Solar Neutrinos: Fluxes

Σχετικά έγγραφα
Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz

Section 8.3 Trigonometric Equations

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

The Standard Model. Antonio Pich. IFIC, CSIC Univ. Valencia

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

derivation of the Laplacian from rectangular to spherical coordinates

Two-mass Equivalent Link

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

If we restrict the domain of y = sin x to [ π 2, π 2

The challenges of non-stable predicates

Inverse trigonometric functions & General Solution of Trigonometric Equations

CE 530 Molecular Simulation

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Solutions to Exercise Sheet 5

2. Μηχανικό Μαύρο Κουτί: κύλινδρος με μια μπάλα μέσα σε αυτόν.

MathCity.org Merging man and maths

Section 7.6 Double and Half Angle Formulas

Section 9.2 Polar Equations and Graphs

Durbin-Levinson recursive method

(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3)

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Derivation of Optical-Bloch Equations

C.S. 430 Assignment 6, Sample Solutions

Neutrino experiments and nonstandard interactions

EE512: Error Control Coding

Index , 332, 335, 338 equivalence principle, , 356

Graded Refractive-Index

Areas and Lengths in Polar Coordinates

Homework 8 Model Solution Section

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

CRASH COURSE IN PRECALCULUS

Example Sheet 3 Solutions

Strain gauge and rosettes

PARTIAL NOTES for 6.1 Trigonometric Identities

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Section 8.2 Graphs of Polar Equations

Approximation of distance between locations on earth given by latitude and longitude

ΤΕΙ ΚΑΒΑΛΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

Hadronic Tau Decays at BaBar

ΑΝΙΧΝΕΥΣΗ ΓΕΓΟΝΟΤΩΝ ΒΗΜΑΤΙΣΜΟΥ ΜΕ ΧΡΗΣΗ ΕΠΙΤΑΧΥΝΣΙΟΜΕΤΡΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Volume of a Cuboid. Volume = length x breadth x height. V = l x b x h. The formula for the volume of a cuboid is

Numerical Analysis FMN011

What happens when two or more waves overlap in a certain region of space at the same time?

F-TF Sum and Difference angle

Finite Field Problems: Solutions

Ó³ Ÿ. A , º 9Ä Ä ³ μ 1

Models for Probabilistic Programs with an Adversary

Ηλεκτρονικοί Υπολογιστές IV

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΑΛΛΗΛΟΓΡΑΦΙΑ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑ ΣΤΗΝ ΑΓΓΛΙΚΗ ΓΛΩΣΣΑ

Laboratory Studies on the Irradiation of Solid Ethane Analog Ices and Implications to Titan s Chemistry

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81

Trigonometry 1.TRIGONOMETRIC RATIOS

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Η ΕΠΙΔΡΑΣΗ ΤΗΣ ΑΙΘΑΝΟΛΗΣ,ΤΗΣ ΜΕΘΑΝΟΛΗΣ ΚΑΙ ΤΟΥ ΑΙΘΥΛΟΤΡΙΤΟΤΑΓΗ ΒΟΥΤΥΛΑΙΘΕΡΑ ΣΤΙΣ ΙΔΙΟΤΗΤΕΣ ΤΗΣ ΒΕΝΖΙΝΗΣ

Matrices and Determinants

LEPTONS. Mass m = ( ± ) 10 6 u Mass m = ± MeV me + m e

Second Order RLC Filters

The Simply Typed Lambda Calculus

ΜΗΤΡΙΚΟΣ ΘΗΛΑΣΜΟΣ ΚΑΙ ΓΝΩΣΤΙΚΗ ΑΝΑΠΤΥΞΗ ΜΕΧΡΙ ΚΑΙ 10 ΧΡΟΝΩΝ

On a four-dimensional hyperbolic manifold with finite volume

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

Journal of the Institute of Science and Engineering. Chuo University

measured by ALICE in pp, p-pb and Pb-Pb collisions at the LHC

AREAS AND LENGTHS IN POLAR COORDINATES. 25. Find the area inside the larger loop and outside the smaller loop

Fourier Analysis of Waves

Electronic structure and spectroscopy of HBr and HBr +

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

the total number of electrons passing through the lamp.

