!" # $% &' () Downloaded from jamlu.liau.ac.ir at 20: on Tuesday August 14th #1.

Σχετικά έγγραφα
Inventory Model with Different Deterioration Rates with Stock and Price Dependent Demand under Time Varying Holding Cost

Inventory Model with Different Deterioration Rates for Imperfect Quality Items and Linear Demand

A System Dynamics Model on Multiple2Echelon Control

Multi-objective design of control chart for short-run production

A research on the influence of dummy activity on float in an AOA network and its amendments

!! " # $%&'() * & +(&( 2010

Nash. Nash. Nash F224 O Hopp 5. Nash. Nash. Vol. 16 No. 3 Mar JOURNAL OF MANAGEMENT SCIENCES IN CHINA

The martingale pricing method for pricing fluctuation concerning stock models of callable bonds with random parameters

Research on model of early2warning of enterprise crisis based on entropy

Arbitrage Analysis of Futures Market with Frictions

Vol. 34 ( 2014 ) No. 4. J. of Math. (PRC) : A : (2014) XJ130246).

M p f(p, q) = (p + q) O(1)

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

Κινητό Ε- mail

Archive of SID.

Schedulability Analysis Algorithm for Timing Constraint Workflow Models

Parts Manual. Trio Mobile Surgery Platform. Model 1033

Buried Markov Model Pairwise

ΕΠΙΧΕΙΡΗΣΙΑΚΗ EΡΕΥΝΑ & ΔΙΟΙΚΗΤΙΚΗ ΕΠΙΣΤΗΜΗ OPERATIONS RESEARCH & MANAGEMENT SCIENCE

Mesh Parameterization: Theory and Practice

Η Έννοια και η Σημασία της Τιμής

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA)

Control Theory & Applications PID (, )

Department of Mechanical Engineering, University of Tabriz, Iran Department of Mechanical Engineering, University of Tabriz, Iran

Identificatio n of No n2uniformly Perio dically Sa mpled Multirate Syste ms


No General Serial No JOURNAL OF XIAMEN UNIVERSITY Arts & Social Sciences CTD F CTD

Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.

Motion analysis and simulation of a stratospheric airship

ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ. Λέκτορας στο Τμήμα Οργάνωσης και Διοίκησης Επιχειρήσεων, Πανεπιστήμιο Πειραιώς, Ιανουάριος 2012-Μάρτιος 2014.

Τo ελληνικό τραπεζικό σύστημα σε περιόδους οικονομικής κρίσης και τα προσφερόμενα προϊόντα του στην κοινωνία.

NOB= Dickey=Fuller Engle-Granger., P. ( ). NVAR=Engle-Granger/Dickey-Fuller. 1( ), 6. CONSTANT/NOCONST (C) Dickey-Fuller. NOCONST NVAR=1. TREND/NOTREN

ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ. 1.3.Ξένες γλώσσες Αγγλικά πολύ καλά 1.4.Τεχνικές γνώσεις

!"!# ""$ %%"" %$" &" %" "!'! " #$!

Discontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model

BΙ Ο Γ Ρ Α Φ Ι Κ Ο Σ Η Μ Ε Ι Ω Μ Α ΠΑΠΑΧΡΗΣΤΟΣ ΣΩΤΗΡΙΟΣ Valid

Homomorphism in Intuitionistic Fuzzy Automata

Monetary Policy Design in the Basic New Keynesian Model

No. 7 Modular Machine Tool & Automatic Manufacturing Technique. Jul TH166 TG659 A

Eaton 1987 Roldos Eaton Roldos Galor and Lin Shimomura 1993 Nakanishi Turnovsky 1997, Chap. 4

Statistical analysis of extreme events in a nonstationary context via a Bayesian framework. Case study with peak-over-threshold data

ER-Tree (Extended R*-Tree)

Stress Relaxation Test and Constitutive Equation of Saturated Soft Soil

ΘΕΜΑΤΑ ΕΡΓΑΣΙΩΝ ΣΤΗ ΚΟΣΤΟΛΟΓΗΣΗ ΚΑΙ ΛΟΓΙΣΤΙΚΗ ΚΟΣΤΟΥΣ


: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

Ψηφιακή Οικονομία. Διάλεξη 11η: Markets and Strategic Interaction in Networks Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

Research on Economics and Management

Ανάλυση Προτιμήσεων για τη Χρήση Συστήματος Κοινόχρηστων Ποδηλάτων στην Αθήνα

2 ~ 8 Hz Hz. Blondet 1 Trombetti 2-4 Symans 5. = - M p. M p. s 2 x p. s 2 x t x t. + C p. sx p. + K p. x p. C p. s 2. x tp x t.

