(pattern recognition) (symbol processing) (content) (raw data) - 1 -

Σχετικά έγγραφα
Gemini, FastMap, Applications. Εαρινό Εξάμηνο Τμήμα Μηχανικών Η/Υ και Πληροϕορικής Πολυτεχνική Σχολή, Πανεπιστήμιο Πατρών

(Υπογραϕή) (Υπογραϕή) (Υπογραϕή)

ER-Tree (Extended R*-Tree)


Re-Pair n. Re-Pair. Re-Pair. Re-Pair. Re-Pair. (Re-Merge) Re-Merge. Sekine [4, 5, 8] (highly repetitive text) [2] Re-Pair. Blocked-Repair-VF [7]

ΕΥΡΕΣΗ ΤΟΥ ΔΙΑΝΥΣΜΑΤΟΣ ΘΕΣΗΣ ΚΙΝΟΥΜΕΝΟΥ ΡΟΜΠΟΤ ΜΕ ΜΟΝΟΦΘΑΛΜΟ ΣΥΣΤΗΜΑ ΟΡΑΣΗΣ

3: A convolution-pooling layer in PS-CNN 1: Partially Shared Deep Neural Network 2.2 Partially Shared Convolutional Neural Network 2: A hidden layer o

Indexing Methods for Encrypted Vector Databases


Quick algorithm f or computing core attribute

ΣΤΟΙΧΕΙΑ ΠΡΟΤΕΙΝΟΜΕΝΟΥ ΕΞΩΤΕΡΙΚΟΥ ΕΜΠΕΙΡΟΓΝΩΜΟΝΟΣ Προσωπικά Στοιχεία:

No. 7 Modular Machine Tool & Automatic Manufacturing Technique. Jul TH166 TG659 A

Reading Order Detection for Text Layout Excluded by Image

Ερευνητική+Ομάδα+Τεχνολογιών+ Διαδικτύου+

MIDI [8] MIDI. [9] Hsu [1], [2] [10] Salamon [11] [5] Song [6] Sony, Minato, Tokyo , Japan a) b)

n 1 n 3 choice node (shelf) choice node (rough group) choice node (representative candidate)

substructure similarity search using features in graph databases

Αυτόματη Ανακατασκευή Θραυσμένων Αντικειμένων

Πρόγραμμα Σεμιναρίων Φεβρουαρίου - Ιουλίου


Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l =

2016 IEEE/ACM International Conference on Mobile Software Engineering and Systems

[1] DNA ATM [2] c 2013 Information Processing Society of Japan. Gait motion descriptors. Osaka University 2. Drexel University a)

Πρόγραμμα Σεμιναρίων Σεπτεμβρίου Δεκεμβρίου

CorV CVAC. CorV TU317. 1

ΚΛΙΜΑΤΟΛΟΓΙΑ CLIMATOLOGY

Lossless Image Authentication Algorithm with Minimal Expansion

A Fast Mining Algorithm for Frequent Essential Itemsets

Toward a SPARQL Query Execution Mechanism using Dynamic Mapping Adaptation -A Preliminary Report- Takuya Adachi 1 Naoki Fukuta 2.

Πρόγραμμα Σεμιναρίων Φεβρουαρίου - Ιουλίου

C 1 D 1. AB = a, AD = b, AA1 = c. a, b, c : (1) AC 1 ; : (1) AB + BC + CC1, AC 1 = BC = AD, CC1 = AA 1, AC 1 = a + b + c. (2) BD 1 = BD + DD 1,

A data structure based on grammatical compression to detect long pattern

UNIVERSITY OF CALIFORNIA. EECS 150 Fall ) You are implementing an 4:1 Multiplexer that has the following specifications:

FX10 SIMD SIMD. [3] Dekker [4] IEEE754. a.lo. (SpMV Sparse matrix and vector product) IEEE754 IEEE754 [5] Double-Double Knuth FMA FMA FX10 FMA SIMD

GPGPU. Grover. On Large Scale Simulation of Grover s Algorithm by Using GPGPU

ADVANCED STRUCTURAL MECHANICS

Retrieval of Seismic Data Recorded on Open-reel-type Magnetic Tapes (MT) by Using Existing Devices

Πρόγραμμα Σεμιναρίων Σεπτεμβρίου - Δεκεμβρίου

ΓΙΑΝΝΟΥΛΑ Σ. ΦΛΩΡΟΥ Ι ΑΚΤΟΡΑΣ ΤΟΥ ΤΜΗΜΑΤΟΣ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΜΑΚΕ ΟΝΙΑΣ ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ

Area Location and Recognition of Video Text Based on Depth Learning Method

Text Mining using Linguistic Information

N8-0 (1 *.0 ' :7 ' _H $ (G0 )-: + $ B1+ N (+:- A+1 5.

GPU. CUDA GPU GeForce GTX 580 GPU 2.67GHz Intel Core 2 Duo CPU E7300 CUDA. Parallelizing the Number Partitioning Problem for GPUs

Optimization, PSO) DE [1, 2, 3, 4] PSO [5, 6, 7, 8, 9, 10, 11] (P)

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

Vol. 31,No JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb

Speeding up the Detection of Scale-Space Extrema in SIFT Based on the Complex First Order System

An Automatic Modulation Classifier using a Frequency Discriminator for Intelligent Software Defined Radio

08 : 2005/10/28(13:56) Web. Web. Web. Web. Web Visual BASIC. B B Visual BASIC (1) 4. Bezier

A summation formula ramified with hypergeometric function and involving recurrence relation

Ανάκτηση Εικόνας βάσει Υφής με χρήση Eye Tracker

!#$%!& '($) *#+,),# - '($) # -.!, '$%!%#$($) # - '& %#$/0#!#%! % '$%!%#$/0#!#%! % '#%3$-0 4 '$%3#-!#, '5&)!,#$-, '65!.#%

A Method for Creating Shortcut Links by Considering Popularity of Contents in Structured P2P Networks

From Secure e-computing to Trusted u-computing. Dimitris Gritzalis

HOSVD. Higher Order Data Classification Method with Autocorrelation Matrix Correcting on HOSVD. Junichi MORIGAKI and Kaoru KATAYAMA

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ

Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής

{takasu, Conditional Random Field

Buried Markov Model Pairwise

Πρόγραμμα Σεμιναρίων Σεπτεμβρίου - Δεκεμβρίου

Probabilistic Approach to Robust Optimization

DECO DECoration Ontology


Anomaly Detection with Neighborhood Preservation Principle

Supplementary Information 1.

