RF HB ) HB. MATLAB Spice

Σχετικά έγγραφα
DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E.

6.003: Signals and Systems. Modulation

Second Order RLC Filters

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Second Order Partial Differential Equations

ME 365: SYSTEMS, MEASUREMENTS, AND CONTROL (SMAC) I

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Design and Fabrication of Water Heater with Electromagnetic Induction Heating

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Math221: HW# 1 solutions

EE101: Resonance in RLC circuits

Feasible Regions Defined by Stability Constraints Based on the Argument Principle

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

VBA Microsoft Excel. J. Comput. Chem. Jpn., Vol. 5, No. 1, pp (2006)

Lifting Entry (continued)

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ. Πτυχιακή εργασία

Spectrum Representation (5A) Young Won Lim 11/3/16

High order interpolation function for surface contact problem

AΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

Approximation of distance between locations on earth given by latitude and longitude

Schedulability Analysis Algorithm for Timing Constraint Workflow Models

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

Uniform Convergence of Fourier Series Michael Taylor

Sampling Basics (1B) Young Won Lim 9/21/13

Section 8.3 Trigonometric Equations

If we restrict the domain of y = sin x to [ π 2, π 2

10.7 Performance of Second-Order System (Unit Step Response)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Numerical Analysis FMN011

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

Partial Differential Equations in Biology The boundary element method. March 26, 2013

SPECIAL FUNCTIONS and POLYNOMIALS

Fundamentals of Signals, Systems and Filtering

ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations

Section 9.2 Polar Equations and Graphs

Areas and Lengths in Polar Coordinates

CRASH COURSE IN PRECALCULUS

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ "ΠΟΛΥΚΡΙΤΗΡΙΑ ΣΥΣΤΗΜΑΤΑ ΛΗΨΗΣ ΑΠΟΦΑΣΕΩΝ. Η ΠΕΡΙΠΤΩΣΗ ΤΗΣ ΕΠΙΛΟΓΗΣ ΑΣΦΑΛΙΣΤΗΡΙΟΥ ΣΥΜΒΟΛΑΙΟΥ ΥΓΕΙΑΣ "

Reaction of a Platinum Electrode for the Measurement of Redox Potential of Paddy Soil

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Example Sheet 3 Solutions

BCI On Feature Extraction from Multi-Channel Brain Waves Used for Brain Computer Interface

2.019 Design of Ocean Systems. Lecture 6. Seakeeping (II) February 21, 2011

ADVANCED STRUCTURAL MECHANICS

ΔΙΑΚΡΙΤΟΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER - Discrete Fourier Transform - DFT -

Retrieval of Seismic Data Recorded on Open-reel-type Magnetic Tapes (MT) by Using Existing Devices

Digital Signal Octave Codes (0B)

2 ~ 8 Hz Hz. Blondet 1 Trombetti 2-4 Symans 5. = - M p. M p. s 2 x p. s 2 x t x t. + C p. sx p. + K p. x p. C p. s 2. x tp x t.

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Areas and Lengths in Polar Coordinates

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

LTI Systems (1A) Young Won Lim 3/21/15

A summation formula ramified with hypergeometric function and involving recurrence relation

derivation of the Laplacian from rectangular to spherical coordinates

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

w o = R 1 p. (1) R = p =. = 1

= 0.927rad, t = 1.16ms

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

2 Composition. Invertible Mappings

C.S. 430 Assignment 6, Sample Solutions

Εξοικονόμηση Ενέργειας σε Εγκαταστάσεις Δρόμων, με Ρύθμιση (Dimming) ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Bundle Adjustment for 3-D Reconstruction: Implementation and Evaluation

VSC STEADY2STATE MOD EL AND ITS NONL INEAR CONTROL OF VSC2HVDC SYSTEM VSC (1. , ; 2. , )

Magnetically Coupled Circuits

Q L -BFGS. Method of Q through full waveform inversion based on L -BFGS algorithm. SUN Hui-qiu HAN Li-guo XU Yang-yang GAO Han ZHOU Yan ZHANG Pan

Διερεύνηση ακουστικών ιδιοτήτων Νεκρομαντείου Αχέροντα

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΑΛΛΗΛΟΓΡΑΦΙΑ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑ ΣΤΗΝ ΑΓΓΛΙΚΗ ΓΛΩΣΣΑ