The optimization of EV powertrain s efficiency control strategy under dynamic operation condition

APPENDICES APPENDIX A. STATISTICAL TABLES AND CHARTS 651 APPENDIX B. BIBLIOGRAPHY 677 APPENDIX C. ANSWERS TO SELECTED EXERCISES 679

&" NB " '4< (# '4< #.7 N" ;'> " B7 " - ' a7 a7.& 1##a7

!"#$%&'()*+, N=!"#$%#&' =NMMUTO O=!"#$%&'()* +,-./0 =NMMMPU

Quantum dot sensitized solar cells with efficiency over 12% based on tetraethyl orthosilicate additive in polysulfide electrolyte

Supporting Information

Supporting Information


46 2. Coula Coula Coula [7], Coula. Coula C(u, v) = φ [ ] {φ(u) + φ(v)}, u, v [, ]. (2.) φ( ) (generator), : [, ], ; φ() = ;, φ ( ). φ [ ] ( ) φ( ) []

Adaptive grouping difference variation wolf pack algorithm

2016 IEEE/ACM International Conference on Mobile Software Engineering and Systems

ΠΡΟΓΡΑΜΜΑ Επιχειρήσεων ΤΙΤΛΟΣ. ΔΙΔΑΣΚΟΝΤΟΣ ΒΙΔΑΛΗΣ

Vol. 37 ( 2017 ) No. 3. J. of Math. (PRC) : A : (2017) k=1. ,, f. f + u = f φ, x 1. x n : ( ).

ΜΟΝΤΕΛΑ ΛΗΨΗΣ ΑΠΟΦΑΣΕΩΝ

Το άτομο του Υδρογόνου

Β Ι Ο Γ Ρ Α Φ Ι Κ Ο Σ Η Μ Ε Ι Ω Μ Α ΕΛΕΝΗ ΣΦΑΚΙΑΝΑΚΗ

CorV CVAC. CorV TU317. 1

Ηµερίδα: Γεωπληροφορική και Εκπαίδευση Η Ελληνική Πραγµατικότητα Χαροκόπειο Πανεπιστήµιο ευτέρα και Τρίτη, Maΐου Γεώργιος Ν.

Οικονοµετρική ιερεύνηση των Ελλειµµάτων της Ελληνικής Οικονοµίας

Supporting information. An unusual bifunctional Tb-MOF for highly sensing of Ba 2+ ions and remarkable selectivities of CO 2 /N 2 and CO 2 /CH 4

Probabilistic Approach to Robust Optimization

Accounts receivable LTV ratio optimization based on supply chain credit

Ηλεκτρονικοί Υπολογιστές IV

BUSINESS PLAN (Επιχειρηματικό σχέδιο)

ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ

2002 Journal of Software

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ

Research on vehicle routing problem with stochastic demand and PSO2DP algorithm with Inver2over operator

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

DOI /J. 1SSN

Καθηγητής Παν Πειραιά, Δρ Φούντας Ευάγγελος. Δρ ΦΟΥΝΤΑΣ ΕΥΑΓΓΕΛΟΣ. Καθηγητής Πανεπιστημίου Πειραιώς Πρόεδρος Τμήματος Πληροφορικής

ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ ΠΡΟΣΩΠΙΚΕΣ ΠΛΗΡΟΦΟΡΙΕΣ. Ονοματεπώνυμο Διεύθυνση Τηλέφωνο Ηλεκτρονικό Ταχυδρομείο Υπηκοότητα Ημερομηνία Γέννησης

College of Life Science, Dalian Nationalities University, Dalian , PR China.

Medium Data on Big Data

Approximation Expressions for the Temperature Integral

! "#! & "0/! ).#! 71 1&$ -+ #" &> " %+# "1 2$

ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ

C 1 D 1. AB = a, AD = b, AA1 = c. a, b, c : (1) AC 1 ; : (1) AB + BC + CC1, AC 1 = BC = AD, CC1 = AA 1, AC 1 = a + b + c. (2) BD 1 = BD + DD 1,

Application of a novel immune network learn ing algorithm to fault diagnosis

Resilient static output feedback robust H control for controlled positive systems

Bundle Adjustment for 3-D Reconstruction: Implementation and Evaluation

Gro wth Properties of Typical Water Bloom Algae in Reclaimed Water

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ΝΟΜΟΣ ΤΗΣ ΠΕΡΙΟ ΙΚΟΤΗΤΑΣ : Οι ιδιότητες των χηµικών στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.