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Επερωτήσεις σύζευξης με κατάταξη

Query by Phrase (QBP) (Music Information Retrieval, MIR) QBH QBP / [1, 2] [3, 4] Query-by-Humming (QBH) QBP MIDI [5, 6] [8 10] [7]

Conjoint. The Problems of Price Attribute by Conjoint Analysis. Akihiko SHIMAZAKI * Nobuyuki OTAKE

The Algorithm to Extract Characteristic Chord Progression Extended the Sequential Pattern Mining

Automatic extraction of bibliography with machine learning

Adaptive grouping difference variation wolf pack algorithm

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

Schedulability Analysis Algorithm for Timing Constraint Workflow Models

Ταξινόμηση και διαχρονική παρακολούθηση των βοσκόμενων δασικών εκτάσεων στη λεκάνη απορροής του χειμάρρου Μπογδάνα Ν. Θεσσαλονίκης

Random Forests Leo. Hitoshi Habe 1

Ηρϊκλειτοσ ΙΙ. Πανεπιζηήμιο Θεζζαλίας. Τμήμα Μηχανικών Η/Υ και Δικτύων

[4] 1.2 [5] Bayesian Approach min-max min-max [6] UCB(Upper Confidence Bound ) UCT [7] [1] ( ) Amazons[8] Lines of Action(LOA)[4] Winands [4] 1

Rectangular Polar Parametric

Identifying Scenes with the Same Person in Video Content on the Basis of Scene Continuity and Face Similarity Measurement

3.8.1 J (7) (1883~1906) (1907~1931) A ~ (10) i J C-1 ~1973 C-2

Architecture οf Integrated Ιnformation Systems (ARIS)

Stabilization of stock price prediction by cross entropy optimization


Οδηγίες Εγκατάστασης Βάσης Δεδομένων MySQL 5.6 Για Λειτουργικό Σύστημα Windows

ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΚΑΙ ΕΛΕΓΧΟΣ ΥΠΕΡ- ΕΠΕΝΕΡΓΟΥΜΕΝΗΣ ΤΡΙΓΩΝΙΚΗΣ ΠΛΩΤΗΣ ΠΛΑΤΦΟΡΜΑΣ

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

HCI - Human Computer Interaction Σχεδιασμός Διεπαφής. ΓΤΠ 61 Βαµβακάρης Μιχάλης 09/12/07

Homomorphism in Intuitionistic Fuzzy Automata

BMI/CS 776 Lecture #14: Multiple Alignment - MUSCLE. Colin Dewey

ΘΕΜΑ: Υλοποίηση Αλγορίθμων Γραφικής σε Περιβάλλον Οπτικού Προγραμματισμού

Estimation of stability region for a class of switched linear systems with multiple equilibrium points

Bundle Adjustment for 3-D Reconstruction: Implementation and Evaluation

CONFIOUS: The Conference Nous Σύστημα Διαχείρισης Επιστημονικών & Ακαδημαϊκών Συνεδρίων. (

ΚΑΝΟΝΙΣΜΟΣ ΚΑΤΑΡΤΙΣΗΣ ΕΙ ΙΚΟΤΗΤΑΣ "ΕΙ ΙΚΟΣ ΕΦΑΡΜΟΓΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ"

Development of the Nursing Program for Rehabilitation of Woman Diagnosed with Breast Cancer

Japanese Fuzzy String Matching in Cooking Recipes

Vol. 38 No Journal of Jiangxi Normal University Natural Science Nov. 2014

entailment Hoare triple Brotherston Brotherston

ECE 468: Digital Image Processing. Lecture 8

Transcript:

(symbol processing) (pattern recognition) (content) (identify) (interpret) (raw data) - 1 -

9D-SPA - 2 -

2D string (Chang, Shi, and Yan, 1987) 2D G-string (Jungert, 1988) 2D C-string (Lee and Hsu, 1990) 2D C + -string (Huang and Jean, 1994) 2D Z-string (Lee and Chiu, 2003) unique-id-based matrix (Chang, Ann, and Yeh, 2000) prime number based matrix (Chang, Yang, and Yeh, 2001) 9DLT matrix (Chang, 1991) 9D-SPA (Huang and Lee, 2004) RS-string (Huang and Jean, 1996) OG-string (Jean and Chang, 2006) 2D string Chang (1987) 2D string < = x y < = xy 2-1(a) 2D string - 3 -

x A=B<D<C y D<B=C<A u-string v-string A B C A B C D D (a) (b) 2-1 2D G-string 2D string 2-1(b) 2D string 2D G-string (Jungert, 1988) 2D string 2-1(b) 2D G-string 2D G-string x A A=B A=B=D A=D D C=D y D<B B=C A=B=C A=C A 2D C-string 2D C + -string - 4 -

2D G-string 2D C-string (Lee and Hsu, 1992) 2D G-string 2D C-string 7 13 2-1 2-1(b) 2D C-string x A](B]D D) D]C y D<B](C]A) (A[C) 2-1 2D C-string A < B End(A) < Begin(B) A B A B End(A) = Begin(B) A B A % B Begin(A) < Begin(B), End(A) > End(B) A B A [ B Begin(A) = Begin(B), End(A) > End(B) A B A ] B Begin(A) < Begin(B), End(A) = End(B) A B A / B Begin(A) < Begin(B) > End(A) > End(B) A B A = B Begin(A) = Begin(B), End(A) = End(B) A B A <* B End(B) < Begin(A) B A A * B End(B) = Begin(A) B A A %* B Begin(B) < Begin(A), End(B) > End(A) B A A [* B Begin(B) = Begin(A), End(B) > End(A) B A A ]* B Begin(B) < Begin(A), End(B) = End(A) B A A /* B Begin(B) < Begin(A) > End(B) > End(A) B A S. Y. Lee and F. J. Hsu (1992). Spatial reasoning and similarity retrieval of images using 2D C-string knowledge representation. Pattern Recogn, 25(3), 305-318. 2D C-string - 5 -

