλοσ wwwaskisopolisgr Κύκλος Εξίσωση κύκλου Έστω Oxy ένα σύστημα συντεταγμένων στο επίπεδο και C ο κύκλος με M x, y του κέντρο το σημείο 0
ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΙΑΝΟΥΑΡΙΟΣ 2012 ΘΕΜΑΤΑ Α
ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΙΑΝΟΥΑΡΙΟΣ 0 ΘΕΜΑΤΑ Α Θέµα ο. Να βρεθεί (α) η γενική λύση yy() της διαφορικής εξίσωσης y' y + καθώς και (β) η µερική λύση που διέρχεται από το σηµείο y(/). (γ) Από ποια σηµεία του επιπέδου
Αρµονικοί ταλαντωτές
Αρµονικοί ταλαντωτές ΦΥΣ 131 - Διαλ.30 2 Αρµονικοί ταλαντωτές q Μερικά από τα θέµατα που θα καλύψουµε: q Μάζες σε ελατήρια, εκκρεµή q Διαφορικές εξισώσεις: d 2 x dt 2 + K m x = 0 Ø Mε λύση της µορφής:
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. Απειροστικός Λογισµός Ι. ιδάσκων : Α. Μουχτάρης. Απειροστικός Λογισµός Ι - 3η Σειρά Ασκήσεων
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών Απειροστικός Λογισµός Ι ιδάσκων : Α. Μουχτάρης Απειροστικός Λογισµός Ι - η Σειρά Ασκήσεων Ασκηση.. Ανάπτυξη σε µερικά κλάσµατα Αφου ο ϐαθµός του αριθµητή
Μηχανική - Ρευστομηχανική
Μηχανική - Ρευστομηχανική Ενότητα 9: Ταλαντώσεις Διδάσκων: Πομόνη Αικατερίνη, Αναπλ. Καθηγήτρια Επιμέλεια: Γεωργακόπουλος Τηλέμαχος, Υπ. Διδάκτωρ Φυσικής 015 Θετικών Επιστημών Φυσικής Άδειες Χρήσης Το
v w = v = pr w v = v cos(v,w) = v w
Íö Ú Ò ÔÖ Ø Ô Ö ÔÖ ØÝ Ô Ð Ùö Ú ÒÝÒ ÝÖ Ð ÓØ Ó µ º ºÃÐ ØÒ Ë ÓÖÒ Þ ÔÓ ÒÐ Ø Ó ÓÑ ØÖ ½ ÁÞ Ø Ð ØÚÓ Æ Ù Å Ú º ÖÙ µº Ã Ø Ùö Ú Ò ÝÖ Ú Ø ÒÅ ØØÔ»»ÛÛÛºÑ ºÚÙºÐØ» Ø ÖÓ» ¾» л Ò Ó» ÓÑ ÙÞ º ØÑ ½ Î ØÓÖ Ð Ö ÒÅ Ö Ú ØÓÖ ÒÅ
x sin 3x 3 sin 3x dx = 3 + C = ln x = x2 ln x d 2 2 ln x 1 x 2 x2 x2 e x sin x dx) e 3x 2x dx = ( 1 3 )x2 e 3x x 2 e 3x 3 2x 3 8x 2 + 9x + 1 4x + 4
ΦΥΕ4, 9- - η Εργασία Παράδοση 8.. Πρόβληµα. Υπολογίστε τα ακόλουθα ολοκληρώµατα (i cos d, (ii ln d, (iii e sin d, (iv e d (i cos d = = ( sin ( sin sin d = ( ( ( cos + C = ( ( sin + sin ( sin d ( cos +
iii) x + ye 2xy 2xy dy
ΕΚΠΑ - Τμήμα Μαθηματικών Διαφορικές Εξισώσεις Ι Χειμερινό Εξάμηνο 2016-2017 Παραδόσεις Ε. Κόττα-Αθανασιάδου Ασκήσεις (Είναι οι ασκήσεις που αφήνονται για «λύση στο σπίτι» στις παραδόσεις της διδάσκουσας.