Vol. 31,No JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb

Optimization Investment of Football Lottery Game Online Combinatorial Optimization

3.8.1 J (7) (1883~1906) (1907~1931) A ~ (10) i J C-1 ~1973 C-2

Heterobimetallic Pd-Sn Catalysis: Michael Addition. Reaction with C-, N-, O-, S- Nucleophiles and In-situ. Diagnostics

Transcript:

ر # "م(' &. (()% - + /0 صص) 33-0 ترد ن لد 00٥3-50)٦.4!" # $% &' () 3 2 + 3#1 1 1+ $+-. -1 "# -2 "# % %&'-3 1391-./ 4:() 1392 1:() 123 56 ; " <; (</ (<=/" < < 4 >< (? 4 567 %/ )& %&8& 9 : () - " )& 1"4 (/@.7-4 / ()- CD.@ (& A @ 9&" % 3 " ;&.< /< )& & (/ %(GH6 / )& %/ I J&K % D" " )& (/ ; EF N&) @K%/%O 9 P Q&R& L / (/(8& /" ((/ L..M-%/% / N&) : % <D 3 <T </ (</ U&8 / =H V) W X (/ / @8 @.@ # HS JH.@ 5' 4 "%(VD. 4 567 )& %V( / %2#@.7 %&8& 9 : + 7+ 9 % <D; (</ &<#Z< 3 &G (/ - '; %V8 ; :D ( D(VD ; @ YR" (&S.D :<% <D(<VD -<N<(<\.8;(<< /%&8&% D(VDA& J.K &[ @- 3 %V8 W<S (< <DI (< < % D'; 9" - % D';. W.(/- '; </. <=D&<[/ %&8&% D(VD %/@ =H ; & 4 ; @2# / @H N "W @(/ E @H (4 ]D @[ I 5.@.7 '; %D(VD ]D - < <'; %V<8 ; :<D %"W&< ]V<4 (/ ' &[ (/& (/ ( # ND4 ; / ; %/ (<8& "/ ]&[ & ]V4 @H " &[ (VD ]D '; ^V8 D #.# D&[ (<\ C2<H@< " <'; J<% D(VD._]V4 J H(' A / '; V8 (/ 1 11 L O hamed_ouralikhani@aut.ac.ir : " ) W

O "ر % K L M N و Hر;ن IJ Dل EFG B " C "د?@A > =>;ر و 89 ر c ; V_"` یa V]^GV_"` \ ;] Zم % K VW VXY و; STU R ز Pن %&<8& % <D(<VD ]D @P aw ; (`# ( &S.D.&/ D&[ 7 -/ '; %V8 <' < @ <R ]V<4 (<' " &2 %I 5. @.7]D I : - '; <&3 <' @< " ; </ </ N< (</ / < a '; %V8 ; :D %/ / & 9< :< < (< <K -<_ 5 ' / @ -/ /./ 7 / (\b @8 - '; " % J &W %& ( ( \/ A& ( '; %V8 D1 ` %/ c %</@< =H ;@ 4 9&MK ( D'; -. #- '; %V8 (\ < < 4 (/ d&/ (VD%&8& X % D(VD / "6O D'; -(@8-; A=D &[/ <'; <&/ (< D@ ; `.& (VD J.K " R ; / )& (/ ' ( &8" V % <Dg<K N<D " <D < N<D MMf (8& & &.DA. ed.d & (/ -. @ &/ " c= % <D@< &<. h <K) <. I&<S (/ < - < <'; ( < %&<8&% <D 9 /.@< (<4# 7 -K(8& &. (_ F L& (/%2#@.7"%&8&" )& %V( / <& &<S(</ <([3W (/. #j3 J) (/( Q&R& L / ; D]f/ ik - 7" <<)& L& (/ - -4# G ; @=(/ I &/ 4:; O / L&<S (</@< (<-<-4<# G 2).)&%V( / "%2#@.7 %&8& % D@ 5 b " (<)(<. G (/%"RA/ 7" % ; ( % D9((/ :.(_ F " << 4 % <DI ND <` J < Q&<R& L </ 5" ]<f/.@< < D ; ; L& (/ </ &< < < 4 % <DI %</ < `<<)&% <D9< / " " g %&8& % D9 ]<f/.< (<[3() <= % D@"K " L R4 4 () = Y (/ 5& ]f/. (4#7 ; J< H X <.@< < Y (/ JH N&)N'3 ]f/ " #()& 9 5 _ N<]f/ 9 % D 3 %" J @ =HV) W / 9 P: %/ N&) %# (/ " 9 %8.@ (W L K %/ 3 " ik %#(' N`D @ " # J\K (/ 5&\O " G ch &.".(/ 9&. % 12 7:9 ;" #; 4 567 56<7[1] e< %&<D%" L <)?(</(<8& </. Jk 4567 %/ ` G l ` : 9&<S I < 1;@<4D <# " < >&= f U[ &3 567; 4 (<((/.O L &M[ / & 23 =4 567 %&8&% D9.& Q 8 ; 2. %/( ; </ c 9"; ( %&8& % D9 " 4 M.O / %&8& % D9 @/ a.o / %&8& % D9 </ & (#8 D(- ; 5 D.& I %/ " V4 ]D oo / %&8&