Huang and Jean (1994) 2D C + -string x y 2-1(b) 2D C + -string 2D C + -string 2D C-string x A 5 ](B 2 ]D 1 D 1 ) D 6 ]C 2 y D 2 < 1 B 5 ](C 4 ]A 1 ) (A 2 [C 1 ) 2D Z-string 2D Z-string (Lee and Chiu, 2003) 2D C + -string (1) A s A x y s (2) A< d B A B (Begin(B) - End(A)) d (3) A% d B A B (Begin(B) - Begin(A)) d (4) A/ d B A B A B (End(A) - Begin(B)) d 2-1(b) 2D Z-string x (A 5 % 3 B 2 )/ 2 (D 8 ]C 2 ) y (D 2 < 1 ((B 5 / 4 C 5 )/ 2 A 3 )) 9DLT matrix 9DLT matrix (nine direction lower-triangular matrix) (Chang, 1991) 9 9 2-2 - 6 -

2-2 R 0 R 1 R 2 R 3 R 4 R 2-1(a) 2-1(b) 2-3 1 2 8 3 R 0 7 4 6 5 2-2 9DLT C. C. Chang (1991). Spatial match retrieval of symbolic pictures. Journal of Information Science and Engineering, 7(3). 405-422. A B C D A B C D A - - - - A - - - - T(a)= B 5 - - - T(b)= B 5 - - - C 6 7 - - C 6 7 - - D 6 6 4 - D 6 6 4-2-3 9DLT matrix 2-2 - 7 -

D pq D qp T pq O pq D pq(d qp) O pq i 9D-SPA 9D-SPA (Huang and Lee, 2004) 9DLT 9D-SPA R={(O pq D pq D qp T pq ) (O pq D pq D qp T pq )} ( p q i j ) p q O pq O pq = (q-1)(q-2)/2 + p 1 p<q n n j 9 8 1 0 9 2-4 j i D pq D qp T pq 4 0= (disjoin) 1= (join/meet) 2= (partly_overlap) 3= (contain/inside) 2-1(b) 9D-SPA R = {(1,31,64,2),(2,24,129,0),(3,48,3,0),(4,12,192,0), (5,12,192,0),(6,4,96,0)} Area 4 (00001000) 2 = 8 Area 5 (00010000) 2 = 16 Area 6 (00100000) 2 = 32 Area 3 (00000100) 2 = 4 Area 0(MBR) (00000000) 2 = 0 Area 7 (01000000) 2 = 64 Area 2 (00000010) 2 = 2 Area 1 (00000001) 2 = 1 Area 8 (10000000) 2 = 128 2-4 9D-SPA P. W. Huang and C. H. Lee (2004). Image database design based on 9D-SPA representation for spatial relation. IEEE Transactions on Knowledge and Data Engineering, 16(12), 1486-1496. - 8 -

2D C-tree (Hsu, Lee, and Lin, 1999) 9DLT string (Chan, and Chang, 2001) 3D C-String (Lee, Chiu, and Yu, 2002) 3D Z-string (Lee, Yu, Chiu, and Hong, 2005) AVIS (advanced video information system) (Koprulu, Cicekli, and Yazici, 2003) FPI-tree AFPI-tree (Su, Huang, Yeh, and Tseng, 2010) motion-based scene tree (Yi, Rajan, and Chia, 2005) 2D C-Tree 2D C-Tree (Lee, Hsu, and Lin, 1998) 2D string x y R 2D C-Tree 2D C-Tree (Hsu et al., 1999) 2D C-Tree x y 2D C-Tree 2D C-Tree 2D C-Tree - 9 -

full-sequence matching segment matching subsequence matching 2-5 Video I 2D C-Tree 2-6 2-7( ) x y C A A A B B B Frame 1 Frame 2 Frame 3 C C D D D A A A B B B Frame 4 Frame 5 Frame 6 2-5 Video I R X F 1 F 2 F 3 F 4 F 5 A ε B A ε B C A 2 ε B C ε B ε D C B ε D ε A 1 ε A ε A ε 2-6 2D C-Tree Video I 1 5-10 -

R Y F 1 F 2 F 3 F 4 F 5 A A A ε C D D B ε B ε B ε ε A ε C B A 2 ε C B ε ε A 1 2-7 2D C-Tree Video I 1 5 AVIS AVIS (advanced video information system) Adali, Candan, Chen, Subrahmanian, and Erol (1996) AVIS AVIS (Koprulu et al., 2003) AVIS ( ) (a) (b) [R S,R E ) R S R E - 11 -

R E (c) (d) 2-5 Video I 2-8 Video I B B Girl B 5 6( ) 5 B (x,y) (4,2) (9,4) 6 B (4,0) (6,3) 2-9 Video I B 2-10 A A Boy B Girl C Bird 7 [(1,2),(3,5)] 5 [(4,2),(9,4)] 2 [(0,7),(3,9)] 6 [(4,0),(6,3)] 3 [(0,7),(4,9)] D Tree 6 [(8,1),(10,9)] 2-8 AVIS Video I D Object C B A 0 1 2 3 4 5 6 Frame 2-9 AVIS Video I - 12 -

7 [1,6) A 5 [1,4) B 6 [4,6) BD 1 [1,3) 2 [3,4) C 3 [4,5) C 4 [5,6) 2-10 AVIS Video I 3D Z-string 3D Z-string (Lee et al., 2005) 2D Z-string 3D Z-string u-string v-string t-string u-string x v-string y t-string t 2D Z-string # t-string A A 8#2#6 A 8 2 A 3 8 v,r v,r v r 2-5 - 13 -