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΑΛΛΗΛΟΓΡΑΦΙΑ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑ ΣΤΗΝ ΑΓΓΛΙΚΗ ΓΛΩΣΣΑ

CORDIC Background (2A)

Three coupled amplitudes for the πη, K K and πη channels without data

ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations

CHAPTER (2) Electric Charges, Electric Charge Densities and Electric Field Intensity

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Reminders: linear functions

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

PP #6 Μηχανικές αρχές και η εφαρµογή τους στην Ενόργανη Γυµναστική

Trigonometric Formula Sheet

IIT JEE (2013) (Trigonomtery 1) Solutions

ΕΠΑΝΑΛΗΨΗ ΨΕΥΔΟΛΕΞΕΩΝ ΑΠΟ ΠΑΙΔΙΑ ΜΕ ΕΙΔΙΚΗ ΓΛΩΣΣΙΚΗ ΔΙΑΤΑΡΑΧΗ ΚΑΙ ΠΑΙΔΙΑ ΤΥΠΙΚΗΣ ΑΝΑΠΤΥΞΗΣ

Section 7.7 Product-to-Sum and Sum-to-Product Formulas

Instruction Execution Times

Differential equations

TMA4115 Matematikk 3

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Chapter 7 Transformations of Stress and Strain

CYLINDRICAL & SPHERICAL COORDINATES

Prey-Taxis Holling-Tanner

[1] P Q. Fig. 3.1

Managing Economic Fluctuations. Managing Macroeconomic Fluctuations 1

Bounding Nonsplitting Enumeration Degrees

Variational Wavefunction for the Helium Atom

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Transcript:

Solar Neutrinos: Fluxes pp chain Sun shines by : 4 p 4 He + e + + ν e + γ Solar Standard Model Fluxes CNO cycle e + N 13 <E >=0.707MeV He 4 C 1 C 13 p p p p N 15 N 14 He 4 O 15 O 16 e + <E >=0.997MeV O17 p F 17 p e + <E >=0.999MeV

Neutrinos in The Sun : MSW Effect

Neutrinos in The Sun : MSW Effect Solar neutrinos are ν e produced in the core (R 0.3R ) of the Sun

Neutrinos in The Sun : MSW Effect Solar neutrinos are ν e produced in the core (R 0.3R ) of the Sun The solar atter density V CC = G F N e 10 14 N e N A ev At core: V CC,0 10 14 10 1 ev

Neutrinos in The Sun : MSW Effect Solar neutrinos are ν e produced in the core (R 0.3R ) of the Sun The solar atter density The energy spectru of solar ν es V CC = G F N e 10 14 N e N A ev At core: V CC,0 10 14 10 1 ev E ν 0.1 10 MeV

Neutrinos in The Sun : MSW Effect Solar neutrinos are ν e produced in the core (R 0.3R ) of the Sun The solar atter density The energy spectru of solar ν es V CC = G F N e 10 14 N e N A ev At core: V CC,0 10 14 10 1 ev E ν 0.1 10 MeV For ν e ν µ(τ), in vacuu ν e = cos θ ν 1 + sinθ ν For 10 9 ev 10 4 ev E ν V CC,0 > cos θ

Neutrinos in The Sun : MSW Effect Solar neutrinos are ν e produced in the core (R 0.3R ) of the Sun The solar atter density The energy spectru of solar ν es V CC = G F N e 10 14 N e N A ev At core: V CC,0 10 14 10 1 ev E ν 0.1 10 MeV For ν e ν µ(τ), in vacuu ν e = cos θ ν 1 + sinθ ν For 10 9 ev 10 4 ev E ν V CC,0 > cos θ ν can cross resonance condition in its way out of the Sun

For θ π 4 : In vacuu ν e = cosθ ν 1 + sinθ ν is ostly ν 1 In Sun core ν e = cosθ,0 ν 1 + sinθ,0 ν is ostly ν

For θ π 4 : In vacuu ν e = cosθ ν 1 + sinθ ν is ostly ν 1 In Sun core ν e = cosθ,0 ν 1 + sinθ,0 ν is ostly ν If ( /ev ) sin θ (E/MeV)cos θ 3 10 9 Adiabatic transition ν is ostly ν before and after resonance θ draatically at resonance ν e coponent P ee This is the MSW effect µ ν e ν 1 ν µ ν e ν µ ν 1 A R A P ee = 1 [1 + cosθ,0 cos θ]

For θ π 4 : In vacuu ν e = cosθ ν 1 + sinθ ν is ostly ν 1 In Sun core ν e = cosθ,0 ν 1 + sinθ,0 ν is ostly ν If ( /ev ) sin θ (E/MeV)cos θ 3 10 9 Adiabatic transition ν is ostly ν before and after resonance θ draatically at resonance ν e coponent P ee This is the MSW effect µ ν e ν If ( /ev ) sin θ (E/MeV)cosθ 3 10 9 Non-Adiabatic transition ν is ostly ν till the resonance At resonance the state can jup into ν 1 (with probability P LZ ) ν e coponent P ee µ ν e ν 1 ν µ ν e ν µ ν 1 1 ν µ ν e ν µ ν 1 A R A A R A P ee = 1 [1 + cosθ,0 cos θ] P ee = 1 [1 + (1 P LZ)cosθ,0 cos θ]