تردن () (3(/0) 33-0( I <<_ J</ I : % D9:& N= % \f % D( (/ @`O %/N= J</ <[ %&<3 <_ J</ %&<3 :< = T % R ).H J/?7 % R.[2]T > J/ 9"; @/ a > ; ' &. J/ ; 'b &. 9&MK )& 4567 %"( ()?[3] #" "-" g& /-)" 4567 %&8&() = CM ( d &[ %()? [4] " 7. 7 / & %" % 567 %&8& 9 DW di ( t ) + θ I ( t ) = f ( t ) dt t <; <R >< f ( t ) EF< " t. %"3 ; (/ @= `. ;& / ; q = 4 567 ; %&8& Y? : 3; L& (/ 4 I ( t ) 567 4 > θ / - \ L / "[5] "[2] LI./ ;&H - (/ L )? %&8& 9 -./. / 4 567 %(; 56<7 4 @D ( / 4567 %&8&()?. & 4 4 > 9" J<H.<D %" `\f gan (GH6 567 4 > 7". & [4] LI < <.<< (<4# <G @</ a L&< (</ < < 4 % <D>< c<\b (<)?-< <Mf / < L&< (</(<@<@< %&<8&; T @/ a @= 9"; > D9 -.[9-6] < 9< <.D" < </ -<)" < v J7 ( &S.D.& ()"V %&) &. ; () =JH @/ a > ( ) H A(9"; @/ a > / % M7 1 ` g< <[ L <K <; L <GH6 / 4 > -/ / AD U ; / 47" g (</ [11"10] <; ; <?[ / < L&< (</ < < 4 ><.@< "W &8" (/ " ` % D& >< "[15]% <3 (< 9&<" ;& L& (/ 4 > [14-12] % 3 " 9&" ;& L& >< <=/" ( / ;&H - & I (\.8;[16] ; ;% /& L& (/ 4 % <M7 1 `< 9< " < (& 9 y\4 " L"&. x? ; (/ 4.[17]"W @ (/ 3 " / 9&" ;& / z4 / 9"; T > %/.<. (<GH6 <)& @< %&<8& @<= /< #<# N.M 4 567 )& %/ ;% <=/.[18]@< < (<4# <D@< %2<3@/ 7 ]V4@8 )& %&8& N.M 3 >< " <)& >< R > z4 /.[23-19].&. ()? ;&H - %=# L& (/ K (<?< @<K < 456<7 %/ )& %&8& 9[2524] LI @/ a L& (/ 4 56<7 %/(/ )& 1 ` 9[26] %().. ~ 1"4[ %/%' O - E< @</ a < < 4 >< " %&8& Y? " 1"4 @.7 (/ (=/" R > ( ) H 4 (/ R " )& > ()-.&. %; =) 4567 %/ )& %&8& e " e.# 13

O "ر % K L M N و Hر;ن IJ Dل EFG B " C "د?@A > =>;ر و 89 ر c ; V_"` یa V]^GV_"` \ ;] Zم % K VW VXY و; STU R ز Pن 1"<4 % D ; L" ` % D ` @8 D@4 )& @.[27] (4# G @/ a L& <\ N< %<@<%"W&< &/ @8 4567 %/ 3 4T8 % D; /-/ \M4 L" <` 1"<49&<M4 "%;/ _ L GH6 / 4567 )& %&8& 9 &" e&.&.[28] &. ()? % DI %/ )& %V( / "()" & %/(/%; 3; / ; c= %/ :@ ([3)&() =%; 9@8 L R"` " 7;< 3 D. Y (/ ( > 1-3. 1 ` J&K ; / 5i " % %&8& Qi. ; [ t. ; H" )& > M. 4 ;& / θ ( t ). 9&" ;& / @/ a % D 3 α. 1"4[ 1 ` ( ; q. )& " D %; @/ a (VD A. 9 D 1"4[ %/ I 9 @/ a (VD As. ; H" I H" D %(VD ch. )& %/ I H" : )& (VD c. 5 i " t ; - %&8& Y? I ( t ) i. ; S J&K n t. / (.[ )& ( ; % ; ; L t n. P P b t t = n T + t N )&( ; L.( λ ) 1"4[ %/ 1 ` 1 ` : L Tb. )& J " : T. N )& " N CM ( ; L td. N T = t + t )& LI N b d. " D 9 "%; (VD J TCA. " D %(VDJ TCH. " D 9&MK )& (VD J T CP. " D 1"4 ; J H W J Revenue 14