Video I 2-11 Video I 3D Z-string 3D Z-string u-string ((C 2 0.5,2 / 1 A 2 0,1 )< 4 (B 2,1 0,1 / 1 D 2 0,1 )) v-string (D 8 0,1 ](A 3 4,1 [B 2 0,1 1,1 )< 3C 2 0,1 )) t-string ((A 6 =B 6#4#2 )](C 3#3 / 1 D 3 )) C A B D 2-11 Video I FPI-tree AFPI-tree FPI-tree (fast pattern index tree) pattern index tree) Su (2010) AFPI-tree (advanced fast 2-2 A G Dwinsize Dwinsize Dwinsize n n ( ) Two shot-pattern Two shot-pattern FPI-tree - 14 -

Two shot-pattern AFPI-tree 2-2 Clip 2 2-3 2-4 Dwinsize 3 Dwinsize 4 Two shot-pattern 2-2 FPI-tree Clip ID Key-Frame Clip 1 A, B, C, A Clip 2 C, B, B, A, E, F Clip 3 F, F, E, E, A, B, D, B, C, A, B Clip 4 B, C, G, C, A, D, B 2-3 Two shot-pattern Clip 2 Dwinsize=3 Clip 2: C, B, B, A, E, F Starting Shot Two shot-pattern (FPI) Two shot-pattern (AFPI) C C B,C A C B,C B,C A B B B,B A,B E B B,B A,B E B B F B A,B E,B F A A E,A F A E,A F E E F E F 2-4 Two shot-pattern Clip 2 Dwinsize=4 Clip 2: C, B, B, A, E, F Starting Shot Two shot-pattern (FPI) Two shot-pattern (AFPI) C C B,C A,C E C B,C B,C A,C E B B B,B A,B E,B F B B,B A,B E,B F B B A,B E,B F A A E,A F A E,A F E E F E F shot-pattern Two shot-pattern (parent node) Two shot-pattern AFPI-tree Two Two - 15 -

shot-pattern Two shot-pattern 2-12 2-13 2-2 FPI-tree AFPI-tree Dwinsize 3 A B C D E F G 1 134 1 34 2 2 A B C D E F G 123 A B C D E F G 1234 A B C D E 23 234 34 134 3 2 2 4 4 4 4 F G A B C D E 3 3 3 F G 2-12 FPI-tree 2-2 3 3 3 2 A B C D E F G 3 3 3 A B C D E F G 4 4 4 A B C D E F G A B C D E F G 1,1/6 1,1/6 3,3/27 4,1/15 1,1/6 3,1/27 4,1/15 2,1/12 2,1/12 A B C D E F G 1,1/6 2,2/12 3,1/27 2,1/12 3,2/27 1,1/6 3,2/27 4,2/15 3,1/27 2,2/12 2,2/12 4,1/15 A B C D E F G 1,1/6 2,1/12 3,1/27 4,2/15 2,2/12 3,1/27 4,1/15 4,1/15 4,1/15 4,1/15 A B C D E F G 3,1/27 3,1/27 A B 3,1/27 3,2/27 4,1/15 C D E F G 3,2/27 3,1/27 3,1/27 2,1/12 A B C D E F G 2-13 AFPI-tree 2-2 3,1/27 3,4/27 3.1/27 A B C D E F G 4,1/15 4,1/15 4,1/15 A B C D E F G - 16 -

2-12 (A B) Two shot-pattern Clip 1 Clip 3 Clip 4 2-13 (A B) 1/6 3/27 1/15 AVIS 2-5 AFPI-tree 2D C-tree 3D Z-string 3D Z-string 9D-SPA 9D-SPA 9D-SPA - 17 -

9D-SPA 9D-SPA 9D-SPA 2-5 2D C-tree AVIS 3D Z-string AFPI-tree O X O X O O O O O X O X ( ) O X - 18 -

9DLT 9DLT 9DLT 2D C-trees 3D Z-string 9D-SPA bounding rectangle) (minimum - 19 -

x y [(F,X d,y d,x z,y z ) 1 (F,X d,y d,x z,y z ) n ] [ObjectID][t,c,x,y,w,h] 6 (t) (c) x (x) y (y) (w) (h) 1 (F) X d (Y d ) X z (Y z ) x y x (y ) 2-5 6 Video I A B C D 1 2 3 4 Video I: - 20 -

[1][1, 6, 2, 3.5, 2, 3] [2][1, 6, 8, 3, 2, 2][4,-1, 0, 0, 0 2,0, -1, 0, 0] [3][3, 3, 1, 8, 2, 2][3,0.5, 0, 1, 0] [4][4, 3, 9, 5, 2, 8] 2-5 Video I A [1,6,2,3.5,2,3] A 1 6 (2,3.5) 2 3 A B [1,6,8,3,2,2] B 1 6 (8,3) 2 2 [4,-1,0,0,0 2,0,-1,0,0] B 4 2 [X d,y d,x z,y z ] [-1,0,0,0] [0,-1,0,0] B -1 B -1 C [3,3,1,8,2,2] C 3 3 (1,8) 2 2 [3,0.5,0,1,0] 3 [0.5,0,1,0] C 0.5 1 D - 21 -

Y T 3-1 3-1 OID, X L, X R, Y D, Y T ] F N [F N, OID X L X R Y D Video I OID F N, OID, X L, X R, Y D, Y T ObjectID X Y W H T X=(X L +X R )/2 W=X R -X L Y=(Y D +Y T )/2 H=Y T -Y D - 22 -