μ μ dω I ν S da cos θ da λ λ Γ α/β MJ Capítulo 1 % βpic ɛ Eridani V ega β P ic F ormalhaut 10 9 15% 70 Virgem 47 Ursa Maior Debris Disk Debris Disk μ 90% L ac = GM M ac R L ac R M M ac L J T
!"#!"!"# $ "# '()!* '+!*, -"*!" $ "#. /01 023 43 56789:3 4 ;8< = 7 >/? 44= 7 @ 90A 98BB8: ;4B0C BD :0 E D:84F3 B8: ;4BG H ;8
2013/2012. m' Z (C) : V= (E): (C) :3,24 m/s. (A) : T= (1-z).g. (D) :4,54 m/s
( ) 03/0 - o l P z o M l =.P S. ( ) m' Z l=m m=kg m =,5Kg g=0/kg : : : : Q. (A) : V= (B) : V= () : V= (D) : V= (): : V :Q. (A) :4m/s (B) :0,4 m/s () :5m/s (D) :0,5m/s (): : M T : Q.3 (A) : T=(-z).g (B)
E = 1 2 k. V (x) = Kx e αx, dv dx = K (1 αx) e αx, dv dx = 0 (1 αx) = 0 x = 1 α,
Μαθηματική Μοντελοποίηση Ι 1. Φυλλάδιο ασκήσεων Ι - Λύσεις ορισμένων ασκήσεων 1.1. Άσκηση. Ενα σωμάτιο μάζας m βρίσκεται σε παραβολικό δυναμικό V (x) = 1/2x 2. Γράψτε την θέση του σαν συνάρτηση του χρόνου,
ΓΕΝΙΚΟ ΛΥΚΕΙΟ Λ. ΑΙΔΗΨΟΥ ΣΧΟΛ. ΕΤΟΣ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ ΙΟΥΝΙΟΥ ΓΕΩΜΕΤΡΙΑ Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ
ΓΕΝΙΚΟ ΛΥΚΕΙΟ Λ. ΑΙΔΗΨΟΥ ΣΧΟΛ. ΕΤΟΣ 212-213 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ ΙΟΥΝΙΟΥ ΓΕΩΜΕΤΡΙΑ Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Θέμα 1 ο Α. Να αποδείξετε ότι κάθε σημείο της διχοτόμου μιας γωνίας ισαπέχει
..,..,.. ! " # $ % #! & %
..,..,.. - -, - 2008 378.146(075.8) -481.28 73 69 69.. - : /..,..,... : - -, 2008. 204. ISBN 5-98298-269-5. - -,, -.,,, -., -. - «- -»,. 378.146(075.8) -481.28 73 -,..,.. ISBN 5-98298-269-5..,..,.., 2008,
http://www.mathematica.gr/forum/viewtopic.php?f=109&t=15584
Επιμέλεια : xr.tsif Σελίδα 1 ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΓΙΑ ΜΑΘΗΤΙΚΟΥΣ ΔΙΑΓΩΝΙΣΜΟΥΣ ΕΚΦΩΝΗΣΕΙΣ ΤΕΥΧΟΣ ΑΣΚΗΣΕΙΣ 101-00 Αφιερωμέν σε κάθε μαθητή πυ ασχλείται ή πρόκειται να ασχληθεί με Μαθηματικύς διαγωνισμύς
Εισαγωγή στις Φυσικές Επιστήμες ( ) Ονοματεπώνυμο Τμήμα
Εισαγωγή στις Φυσικές Επιστήμες (9-7-5) Ονοματεπώνυμο Τμήμα Θέμα ο Ερώτημα Ένα σώμα μάζας kg τοποθετείται σε ένα κεκλιμένο επίπεδο και συνδέεται μέσω του νήματος αβαρούς τροχαλίας με ένα ελατήριο αμελητέας
SKEMA PERCUBAAN SPM 2017 MATEMATIK TAMBAHAN KERTAS 2