تردن () (3(/0) 33-0(. " D 1"4 ; J H & J rofit 7;< 2-3 -<; <f/ ( & (4#G Dz4A &8" %&8& 9 (; ( D9. ; %#&<\8 " L < K %; < < %</ </ (< < %&< (8 f/ " =D 7" L R4 θ ( t ) :@ W ( \ L& (/ D9 (4# G L R4.#( <# (< % (&# (/ %"3 % 3 " 9&" ;& ; " ; (/ (=/" 4 > < < 4> " ( t ) t 1. θ = α ; < α < 1 > A / ; H" I 4 > R > Q&.' ;. /. ; ' 4 567. " &. -V#% 8./. ;' )& %/ &../ "K %; 3; / > " ` ~ ;.& z4 "K L& (/ ; i4 V/ )& > " / M // " "K )& > D9 #j3.@ 9 < @< " J< Q6<S " % <M7 1 `< < " 1"<4<[ " ; <)&.@ )& " 9&S %" = % D()&.K 9 L& (/ )&.& ].(/:. L& (/() =)&%; =) " R ND -1-2 -3-4 -5-6 -7 $; "# 4 ` / ~ @8 <# z<4.@< < <2J < <)& g<& <)& %I < %&<8& Y? A<D< 1 `< 1"<4<[ (< ; A&. )& (/ Q" % 1 `; J7 ; )&.. 9 I I I ( ) t Q n +1 Q n Q n +1 Q 1 Q 2 Tb T t t )& %&8& N= 4# ]..1 @5% 15

O "ر % K L M N و Hر;ن IJ Dل EFG B " C "د?@A > =>;ر و 89 ر c ; V_"` یa V]^GV_"` \ ;] Zم % K VW VXY و; STU R ز Pن (</ <)& %&<8& ; H" q B ; &3 9"@.<=7.@< <W@<(</ @.<=7(< 5 i T b D " ;3 )& (/ %( L& (/ )& " %/ %&8& Y?.& J 1"4[ %</ 5&< @.<=7" & 7& W S )& (%" 5" @.=7. &8" )& (% D" 1"<4 <[%" % < < R - @8 %&8& ; " )& 9&MK DW ( % D" A(<4 ]V<4 M t λ i n 1.& ` @) H )& % D" :9" @.=7 <)& >< </ %&<8&.&< )& " )& LI&MK @) H - " > % <D 3 </ θ( t ) = α t <; L&< (</ i di ( t ) = M θ ( t ) I ( t ) dt I ( ) Q i = i 1 1 9&<" <;& / < ; ( ; (/ (=/" > / J[ %&8& " %</ <; (\< 4 - )& %&8& - /.& 4< α <1 t α y ( ) = ( + i 1 ) I t M e dy Q e α ( ) = M e dy + Q e t y t i 1 " α 2 :N y T T " I ( ) P i = Qi 1 :&/ D&[ (1) d / l&4 J=` () JH / % <D&< < z4 /" &\ / g=/ ; ` / #ok/ 1"4[ %/(&S.D :W@(/ ; L& (/ I + 1 αt I i ( t ) = M t Qi 1 e + 1 ( t ) i (2) / " N. %; 9 %&8& 9 I / (3) (/ I J&K ; / (1 i n ) 5i &3 % %&8& Y? A (GH6 ( &S.D./ 5i +1" %/ ()" Y? &O (/ - ( Q = I ( λ) q i P i B / &/ D&[ // % :@& & -/ / A I )& %"%/ ( z4-_nd Q = Q1 = I P 1( λ) -qb Q2 = I P 2( λ) qb Q = I ( λ) q np P np B (4) :# (' Q i %&8& l&4 % L a /"(4)"(3)%(?/; ` / 16