Neutrinos in The Sun : MSW Effect

Neutrinos in The Sun : MSW Effect ν does not cross resonance: P ee = 1 1 sin θ > 1

Neutrinos in The Sun : MSW Effect ν does not cross resonance: P ee = 1 1 sin θ > 1 ν crosses resonance MSW effect

Neutrinos in The Sun : MSW Effect ν does not cross resonance: P ee = 1 1 sin θ > 1 ν crosses resonance MSW effect Adiabatic MSW transition P ee = sin θ < 1

Neutrinos in The Sun : MSW Effect ν does not cross resonance: P ee = 1 1 sin θ > 1 Adiabacity breaking Effect of P LZ ν crosses resonance MSW effect Adiabatic MSW transition P ee = sin θ < 1

Solar Neutrinos: Data radiocheical Experient Detection Flavour E th (MeV) Data BS05 Hoestake 37 Cl(ν, e ) 37 Ar ν e E ν > 0.81 0.30 ± 0.03 Sage + 71 Ga(ν, e ) 71 Ge ν e E ν > 0.3 0.5 ± 0.03 Gallex+GNO real tie ν e, ν Ka SK ES ν µ/τ x e ν x e σµτ E e > 5 0.41 ± 0.01 1 σ e 6 SNO CC ν e d ppe ν e T e > 5 0.9 ± 0.0 NC ν x d ν x p n ν e, ν µ/τ T γ > 5 0.87 ± 0.07 ES ν x e ν x e ν e, ν µ/τ T e > 5 0.41 ± 0.05 Borexino ν x e ν x e ν e, ν µ/τ E ν = 0.86 0.66 ± 0.07 All experients easuring ostly ν e observed a deficit Deficit is energy dependent Deficit disappears in NC

Solar Neutrinos: Oscillation Solutions RATES ONLY SK and SNO E and t dependence GLOBAL 10-3 5 LMA 10-4 LMA 10-6 0 [10 ev ] 10-5 SMA -7-5 10 15 LOW 10-8 -9 10 10-10 10 5 VAC 10-11 SMA, LOW, VAC at > 5σ -1 10 10-4 10-3 10-10-1 1 10. 0 0. 0.3 0.5 0.6 0.7 0.4 tan θ Best fit = 6.8 10 5 ev tan θ = 0.43 0.9

5 0 10 8 Solar ν e ν active [10-5 ev ] 15 10 + KaLAND ν e / ν e [10-5 ev ] 6 4 5 0 0. 0.3 0.4 0.5 0.6 0.7 0.9 tan θ 0 0.5 0.5 1 4 tan θ

5 0 10 8 Solar ν e ν active [10-5 ev ] 15 10 + KaLAND ν e / ν e [10-5 ev ] 6 4 5 0 0. 0.3 0.4 0.5 0.6 0.7 0.9 tan θ 0 0.5 0.5 1 4 tan θ ν e oscillation paraeters copatible with ν e : Sensible to assue CPT: P ee = Pēē 9 [10-5 ev ] 8.5 8 7.5 = 7.7 10 5 ev tan θ = 0.43 7 6.5 0.3 0.4 0.5 0.6 0.7 0.8 tan θ

Solar+Atospheric+Reactor+LBL 3ν Oscillations U: 3 angles, 1 CP-phase + ( Majorana phases) 0 @ 1 0 1 0 0 0 c 3 s 3 A @ 0 s 3 c 3 c 13 0 s 13 e iδ 0 1 0 s 13 e iδ 0 c 13 1 0 A @ c 1 s 1 1 0 s 1 c 1 0 A 0 0 1 Two ass schees NORMAL 3 atos 1 INVERTED M solar solar 1 3 ν oscillation analysis 1 = M at ± 3 ± 31