SKEMA PERCUBAAN SPM 07 MATEMATIK TAMBAHAN KERTAS SOALAN. a) y k ( ) k 8 k py y () p( ) ()( ) p y 90 0 0., y,, Luas PQRS 8y 8 y Perimeter STR y 8 7 7 y66 8 6 6 6 6 8 0 0, y, y . a).. h( h) h h h h h h 0
ΓΕΝΙΚΗ ΦΥΣΙΚΗ IV: ΚΥΜΑΤΙΚΗ - ΟΠΤΙΚΗ
Τμήμα Φυσικής Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης ΓΕΝΙΚΗ ΦΥΣΙΚΗ IV: ΚΥΜΑΤΙΚΗ - ΟΠΤΙΚΗ Ι. ΑΡΒΑΝΙΤΙ ΗΣ jarvan@physcs.auth.gr 2310 99 8213 ΘΕΜΑΤΙΚΕΣ ΕΝΟΤΗΤΕΣ ΓΕΩΜΕΤΡΙΚΗ ΟΠΤΙΚΗ ΠΟΛΩΣΗ ΣΥΜΒΟΛΗ ΠΕΡΙΘΛΑΣΗ
ΔΙΗΜΕΡΙΔΑ ΜΑΘΗΜΑΤΙΚΩΝ. Θέμα: Eφαρμογές Συνήθων Διαφορικών Εξισώσεων Πρώτης Τάξης
ΔΙΗΜΕΡΙΔΑ ΜΑΘΗΜΑΤΙΚΩΝ Θέμα: Eφαρμογές Συνήθων Διαφορικών Εξισώσεων Πρώτης Τάξης Χρυσή Γ. Κοκολογιαννάκη Αναπληρώτρια Καθηγήτρια Τμήματος Μαθηματικών Πανεπιστημίου Πατρών Ηράκλειο 7-8 Μαρτίου 4 ) Να βρεθεί
Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =
Mock Eam 7 Mock Eam 7 Section A. Reference: HKDSE Math M 0 Q (a) ( + k) n nn ( )( k) + nk ( ) + + nn ( ) k + nk + + + A nk... () nn ( ) k... () From (), k...() n Substituting () into (), nn ( ) n 76n 76n
Zadatak 2 Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z 3 z 4 i objasniti prelazak sa jedne na drugu granu.
Kompleksna analiza Zadatak Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z z 4 i objasniti prelazak sa jedne na drugu granu. Zadatak Odrediti tačke grananja, Riemann-ovu
Συνήθεις Διαφορικές Εξισώσεις Ι ΣΔΕ Bernoulli, Riccati, Ομογενείς. Διαφορικές Εξισώσεις Bernoulli, Riccati και Ομογενείς
Συνήθεις Διαφορικές Εξισώσεις Ι ΣΔΕ Bernoulli, Riccati, Ομογενείς Διαφορικές Εξισώσεις Bernoulli, Riccati και Ομογενείς Οι εξισώσεις Bernoulli αποτελούν την κλάση των μη γραμμικών διαφορικών εξισώσεων
Φυσική για Μηχανικούς
Φυσική για Μηχανικούς Εικόνα: Σταγόνες νερού που πέφτουν από ύψος επάνω σε μια επιφάνεια νερού προκαλούν την ταλάντωση της επιφάνειας. Αυτές οι ταλαντώσεις σχετίζονται με κυκλικά κύματα που απομακρύνονται
È http://en.wikipedia.org/wiki/icosidodecahedron
À Ô ÐÓ ÖÓÒØ ØÓÙÔ Ö ÕÓÑ ÒÓÙ Ò Ø Ô ØÓÙ Ô Ñ Ð Ø ØÓÙhttp://www.mathematica.grº Å Ø ØÖÓÔ LATEX ÛØ Ò Ã Ð Ò Ø ÃÓØÖôÒ Ä ÙØ Ö ÈÖÛØÓÔ Ô Õ ÐÐ ËÙÒ ÔÓÙÓ ËÕ Ñ Ø Å Õ Ð Æ ÒÒÓ ÉÖ ØÓÌ Ë Ð ¹ ÅÔÓÖ Ò Ò Ô Ö Õ Ò Ò Ñ Ð Ö º ÌÓß
1. ίνονται τα διανύσµατα: x=(a+µ,1), y=(0,b), a,b>0. Για ποιες τιµές του µ τα διανύσµατα είναι: (α) γραµµικά εξαρτηµένα, (β) γραµµικά ανεξάρτητα.