تردن () (3(/0) 33-0( + 1 + 1 αλ αλ Qi = M ( λ ) + M ( λ )( 1+ ( e ( 1+ e... = + 1 + 1 + 1 + 1 j = i 1 αλ αt 1 αt 2 αt αλ jαt M ( λ )( e + e + e +...) = M ( λ ) ( e ) + 1 + 1 T <; < ( n +1 ") D&[ 7& W S )& ( )& " -[W :5" @.=7 1"<4<[ ; < &< %I 5. ( / ( 8 j = n P +1 (5) " )& ( z4 <; < ( )& -/ /./ t ; - N z4. - )& ( / &/ " t t -</ t W (< ) <H () <=.<W<@<(</ <; L&<(</ 5 n &<3 t P +1 :@ / / t λ i = n +1 " 0 t t t t λ.d %&8& () A@ )& 9 H 9&MK " N I J[ ; / - ( 8W ; + 1 αt I i ( t ) = M t Qi 1 e + 1 ().W@(/(3)() A&<. `<(6) (<) ;@ 4 A@ )& %&8& Y? -I/.D( Q n +1 -@8 :N.%2#% 8 i = n P +1" t W + 1 α ( t ) Q n I ( ) P i t + M t 1 = = Qn e + 1 α ( t ) (6) (7) t λ i = n +1 " t t λ (U (' ; J=` LI A& 4 I g4 " N )& ; ; /- ( W (/(8& / di ( t ) + 1 = α t I ( t ) dt I ( t = λ) = Q i n + 1 :D (8) :@ JH ; L& (/ J=` () ()" g / l&4 J=` () JH / (( ) t ) I ( t ) e α λ = Q n + 1 Q I t e Q ( ( ) ) = ( )= α λ t n + 1 P i n + 1 ( N :N(9)() %() (9) t = t %;(/ (10) n +2 ") )&; E3 " :5& @.=7 17

O "ر % K L M N و Hر;ن IJ Dل EFG B " C "د?@A > =>;ر و 89 ر c ; V_"` یa V]^GV_"` \ ;] Zم % K VW VXY و; STU R ز Pن (< %&8&%/ " &8" )& )& %&8& " % " -;( W (/(8& / di ( t ) + 1 = α t I ( t ) dt I ( t = ) = Q i i 1 I ( t ) e Q. &8" 4 :@ JH ; L& (/ J=` () ()" g / l&4 J=`() JH / = i 1 %&8& N" 3 (-(/(8& / D" % %&8&%/()& "/ ") @.=7- Q = I ( λ) q Q n = I ( ) - P n λ q + 3 + 3 B Q N 1 = I P N 1( λ) qb Q N = n + 2 P n + 2 B :# (' Q i : @ ND&[ 2 3 Qi = qb e + qb e + qb e +... = qb e Q N = (11) (12) D&[ ` (/ )& (13) %&8& l&4 % L a /"(13)"(12)%(?/; ` / N i αt αt αt jαt j = i (14) :#( K N= W" % D(VD V ( 9 "%;(VD().9 / N" %; /:(VD Q&.' / &/ D&[ // " : 9 "%;(VD TCAP = AP + N AS (15) %&8&%(VD(U @< ) H 9" @.=7 A# N= \f@.=7 ((/%&8&%%(VD )& @.=7 <7& &<[ <)& )& (@ 8W ; ; ; / 5" @.=7.@ )& 9 H )& ( % < <; ; 5& @.=7%/-_ND" @4 1"4 [ CS ;( ` -)" (t ) : ' 9&S (/ )& " % )& 7& ; E3 1 ` -)" 18

تردن () (3(/0) 33-0( n + 1 t + 1 αt TCH 1 + TCH 2 + TCH 3 = ch ( M t Qi 1 e dt i = 1 + 1 Tb t N Tb α (( t ) t ) n + 1 i 1 t np + 2 + e Q dt + e Q dt ) TCP = C t M = Cost n T + t M P P ( P b ) Revenue = Pr ice N q P P T = N T = N λ b B (16) :": 9&MK )& (VD( (17) :" 1"4 ; J H W( (18) :)& " 9&S(<D (19) :" )& 1"4 ; J H & J(" :@ ND&[ )& J & %/ AW 1"4[ J (VD-@.=7( KR& / rofit P = Revenue P TCAP TCH P TCPP N.<M <<)& (< ) < < " T P q B (20) 1"4[ 1 ` V ;@ / )& & 7" <[ <D1 `< % <D@< (</ <<)& W V ( 8W ;./( 1" #.@ (4# G & N.V CD )& 9 /(=/" 1"4 @. CD 4 < L <O6S 1"4[ % M7 1 ` " " ;@=/ )& (() = (/(8& / (</ <<)& <W V< (< <8W ;.<#< <3 < )&N&)( 2) /( <D 1"4[ (/ 1 ` J&K ; E3 )& %&8& V " 1"4[ D1 ` % D@ /%O 9 P @.=7. &8" %#i L& (/%& %; (/ L a 2) =/ " &</ <4 (</ <MK " </ (/ )& &@ =H J\K " \K (/ (? %/ &'=8 ; ` 5.N;3 (/ U&8 (& t ( K %/% D %</ N... 1 = i %</ Q i n P -; E3.@ ( 19 n P @. CD -@8 ; N&) @/ a N%; (/ (5)(<?/; `< </ " <<)& %&8&().@ ]. Q L i Q =. (/(8& /.1 / ( & - D".