Video I Video I Video I 1 2 3 4 1 4 B( 2) X L X R Y D Y T [7, 9, 2, 4] X Y W H [8, 3, 2, 2] F S [6, 8, 2, 4] [7, 3, 2, 2] V X V Y V W V H [-1, 0, 0, 0] [5, 7, 2, 4] [6, 3, 2, 2] [-1, 0, 0, 0] [4, 6, 2, 4] [5, 3, 2, 2] [-1, 0, 0, 0] [4, 6, 1, 3] [5, 2, 2, 2] [0, -1, 0, 0] F S F N 1 F E F N 4 C T F E -F N +1 4 C T V X V Y V W V H [4,-1,0,0,0] F N F S [4, 6, 0, 2] [5, 1, 2, 2] [0, -1, 0, 0] F N F E C T F E -F N +1 2 [2,0,-1,0,0] A C D - 23 -

1, 1, 1, 3, 2, 5 1, 2, 7, 9, 2, 4 2, 1, 1, 3, 2, 5 2, 2, 6, 8, 2, 4 3, 1, 1, 3, 2, 5 3, 2, 5, 7, 2, 4 3, 3, 0, 2, 7, 9 4, 1, 1, 3, 2, 5 4, 2, 4, 6, 2, 4 4, 3, 0, 3, 7, 9 4, 4, 8,10, 1, 9 5, 1, 1, 3, 2, 5 5, 2, 4, 6, 1, 3 5, 3, 0, 4, 7, 9 5, 4, 8,10, 1, 9 6, 1, 1, 3, 2, 5 6, 2, 4, 6, 0, 2 6, 4, 8,10, 1, 9 1, 1, 1, 3, 2, 5 2, 1, 1, 3, 2, 5 3, 1, 1, 3, 2, 5 4, 1, 1, 3, 2, 5 5, 1, 1, 3, 2, 5 6, 1, 1, 3, 2, 5 1 3, 3, 0, 2, 7, 9 4, 3, 0, 3, 7, 9 5, 3, 0, 4, 7, 9 3 1, 2, 7, 9, 2, 4 2, 2, 6, 8, 2, 4 3, 2, 5, 7, 2, 4 4, 2, 4, 6, 2, 4 5, 2, 4, 6, 1, 3 6, 2, 4, 6, 0, 2 X Y W H 2 4, 4, 8,10, 1, 9 5, 4, 8,10, 1, 9 6, 4, 8,10, 1, 9 4 X = (X L +X R )/2 Y = (Y D +Y T )/2 W = X R - X L H = Y T - Y D P S C T V X V Y V W V H P S C T V X V Y V W V H 1 6 0 0 0 0 P S C T V X V Y V W V H 1 4-1 0 0 0 5 2 0-1 0 0 1 2 P S C T V X V Y V W V H 3 3 0.5 0 1 0 P S C T V X V Y V W V H 4 3 0 0 0 0 3 4 [1][1,6,2,3.5,2,3]; [2][1,6,8,3,2,2][4,-1,0,0,0 2,0,-1,0,0]; [3][3,3,1,8,2,2][3,0.5,0,1,0]; [4][4,3,9,5,2,8]; 3-1 Video I - 24 -

3-1 Function ( : ) : (OITable), (T X,T Y,T W,T H ), (TV X,TV Y,TV W,TV H ), (F S ), (F E ) ; For Each In For Each In : (OID), (F N ), (X L ), (X R ), (Y D ), (Y T ); x (X) = X L, y (Y) = Y D, (W) = X R - X L, (H) = Y T - Y D ; If F S = F N (T X, T Y, T W, T H ) = (X,Y,W,H) OITable OITable (ObjectID) (1) = OID OITable (t,x,y,w,h) (1) = (F N,X,Y,W,H) Else x (V X ) = X - T X, y (V Y ) = Y T Y, (V W ) = W T W, (V H ) = H T H ; If (TV X, TV Y, TV W, TV H ) = (V X, V Y, V W, V H ) ElseIf F E = F N - 1 (C T ) = F E - F S + 1 OITable (F,X d,y d,x z,y z ) (1) = (C T,TV X,TV Y,TV W,TV H ) (TV X,TV Y,TV W,TV H ) = (V X,V Y,V W,V H ) F S = F N End If End If If OITable (c) (1) = (F N t + 1) (1) F E = F N ( ) - 25 -

3-1( ) (C T ) = F E - F S OITable (F,X d,y d,x z,y z ) (1) = (C T,TV X,TV Y,TV W,TV H ) End If Next Next OITable End Function (1) 2) 3-2 3-2 Video I ( 1 1 x X X V X y Y Y V Y W H X Y W H X L X R Y D Y T X L =X-W/2 X R =X+W/2 Y D =Y-H/2 Y T =Y+H/2-26 -

3-2 Function ( : ) : (OATable) (T X,T Y,T W,T H ) For Each In (OID) (F N ) (T X,T Y,T W,T H ) = (x,y,w,h) (2) (X L ) (X R ) (Y T ) (Y D ) OATable (F N,OID,X L,X R,Y D,Y T ) (1) (F Now ) = F N For Each In (C T,V X,V Y,V W,V H ) For 1 To C T F Now = F Now + 1 (New X,New Y,New W,New H ) New X = T X + V X, New Y = T Y + V Y New W = T W + V W, New H = T H + V H ; (X L ) (X R ) (Y T ) (Y D ) OATable (F Now,OID,X L,X R,Y D,Y T ) (1) (T X,T Y,T W,T H ) = (New X, New Y, New W, New H ) Next Next Next OATable (F Now ) (1) (OID) (1) OATable End Function (1) (2) - 27 -

[1][1,6,2,3.5,2,3][6,0,0,0,0]; [2][1,6,8,3,2,2][4,-1,0,0,0 2,0,-1,0,0]; X L X R Y D Y T 1 2 F S X Y W H 1 2 3.5 2 3 ( ) C T V X V Y V W V H 6 0 0 0 0 1 F S X Y W H 1 8 3 2 2 ( ) C T V X V Y V W V H 4-1 0 0 0 ( ) C T V X V Y V W V H 2 0-1 0 0 2 F N OID X L X R Y D 1 1 1 3 2 1 Y T 5 2 1 1 3 2 5 3 1 1 3 2 5 4 1 1 3 2 5 5 1 1 3 2 5 6 1 1 3 2 5 F N OID X L X R Y D 1 2 7 9 2 2 Y T 4 2 2 6 8 2 4 3 2 5 7 2 4 4 2 4 6 2 4 5 2 4 6 1 3 6 2 4 6 0 2 3-2 Video I A B - 28 -