. ίνονται τα διανύσµατα: x=(a+µ,), y=(0,b), a,b>0. Για ποιες τιµές του µ τα διανύσµατα είναι: (α) γραµµικά εξαρτηµένα, (β) γραµµικά ανεξάρτητα.. ίνονται τα διανύσµατα (x,0), (0,y), (z,0). Είναι γραµµικά
cos t dt = 0. t cos t 2 dt = 1 8 f(x, y, z) = (2xyz, x 2 z, x 2 y) (2xyz) = (x2 z) (x 2 z) = (x2 y) 1 u du =
ΛΥΣΕΙΣ. Οι ασκήσεις από το βιβλίο των Marsden - Tromba. 1. 7.1.()(b) σ (t) (cos t sin t 1) οπότε σ (t) και σ f(x y z) ds π (c) σ (t) i + tj οπότε σ (t) 1 + 4t και σ f(x y z) ds 1 t cos 1 + 4t dt 1 8 cos
Εφαρμοσμένα Μαθηματικά ΙΙ Πρόοδος 18/4/2018 Διδάσκων: Ι. Λυχναρόπουλος
Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Πρόοδος 8/4/8 Διδάσκων: Ι. Λυχναρόπουλος Άσκηση (Μονάδες ) Να εξετάσετε ως προς τα τοπικά ακρότατα τη συνάρτηση: f x x x (,
Κεφάλαιο 6 ιανυσµατικοί χώροι...1
6. ιανυσµατικοί χώροι Σελίδα από 5 Κεφάλαιο 6 ιανυσµατικοί χώροι ιανυσµατικοί χώροι... 6. ιανυσµατικοί χώροι... 6. Υποχώροι...7 6. Γραµµικοί συνδυασµοί... 6. Γραµµική ανεξαρτησία...9 6.5 Άθροισµα και ευθύ
➆t r r 3 r st 40 Ω r t st 20 V t s. 3 t st U = U = U t s s t I = I + I
tr 3 P s tr r t t 0,5A s r t r r t s r r r r t st 220 V 3r 3 t r 3r r t r r t r r s e = I t = 0,5A 86400 s e = 43200As t r r r A = U e A = 220V 43200 As A = 9504000J r 1 kwh = 3,6MJ s 3,6MJ t 3r A = (9504000
X(f) E(ft) df x[i] = 1 F. x(t) E( ft) dt X(f) = x[i] = 1 F
Πανεπιστήμιο Θεσσαλίας ΗΥ240: Θεωρία Σημάτων και Συστημάτων 4..2006 Φυλλάδιο Τυπολόγιο μετασχηματισμών ourier, Laplace και Z Σύμβολα Για έναν πραγματικό αριθμό x, συμβολίζουμε με x, x, [x], τον αμέσως
ΚΕΦΑΛΑΙΟ 1 ο ΔΙΑΝΥΣΜΑΤΑ
taexeiolag ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΑΣΚΗΣΗ 1 uuuu uuuu uuuu Αν OA OB 3O 0 και ΚΕΦΑΛΑΙΟ 1 ο ΔΙΑΝΥΣΜΑΤΑ uuuu uuuu uuuu OA OB 1, O α Να δείξετε ότι τα σημεία Α, Β, Γ είναι συνευθειακά
ΦΥΣΙΚΑ ΜΕΓΕΘΗ Αριθμητικά ή Μονόμετρα μεγέθη: Όγκος Μάζα Χρόνος Ενέργεια κ.λ.π. Διανυσματικά μεγέθη: Μετατόπιση Δύναμη Ορμή Διανυσματικοί τελεστές