Solar+Atospheric+Reactor+LBL 3ν Oscillations U: 3 angles, 1 CP-phase + ( Majorana phases) 0 @ 1 0 1 0 0 0 c 3 s 3 A @ 0 s 3 c 3 c 13 0 s 13 e iδ 0 1 0 s 13 e iδ 0 c 13 1 0 A @ c 1 s 1 1 0 s 1 c 1 0 A 0 0 1 Two ass schees NORMAL 3 atos 1 INVERTED M solar solar 1 3 ν oscillation analysis 1 = M at ± 3 ± 31 Generic 3ν ixing effects: Effects due to θ 13 Difference between Inverted and Noral Interference of two wavelength oscillations CP violation due to phase δ

w/o KaLand Global Analysis: Three Neutrino Oscillations 9 15 8.5 1 [10-5 ev ] 8 7.5 χ 10 5 7 6.5 0.3 0.4 0.5 0.6 0.7 0 0.01 0.0 0.03 0.04 0.05 0.06 0 0 5 10 15 0.3 0.4 0.5 0.6 0.7 0.8 3 tan θ 1 sin θ 13 15 1 [10-5 ev ] tan θ 1 31 [10-3 ev ] - χ 10 5 w/o LBL -3 δ CP 0.3 0.5 1 3 tan θ 3 360 300 40 180 10 60 Noral 0 0 0.01 0.0 0.03 0.04 0.05 sin θ 13 0 0.01 0.0 0.03 0.04 0.05 0.06 sin θ 13 Inverted 0 0.01 0.0 0.03 0.04 0.05 0.06 sin θ 13 χ 0 15 10 5-4 - 0 4 31 [10-3 ev ] sin θ 13 = 0.050 sin θ 13 = 0.035 sin θ 13 = 0.00 0 0 60 10 180 40 300 δ CP 0.3 0.5 1 3 tan θ 3 w/o LBL w/o Chooz 0 0.0 0.04 0.06 sin θ 13

The derived ranges for the six paraeters at 1σ (3σ) are: 1 = 7.7 +0. ( +0.67 0.1 0.61) 10 5 ev 31 =.37 ± 0.17 (0.46) 10 3 ev θ 1 = 34.5 ± 1.4 ( ) +4.8 4.0 θ 3 = 4.3 +5.1 ( +11.3 ) 3.3 7.7 θ 13 = 0 +7.9 ( +1.9 ) 0.0 0.0 δ CP [0, 360] U 3σ = 0.77 0.86 0.50 0.63 0.00 0. 0. 0.56 0.44 0.73 0.57 0.80 0.1 0.55 0.40 0.71 0.59 0.8

The derived ranges for the six paraeters at 1σ (3σ) are: 1 = 7.7 +0. ( +0.67 0.1 0.61) 10 5 ev 31 =.37 ± 0.17 (0.46) 10 3 ev θ 1 = 34.5 ± 1.4 ( ) +4.8 4.0 θ 3 = 4.3 +5.1 ( +11.3 ) 3.3 7.7 θ 13 = 0 +7.9 ( +1.9 ) 0.0 0.0 δ CP [0, 360] U 3σ = 0.77 0.86 0.50 0.63 0.00 0. 0. 0.56 0.44 0.73 0.57 0.80 0.1 0.55 0.40 0.71 0.59 0.8 with structure U LEP 1 (1 + O(λ)) 1 (1 O(λ)) 1 (1 O(λ) + ǫ) 1 (1 + O(λ) ǫ) 1 1 (1 O(λ) ǫ) 1 (1 + O(λ) ǫ) 1 ǫ λ 0. ǫ 0.

The derived ranges for the six paraeters at 1σ (3σ) are: 1 = 7.7 +0. ( +0.67 0.1 0.61) 10 5 ev 31 =.37 ± 0.17 (0.46) 10 3 ev θ 1 = 34.5 ± 1.4 ( ) +4.8 4.0 θ 3 = 4.3 +5.1 ( +11.3 ) 3.3 7.7 θ 13 = 0 +7.9 ( +1.9 ) 0.0 0.0 δ CP [0, 360] U 3σ = 0.77 0.86 0.50 0.63 0.00 0. 0. 0.56 0.44 0.73 0.57 0.80 0.1 0.55 0.40 0.71 0.59 0.8 with structure U LEP 1 (1 + O(λ)) 1 (1 O(λ)) 1 (1 O(λ) + ǫ) 1 (1 + O(λ) ǫ) 1 1 (1 O(λ) ǫ) 1 (1 + O(λ) ǫ) 1 ǫ λ 0. ǫ 0. very different fro quark s U CKM 1 O(λ) O(λ 3 ) O(λ) 1 O(λ ) λ 0. O(λ 3 ) O(λ ) 1

We still ignore: { (1) Open Questions Is θ13 0? How sall? () Is θ 3 = π 4? If not, is it > or <? (3) Is there CP violation in the leptons (is δ 0, π)? (4) What is the ordering of the neutrino states? (5) Are neutrino asses: hierarchical: i j i + j? degenerated: i j i + j? (6) Dirac or Majorana?