O "ر % K L M N و Hر;ن IJ Dل EFG B " C "د?@A > =>;ر و 89 ر c ; V_"` یa V]^GV_"` \ ;] Zم % K VW VXY و; STU R ز Pن Q R j </ (N 1 N 2 N j ) @#;/ L& (/. / np. Q Q j Q R j L i (14)(?/; ` /" Q (/(8& /.2 N = ( & ( K ; " = i 1. l l&4 (?/ ( i -/ /.3 I I ( ) t Q L i.#( K Q n P +1 3%(\H ; W @(/.&( K t (10) "(7) n P JH N&) 4# ]..2 @5% "(7)"(5)%() ; ` /.4 % D() 7 // ; ` /.5 %</&'<=8; `< </ (.@< < L a \f LI ) @ YK O N (W z4 /.6 </ " < -< <)& %&8&(VDq 7 " Tb T rice t Q n P+ 1 t n P Q R j (\H D ND %;(/ \K (/ T.& (/ N &#. @+1 F 6.&< J\K "(V' X 9 % D 3 %"@ =H J\K "(V' /" () P @.=7- <)& %</ 9< % <D <3 < -< </.@# f L / ;(/ & () = % D 3 :/ ; x (/ 20

تردن () (3(/0) 33-0( M λ =T b ch c 9 800 0/08561 30 80 A A s α 1000 800 0/05 2/2 )& % D 3 " DT.1 @< =H J\K "(V'"(/ X (JH N&) " )& %&8& 9 % D 3 / t =0/ 20953 d :@ W ( W % D&. " 9"8 ( 5 ' MATLAB V45 g& rice =196 / 225 t =0/ 21852 n =2 t =0/ 0473 N =5.@ W @(/ rofit = 66598 / 87 (<<<<<<</ <<<<<<< " T =0/ 42805 (<?/ &< </ D (VD. / (/./ ]D & A/ ]V4 D(VD ( 7" &<S <.D" D %I/@ =H [ @.7(/@= & ( W (8& J/ 7 (. & &< [ (VD%50]V4" D 3 / @/ a / A@ D J/ 7 ; J ( (TP) 150000 100000 50000 0-50% -25% 25% 50% A As Ch C.# ` -50000 D(VD T / & @ =H V) W.3 @5% %-50]D < </ (<@< 8W @<.D V<H ( " / ]D )& & V )& > ]V4 / &< "W</ ; < <)& 9 &. & ;' z4 /" & &. _ )& )& >.@ G C W 21

O "ر % K L M N و Hر;ن IJ Dل EFG B " C "د?@A > =>;ر و 89 ر c ; V_"` یa V]^GV_"` \ ;] Zم % K VW VXY و; STU R ز Pن (TP) 90000 80000 70000 60000 50000 40000 30000 20000-25% 25% 50% )&>T / & @ =H V) W.4 @5% $I 7JK- H < < 4 %I < </ %< <)& %/%&8& 9 (L R4 (/(8& / / R H ik &'<=8% DN&) ; ` / 9 (/% D U&8 - W ik -((&#.D. (& 9<.W@(/ 9 (/ U&8A ` %O 9 P ; 9 X @8.@(4# L& D<W " <D(<VD.-= 7" J.O. (/ & &. N.V CD / )& %&8&.< 3 \.O / (8 " ; l&4 ik 2) A / -. b " & E/ % I / %/ -<A<< <3 J< L <O6S 1"4 [ D 1 ` " " V ; )& ( W (/(8& / qi" @<8(</(<@ c "4[ %/ q a. 3 %I/@.D e\d % D '; %/ ik.. G & %I )& (/ N.M &[ " " R @R" ; Q6S " I ; / &/ c &<.@<1 ` J&K ; &. " A23 5 '() -( & ( K; <W L )?%/ O&R& &O (/ & (@D@[3 [ -_ND" L ``f &. " 5" M 7.&( [1] Wee H. M. (1993). Economic roduction lot size model for deteriorating items with artial back-ordering. Comuters & Industrial Engineering 24 449-458. [2] Raafat F. (1991). Survey of literature on continuously deteriorating inventory models. Journal of the Oerational Research Society 27-37. [3] Wagner H.M. and Whitin T.M. (1958). Dynamic version of the economic lot size model. Management science 5 89-96. [4] Ghare P. and Schrader G. (1963). A model for exonentially decaying inventory. Journal of Industrial Engineering 14 238-243. [5] Goyal S. Giri B. (2001). Recent trends in modeling of deteriorating inventory. Euroean Journal of oerational research 134 1-16. [6] Shah Y. Jaiswal M. (1977). An order-level inventory model for a system with constant rate of deterioration. Osearch 14 174-184. [7] Aggarwal S. (1978). A note on an order-level inventory model for a system with constant rate of deterioration. Osearch 15 184-187. L 22