ΦΥΣΙΚΑ ΜΕΓΕΘΗ Αριθμητικά ή Μονόμετρα μεγέθη: Όγκος Μάζα Χρόνος Ενέργεια κ.λ.π. Διανυσματικά μεγέθη: Μετατόπιση Δύναμη Ορμή Διανυσματικοί τελεστές κ.λ.π. ΔΙΑΝΥΣΜΑΤΑ Παράσταση διανύσματος ΔΙΑΝΥΣΜΑΤΑ ΒΑΣΙΚΕΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ. Εξέταση στη Μηχανική Ι Περίοδο Σεπτεµ ρίου 25Σεπτεµ ρίου2007
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τµήµα Φυσική Εξέταση στη Μηχανική Ι Περίοδο Σεπτεµ ρίου 25Σεπτεµ ρίου27 Τµήµα Π. Ιωάννου& Θ. Αποστολάτου Απαντήστεσεόσαπερισσότεραερωτήµαταµπορείτε.Ησαφήνεια,ακρί εια,λακωνικότητακαι
ẋ = f(x) n 1 f i (i = 1, 2,..., n) x i (i = 1, 2,..., n) x(0) = x o x(t) t > 0 t < 0 x(t) x o U I xo I xo : α xo < t < β xo α xo β xo x(t) t β t α + x f(x) = 0 x x x x V 1 x x o V 1 x(t) t > 0 x o V 1
Errata (Includes critical corrections only for the 1 st & 2 nd reprint)
Wedesday, May 5, 3 Erraa (Icludes criical correcios oly for he s & d repri) Advaced Egieerig Mahemaics, 7e Peer V O eil ISB: 978474 Page # Descripio 38 ie 4: chage "w v a v " "w v a v " 46 ie : chage "y
Γενικά Μαθηµατικά Ι Θέµατα Ιανουαρίου 2015
Γενικά Μαθηµατικά Ι Θέµατα Ιανουαρίου 215 Άσκηση 1: (α) Να υπολογισθεί το γενικευµένο ολοκλήρωµα (ax+b)(x 2 +1) αν το a είναι ϑετικός αριθµός. (ϐ) Το µεσηµέρι, ένα σαλιγκάρι που ϐρίσκεται στο κέντρο ενός
Dissertation for the degree philosophiae doctor (PhD) at the University of Bergen
Dissertation for the degree philosophiae doctor (PhD) at the University of Bergen Dissertation date: GF F GF F SLE GF F D Ĉ = C { } Ĉ \ D D D = {z : z < 1} f : D D D D = D D, D = D D f f : D D
φ(t) TE 0 φ(z) φ(z) φ(z) φ(z) η(λ) G(z,λ) λ φ(z) η(λ) η(λ) = t CIGS 0 G(z,λ)φ(z)dz t CIGS η(λ) φ(z) 0 z
σ (t) = (sin t + t cos t) 2 + (cos t t sin t) = t )) 5 = log 1 + r (t) = 2 + e 2t + e 2t = e t + e t
ΛΥΣΕΙΣ. Οι ακήεις από το βιβλίο των Mrsden - Tromb.. 3.)e) Είναι t) sin t + t os t, os t t sin t, 3) οπότε t) sin t + t os t) + os t t sin t) + 3 t + 4 και το μήκος είναι ίο με t t) dt t + 4 dt t + 4 +
Επιμέλεια:xr.tsif Σελίδα 1 ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΓΙΑ ΜΑΘΗΤΙΚΟΥΣ ΔΙΑΓΩΝΙΣΜΟΥΣ ΤΕΥΧΟΣ 8ο ΑΣΚΗΣΕΙΣ 701-800 Αφιερωμένο σε κάθε μαθητή που ασχολείται ή πρόκειται να ασχοληθεί με Μαθηματικούς διαγωνισμούς Τσιφάκης