9D-SPA (Huang and Lee, 2004) 9 D pq D qp 4 T pq S pq p q 13 2D C-string (Lee and Hsu, 1992) 2-1 * p<*q q<p 3-3 VideoID = {[(O pq ) (S pq ) (Relation) (Shot)]} O pq 9D-SPA S pq Shot (F s1 F e1 F sk F ek ) F s F e Shot Relation Relation D pq D qp T pq Shot Shot 3-3 Symbol < / ] % [ = Value 0 1 2 3 4 5 6 Symbol <* * /* ]* %* [* Value 7 8 9 10 11 12 * 3-4 Video I A B C D 1 2 3 4-29 -

3-5 Video I (O pq ) 1 2 3 4 5 6 (1,2) (1,3) (2,3) (1,4) (2,4) (3,4) Video I A 1 B 2 3-4 AB O pq (q-1)(q-2)/2+p (2-1)(2-2)/2+1 1 AC AD BD BC CD 2 3 4 5 6 3-5 1 A B S pq A=B 3-3 6 1~4 D pq D qp T pq (24 1 0) Shot 1 (1-4) Relation 1 (24,1,0) 5 D pq D qp T pq (24 129 0) Shot 2 (5) Relation 2 (24,129,0) 6 D pq D qp T pq (8 128 0) Shot 3 (6) Relation 3 (8,128,0) Video I Video I = { [(1) (6) (24,1,0 24,129,0 8,128,0) (1-4 5 6)]; [(2) (4) (192,12,0 64,12,0 64,14,0) (3 4 5)]; [(3) (4) (128,8,0) (3-5)];[(4) (3) (16,131,0) (4-6)]; [(5) (3) (16,131,0 16,3,0 48,3,0) (4 5 6)]; [(6) (2) (16,129,0) (4-5)];} - 30 -

O q O p (O p O q ) 3-6 3-3 ( 2 ) 3-3 O q (1,2) (1,3) (2,3) (1,4) (2,4) (3,4) 3-6 Function ( : ) : (able) For Each Q In For Each P(OID P <OID Q ) In able PQ (O pq ) PQ M N (S pq ) able (O pq ), able (S pq ); (TD pq,td qp,tt pq ) For Each (F N ) In PQ PQ (D pq,d qp,t pq ) If (D pq,d qp,t pq ) (TD pq,td qp,tt pq ) able (TD pq,td qp,tt pq ) able (F N ) Else able (F N ) End If (TD pq,td qp,tt pq ) = (D pq,d qp,t pq ) Next Next Next able End Function - 31 -

[1][1,6,2,3.5,2,3]; [2][1,6,8,3,2,2][4,-1,0,0,0 2,0,-1,0,0]; [3][3,3,1,8,2,2][3,0.5,0,1,0]; [4][4,3,9,5,2,8]; OID: 1 OID: 2 OID: 3 OID: 4 O 12 : 1 O 13 : 2 O 23 : 3 O 14 : 4 O 24 : 5 O 34 : 6 Object Start Frame End Frame 1 1 1+5=6 Object 1: Object 3: 1 3 5 6 3 3 3+2=5 1 3 1 % 3 S 13 = 4 Fram OID X 1 X 2 Y 1 Y 2 3 1 1 3 2 5 3 0 2 7 9 4 1 1 3 2 5 3 0 3 7 9 5 1 1 3 2 5 3 0 4 7 9 9D-SPA D 13 D 13 T 13 192 12 0 64 12 0 64 14 0 (2) (4) (192,12,0 64,12,0 64,14,0) (3 4 5) Video A 2 3-3 Video I O pq =(q-1)(q-2)/2+p (1,3) 2 S pq (1,3) 1 1 6 3-32 -

3 5 O 1 %O 3 3-3 S pq 4 (1,3) 3 5 (1,3) 3 (D pq, D qp, T pq ) (192,12,0) 4 (64,12,0) 5 (64,14,0) (1,3) O pq 2 S pq 4 3 (192,12,0) 4 (64,12,0) 5 (64,14,0) (1,3) (O pq )(S pq )(Relation)(Shot) (2) (4) (192,12,0 64,12,0 64,14,0) (3 4 5) 3-4 9D-SPA (D) (S) 3 (T) D pq D qp D pq D qp VID Shot D pq D qp 4 T pq 0 3 T pq 13 S pq 0 12 S pq - 33 -

O ij = 1 D D ij D ji T VID:Shot O ij = N S D T S T ij =0 VID:Shot 0 VID D ij 1 VID D ji VID:Shot 3-4 Next D ij D ji VID:Shot T ij =3 12 VID Next D ij D ji VID:Shot T ij =0 T ij =3 VID:Shot 0 VID 1 VID VID:Shot VID:Shot 12 VID Next Next C C A A A B B B Frame 1 Frame 2 Frame 3 C D C D D A A A B B B Frame 4 Frame 5 Frame 6 Video II = { [(1) (6) (24,1,0 24,1,1) (1-5 6)] [(2) (4) (192,12,0 64,4,0 96,6,0 32,2,0) (2 3 4 5)] [(3) (4) (128,8,0 192,12,0) (2-4 5-5)] [(4) (3) (16,131,0) (4-6)] [(5) (3) (16,131,0) (4-6)] [(6) (2) (16,129,0) (4-5)] } 3-5 Video II - 34 -