تردن () (3(/0) 33-0( [8] Padmanabhan G. Vrat P. (1995). EOQ models for erishable items under stock deendent selling rate. Euroean Journal of Oerational Research 86 281-292. [9] Bhunia A. and Maiti M. (1999). An inventory model of deteriorating items with lot-size deendent relenishment cost and a linear trend in demand. Alied Mathematical Modelling 23 301-308. [10] Bhunia A. Maiti M. (1998). Deterministic inventory model for deteriorating items with finite rate of relenishment deendent on inventory level. Comuters & oerations research 25 997-1006. [11] Mukhoadhyay S. Mukherjee R. Chaudhuri K. (2004). Joint ricing and ordering olicy for a deteriorating inventory. Comuters & Industrial Engineering 47 339-349. [12] Wee H. M. (1999). Deteriorating inventory model with quantity discount ricing and artial backordering. International Journal of Production Economics 59 511-518. [13] Mahaatra N. Maiti M. (2005). Decision rocess for multiobjective multi-item roduction-inventory system via interactive fuzzy satisficing technique. Comuters & Mathematics with Alications 49 805-821. [14] Triathy C. Mishra U. (2010). An inventory model for Weibull deteriorating items with rice deendent demand and time-varying holding cost. Alied Mathematical Sciences 44 2171-2179. [15] Chakrabarty T. Giri B. Chaudhuri K. (1998). An EOQ model for items with Weibull distribution deterioration shortages and trended demand: an extension of Phili's model. Comuters & Oerations Research 25 649-657. [16] Abad P. L. (2001). Otimal rice and order size for a reseller under artial backordering. Comuters & Oerations Research 28 53-65. [17] Covert R. P. Phili G. C. (1973). An EOQ model for items with Weibull distribution deterioration. AIIE transactions 5 323-326. [18] Wen X. Zuo L. (2007). A review of develoment of deteriorating inventory theory research [J]. Journal of South China Agricultural University: Social Science Edition 6 46-52. [19] Goyal S. Gunasekaran A. (1995). An integrated roduction-inventory-marketing model for deteriorating items. Comuters & Industrial Engineering 28 755-762. [20] Jiang D. Du W. (1998). A study on two-stage roduction systems of erishable goods [J]. Journal of Southwest Jiaotong University 33 430-435. [21] Chen S. Chen S. Liu X. (2002). A roduction-inventory model for deteriorating items [J]. Journal of Zhaoqing University 23 66-68. [22] Gontg Z. and Wang C. (2005). A roduction-inventory arrangement model for deteriorating items in a linear increasing market [J]. Logistics Technology 6-8. [23] Maity A. Maity K. Mondal S. Maiti M. (2007). A Chebyshev aroximation for solving the otimal roduction inventory roblem of deteriorating multi-item. Mathematical and Comuter Modelling 45 149-161. [24] Liao J. J. (2007). On an EPQ model for deteriorating items under ermissible delay in ayments. Alied Mathematical Modelling 31 393-403. [25] Liao J. J. (2008). An EOQ model with noninstantaneous receit and exonentially deteriorating items under two-level trade credit. International Journal of Production Economics 113 852-861. [26] Teng J. T. Chang C. T. (2005). Economic roduction quantity models for deteriorating items with rice-and stock-deendent demand. Comuters & Oerations Research 32 297-308. [27] Yang P. C. Wee H. M. (2003). An integrated multi-lot-size roduction inventory model for deteriorating item. Comuters & Oerations Research 30 671-682. [28] He Y. Wang S. Y. Lai K. (2010). An otimal roduction-inventory model for deteriorating items with multile-market demand. Euroean Journal of Oerational Research 203 593-600. 23