1 D 8 128 Next 24 1 Next 24 129 End T I:(6, 6) I:(1, 4);II:(1, 6) I:(5, 5) S 0 1 2 3 I:(1, 6);II:(1, 5) II:(6, 6) 0 1 2 3 4 5 6 7 8 9 10 11 12 I;II 3 D T S 5 D T S 128 8 Next 192 12 End I:(3, 5);II:(2, 4) II:(5, 5) 0 1 2 3 I:(3, 5);II:(2, 5) 0 1 2 3 4 5 6 7 8 9 10 11 12 I;II 16 3 Next 16 131 Next 48 3 End I:(5, 5) I:(4, 4);II:(4, 6) I:(6, 6) 0 1 2 3 I:(4, 6);II:(4, 6) 0 1 2 3 4 5 6 7 8 9 10 11 12 I;II 3-6 Video I Video II 2-5 Video I 3-5 Video II 3-6 1 2 O pq 1 (D) (8,128) I 6 (24,1) I 1 4 II 1 6 (24,129) I 5 (T) T pq 0 I 1 6 II 1 5 T pq 1 II 6 (S) 6-35 -

3-3 I II AB 3-7 Function ( : ) : " (S)" For Each (VID) For Each In (O pq ), (S pq ), (Relation) If S S (O pq ) " (DArray)", " (SArray)" 12, " (TArray)"; 4 End IF S(O pq )_SArray (S pq ) (VID) For Each Relation (Shot) (D pq ),(D qp ), (T pq ) S(O pq )_TArray (T pq ) (VID)(Shot) If S(O pq )_DArray (D pq, D qp ) S(O pq )_DArray (D pq, D qp ) (D pq ) (D qp ) End If S(O pq )_DArray (D pq, D qp ) (VID)(Shot) Next Next Next S End Function 3-7 - 36 -

(D pq, D qp ) D pq D qp (D pq, D qp ) T pq 0 4 13 4 S pq 3-5 A B B A A 1 B 2 1 (D pq, D qp ) (24,1) I: (1,4) II: (1,6) Video I 1 4 Video II 1 6 3-7 A B A B 1 A=B 3-3 6 I II - 37 -

3-8 1 D 8 128 Next 24 1 Next T I:(6, 6) I:(1, 4);II:(1, 6) S 3-7 0 I:(1, 6);II:(1, 5) 1 II:(6, 6) 2 3 0 1 2 3 4 5 6 7 8 9 10 11 12 I;II 24 129 End I:(5, 5) (O pq, Type, Value 1, Value 2 ) O pq Type 0 2 Value 1 (Value 2 ) D pq (D qp ) T pq S pq (OR) (AND) 1 D 8 128 Next 24 1 Next T I:(6, 6) I:(1, 4);II:(1, 6) S 3-8 0 I:(1, 6);II:(1, 5) 1 II:(6, 6) 2 3 0 1 2 3 4 5 6 7 8 9 10 11 12 I;II 24 129 End I:(5, 5) - 38 -

3-6 A B B A (1,0,24,1) 1 A B 0 24 1 D pq D qp A B (1,2,6,0) 1 A B 2 6 0 S pq 6 A=B 0-39 -

VB.NET Windows XP Professional 2002 Service Pack 3 CPU Intel Core2 Quad Q8300 2.50GHz RAM 2.50GHz 3.00GB Microsoft Visual Studio 2008 4-2 4-1 Save Directory 4-3 4-1 - 40 -

4-2 4-3 4-4 4-5 4-6 - 41 -

4-4 4-5 - 42 -

4-6 4-7 4-8 4-9 - 43 -

4-7 4-8 - 44 -

4-9 4-10 4-11 - 45 -

4-10 4-11 - 46 -

(V O ) (V F ) (V C ) 100 4-12 V O V F V C 10000 5 4-1 4-1 V O V O ExecutiveTime(s) 100 311.82 200 633.99 300 946.42 400 1263.93 500 1561.76 600 1905.39 700 2220.47 800 2546.79 900 2865.44 1000 3185.66-47 -

Executive Time(second) 3500 3000 2500 2000 1500 1000 500 0 100 200 300 400 500 600 700 800 900 1000 Number of Objects 4-12 V O 4-13 V F V O V C 100 5 4-2 4-2 V F V F ExecutiveTime(s) 10000 311.82 20000 633.82 30000 935.43 40000 1286.45 50000 1625.46 60000 1871.79 70000 2289.42 80000 2571.67 90000 2901.85-48 -

3500 3000 Executive Time(second) 2500 2000 1500 1000 500 0 10K 20K 30K 40K 50K 60K 70K 80K 90K Number of Frames 4-13 V F V C V O V F 100 10000 4-3 4-14 V C 4-3 V C V C ExecutiveTime(s) 1 68.81 2 137.04 3 198.62 4 259.51 5 311.82 6 361.59 7 406.54 8 459.26 9 501.54 10 541.00-49 -

Executive Time(second) 600 500 400 300 200 100 0 1 2 3 4 5 6 7 8 9 10 Max. Number of Changed States 4-14 V C V F V C 10000 5 4-4 4-15 V O 4-4 V O V O ExecutiveTime(s) 100 62.78 200 128.84 300 195.95 400 261.67 500 326.57 600 398.20 700 465.65 800 533.57 900 605.07 1000 676.01-50 -

Executive Time(second) 800 700 600 500 400 300 200 100 0 100 200 300 400 500 600 700 800 900 1000 Number of Objects 4-15 V O V O V C 100 5 4-5 4-16 V F 4-5 V F V F ExecutiveTime(s) 10000 62.78 20000 127.92 30000 190.85 40000 261.31 50000 332.87 60000 382.86 70000 465.39 80000 526.35 90000 594.53-51 -

Executive Time(second) 700 600 500 400 300 200 100 0 10K 20K 30K 40K 50K 60K 70K 80K 90K Number of Frames 4-16 V F V C V O V F 100 10000 4-6 4-17 V C 4-6 V C V C ExecutiveTime(s) 1 13.70 2 26.75 3 39.34 4 51.50 5 62.78 6 72.57 7 81.48 8 91.75 9 100.06 10 107.42-52 -

Executive Time(second) 120 100 80 60 40 20 0 1 2 3 4 5 6 7 8 9 10 Max. Number of Changed States 4-17 V C 4-18 V O V F V C 10000 5 4-7 (V O (V O - 1)) / 2 V O - 53 -

4-7 V O V O ExecutiveTime(s) 100 105.92 200 437.67 300 970.77 400 1723.50 500 2623.35 600 3899.03 700 5299.55 800 7149.08 900 8815.81 1000 10887.53 Executive Time(second) 12000 10000 8000 6000 4000 2000 0 100 200 300 400 500 600 700 800 900 1000 Number of Objects 4-18 V O V F V O V C 100 5 4-8 4-19 - 54 -

4-8 V F V F ExecutiveTime(s) 10000 105.92 20000 218.10 30000 318.10 40000 458.67 50000 591.00 60000 657.65 70000 836.14 80000 929.26 90000 1057.10 1200 Executive Time(second) 1000 800 600 400 200 0 1K 2K 3K 4K 5K 6K 7K 8K 9K Number of Frames 4-19 V F V C V O V F 100 10000 4-9 4-20 V C - 55 -

4-9 V C V C ExecutiveTime(s) 1 6.53 2 21.54 3 44.68 4 75.01 5 105.92 6 145.25 7 183.45 8 234.65 9 278.09 10 322.93 Executive Time(second) 350 300 250 200 150 100 50 0 1 2 3 4 5 6 7 8 9 10 Max. Number of Changed States 4-20 V C VB.NET - 56 -

(VF) (VC) (VO) (VO (VF / 2) VC) (VO VF VC) 1/4 1/5 (VF) (VO) (VO) ((VO (VO - 1)) / 2) (VC) - 57 -

2D string 2D Z-string (1) (2) (3) Z-string AVIS FPI-tree AFPI-tree 3D 9D-SPA - 58 -

5-1 (D T) (S) 5-1 - 59 -

9D-SPA S D S T S TR (h D, h T, h TR ) S D > h D S T > h T S TR >h TR - 60 -

Adali, S., Candan, K. S., Chen, S., Subrahmanian, V. S., & Erol, K. (1996). The advanced video information system: Data structures and query processing. Multimedia Systems, 4(4), 172-186. Chan, Y. K., & Chang, C. C. (2001). Spatial similarity retrieval in video databases. Journal of Visual Communication and Image Representation, 12(2), 107-122. Chang, Y. I., Ann, H. Y., & Yeh, W. H. (2000). A unique-id-based matrix strategy for efficient iconic indexing of symbolic pictures. Pattern Recogn, 33(8), 1263-1276. Chang, Y. I., Yang, B. Y., & Yeh, W. H. (2001). A generalized prime-number-based matrix strategy for efficient iconic indexing of symbolic pictures. Pattern Recognition Letters, 22(6), 657-666. Chang, C. C. (1991). Spatial match retrieval of symbolic pictures. Journal of Information Science and Engineering, 7(3), 405-422. Chang, C. K., Shi, Q. Y., & Yan, C. W. (1987). Iconic indexing by 2-D strings. IEEE Transactions on Pattern Analysis Machine Intelligence, 9(3), 413-428. - 61 -

Huang, P. W., & Lee, C. H. (2004). Image database design based on 9D-SPA representation for spatial relation. IEEE Transactions on Knowledge and Data Engineering, 16(12), 1486-1496. Hsu, F. J., Lee, S. Y., & Lin, B. S. (1999). Video data indexing by 2D C-trees. Journal of Visual Languages and Computing, 9(4), 375-397. Huang, P. W., & Jean, Y. R. (1994). Using 2D C + -string as spatial knowledge representation for image database systems. Pattern Recognition, 27(9), 1249-1257. Huang, P. W., & Jean, Y. R. (1996). Spatial reasoning and similarity retrieval for image database systems based on RS-strings. Pattern Recognition, 29(12), 2103-2114. Jean, Y. R., & Chang, H. P. (2006). A dynamic visibility inference scheme based on new spatial knowledge representations from Observers perspective. Proceedings of the International Computer Symposium (ICS) (pp. 1139-1144), Taichung: Providence University. Jungert, E. (1988). Extended symbolic projections as a knowledge structure for spatial reasoning. Proceedings of the 4th International Conference on Pattern Recognition (pp. 343-351), London: Springer-Verlag. - 62 -

Koprulu, M., Cicekli, N. K., & Yazici, A. (2003). Spatio-temporal querying in video databases. Information Sciences, 160(1), 131-152. Lee, J. T., & Chiu, H. P. (2003). 2D Z-string: A new spatial knowledge representation for image databases. Pattern Recognition Letters, 24(16), 3015-3026. Lee, J. T., Chiu, H. P., & Yu, P. (2002). 3D C-string: A new spatio-temporal knowledge representation for video database systems. Pattern Recognition, 35(11), 2521-2537. Lee, J. T., Yu, P., Chiu, H. P., & Hong, R. W. (2005). 3D Z-string: A new knowledge structure to represent spatio-temporal relations between objects in a video. Pattern Recognition Letters, 26(16), 2500-2508. Lee, S. Y., & Hsu, F. J. (1990). 2D C-string: A new spatial knowledge representation for image database system. Pattern Recogn, 23(10), 1077-1087. Lee, S. Y., & Hsu, F. J. (1992). Spatial reasoning and similarity retrieval of images using 2D C-string knowledge representation. Pattern Recogn, 25(3), 305-318. - 63 -

Lee, S. Y., Hsu, F. J., & Lin, B. S. (1998). 2D C-Tree spatial representation for iconic image. Journal of Visual Languages and Computing, 10(2), 147-164. Su, J. H., Huang, Y. T., Yeh, H. H., & Tseng, V. S. (2010). Effective content-based video retrieval using pattern-indexing and matching techniques. Expert Systems with Applications, 37(7), 5068-5085. Yi, H., Rajan, D., & Chia, L. T. (2005). A motion-based scene tree for compressed video content management. Image and Vision Computing, 24(2), 131-142. - 64 -