The understanding of landscape

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ

Class 03 Systems modelling

Η αλληλεπίδραση ανάμεσα στην καθημερινή γλώσσα και την επιστημονική ορολογία: παράδειγμα από το πεδίο της Κοσμολογίας

þÿ Ç»¹º ³µÃ ± : Ãż²» Ä Â

ΣΔΥΝΟΛΟΓΗΚΟ ΔΚΠΑΗΓΔΤΣΗΚΟ ΗΓΡΤΜΑ ΗΟΝΗΧΝ ΝΖΧΝ «ΗΣΟΔΛΗΓΔ ΠΟΛΗΣΗΚΖ ΔΠΗΚΟΗΝΧΝΗΑ:ΜΔΛΔΣΖ ΚΑΣΑΚΔΤΖ ΔΡΓΑΛΔΗΟΤ ΑΞΗΟΛΟΓΖΖ» ΠΣΤΥΗΑΚΖ ΔΡΓΑΗΑ ΔΤΑΓΓΔΛΗΑ ΣΔΓΟΤ

Πτυχιακή Εργασία Η ΠΟΙΟΤΗΤΑ ΖΩΗΣ ΤΩΝ ΑΣΘΕΝΩΝ ΜΕ ΣΤΗΘΑΓΧΗ

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Forced Pendulum Numerical approach

Study on Re-adhesion control by monitoring excessive angular momentum in electric railway traction

University of Illinois at Urbana-Champaign ECE 310: Digital Signal Processing

Prey-Taxis Holling-Tanner

ΔΙΕΡΕΥΝΗΣΗ ΤΗΣ ΣΕΞΟΥΑΛΙΚΗΣ ΔΡΑΣΤΗΡΙΟΤΗΤΑΣ ΤΩΝ ΓΥΝΑΙΚΩΝ ΚΑΤΑ ΤΗ ΔΙΑΡΚΕΙΑ ΤΗΣ ΕΓΚΥΜΟΣΥΝΗΣ ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ

Lecture Stage Frequency Response (1/10/02) Page 210-1

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΒΑΛΕΝΤΙΝΑ ΠΑΠΑΔΟΠΟΥΛΟΥ Α.Μ.: 09/061. Υπεύθυνος Καθηγητής: Σάββας Μακρίδης

Development of the Nursing Program for Rehabilitation of Woman Diagnosed with Breast Cancer

An Automatic Modulation Classifier using a Frequency Discriminator for Intelligent Software Defined Radio

CYPRUS UNIVERSITY OF TECHNOLOGY. Faculty of Engineering and Technology. Department of Civil Engineering and Geomatics. Dissertation Thesis

Μειέηε, θαηαζθεπή θαη πξνζνκνίσζε ηεο ιεηηνπξγίαο κηθξήο αλεκνγελλήηξηαο αμνληθήο ξνήο ΓΗΠΛΩΜΑΣΗΚΖ ΔΡΓΑΗΑ

Section 7.6 Double and Half Angle Formulas

Finite Field Problems: Solutions

Εκτεταμένη περίληψη Περίληψη

Reminders: linear functions

Trigonometric Formula Sheet

Motion analysis and simulation of a stratospheric airship

Differential equations

Lecture 26: Circular domains

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΕΡΙΒΑΛΛΟΝΤΟΣ

Transcript:

THE INSTITUTE OF ELETONIS, INFOMATION AND OMMUNIATION ENGINEES TEHNIAL EPOT OF IEIE. MATLAB SPIE 34- - E-mail: {kawata,ushida}@fe.bunri-u.ac.jp, {yamagami,nishio}@ee.tokushima-u.ac.jp F HB ) HB Spice MATLAB HB MATLAB Spice Spice-oriented frequency-domain intermodulation analysis combining with MATLAB omparisons between Volterra series and harmonic balance methods Junji KAWATA, Yoshihiro YAMAGAMI, Yoshifumi NISHIO, and Akio USHIDA Faculty of Eng., Tokushima Bunri University 34- Shido, Sanuki, 79-93 JAPAN Faculty of Eng., Tokushima University - Minami-josanjima, Tokushima, 77-85 JAPAN E-mail: {kawata,ushida}@fe.bunri-u.ac.jp, {yamagami,nishio}@ee.tokushima-u.ac.jp Abstract It is very important to analyze F circuits, mixers and modulators driven by multiple input frequencies. Volterra series methods are widely used for the frequency-domain analysis of nonlinear circuits, because they give the solutions in analytical forms. On the other hand, HB (harmonic balance) method is well-known that can be applied even for relatively strong nonlinear circuits. In this article, we propose a Spice-oriented HB method combining with MATLAB. Firstly, for the nonlinear devices modeled by the special functions, their characteristics are approximated by the Taylor series, and the Fourier coefficients to the input and output relations can be calculated by MATLAB in the symbolic forms. Thus, the determining equation of HB method can be formulated by the equivalent circuit and/or net-list. It can be efficiently solved by the D analysis of Spice. Thus, the frequency-domain solutions such as frequency response curves can be easily obtained by the D sweep. We found from the examples that, although Volterra series method can be efficiently applied to weakly nonlinear circuits, it becomes erroneous for strong nonlinear circuits. On the other hand, our HB method can be stably applied to relatively strong nonlinear circuits. Key words Volterra series method, harmonic balance method, MATLAB, Spice modulator and mixer circuit

i. d = I S exp v d /V T, I S = [A], V T = 5. () v d I v d = V d V d cos ωt, V d =.58 () i d 3 D, cos ωt, cos ωt, [-3] cos 3ωt i d = k k v d k vd k 3 vd, 3 (3) k = 3, k =.599, k =.39, k 3 = 38. 3 V d HB) 3 3 [5-8] V d 3 3 5 3 3 5 3 5 95 43 79 55 59 39 3 43 7 538 859 49 9 383 7 55 9.4.54.4 87 47.5 5 347 [9,] [-4] V d V d =. 3 3 HB 5 7 Spice ABM (V d =.) 3.459.538.7 87 [5-] 3 4.559 59 347 5..5. 9 7.397.483.559 83 MATLAB V d =. 7 [7] Spice HB HB. Spice [3] v in(ω t) Linear v G v(t) v (ω t) - (3) 3 s 3. (a) r = /k [3]. U (s), U (s) H (s), H (s) H k (s) = H (s) H (s) (4) (i d, v d ) 3 [4] in 3 i G

H (s), H (s) v in (ω t), v in (ωt) I N (±jω, ±jω ) = k ((H (±jω ) H (±jω )) ((H (±jω ) H (±jω )) (3) (4) = k [H (jω )H (jω ) H (jω )H (jω ) I N H (jω )H (jω ) H (jω )H (jω ) I N (s, s ) = k H k (s )H k (s ) (5) r Y (s) ω 3 ω 4 H k (s, s ) Y (s s )H k (s, s ) = I N (s, s ) () () 3 3 3 3 I 3N (s, s, s 3) = k 3H k (s )H k (s )H k (s 3) 3 k [H k(s ) (7) H k (s, s 3 ) H k (s )H k (s, s 3 ) H k (s 3 )H k (s, s )]. 3 Spice 3 H 3k (s, s, s Spice MATLAB HB) 3) HB Y (s s s 3 )H 3k (s, s, s 3 ) = I 3N (s, s, s 3 ). (8) V BE V B U (s) Linear i i B i E Linear U (s) Linear (a) st order r r H (s) H (s) (b) nd order r I N(s,s ) H (s,s ) k Linear r H 3k(s,s,s 3) I 3N(s,s,s 3) (c) 3rd order 3 H out (s, s, s 3 ) = H k (s ) H k (s, s ) H 3k (s, s, s 3 ). (9) D, ω, ω, ω, ω, 3ω, 3ω ω ω, ω ω, ω ω, ω ω. (4) ω ω, ω ω 3 v in(t) = A sin ω t, v in(t) = A sin ω t () 3 [3] D A H k(jω, jω ) A H k(jω, jω ) ω A H k (jω ) 3 A A H 3k(jω, jω, jω ) 3 4 A3 H 3k(jω, jω, jω ) ω A H k (jω ) 3 A A H 3k (jω, jω, jω ) 3 4 A3 H 3k(jω, jω, jω ) ω ω A A H k (jω, jω ) ω ω A A H k (jω, jω ) ω A H k(jω, jω ) ω A H k(jω, jω ) ω ω 3 4 A AH 3k(jω, jω, jω ) ω ω 3 4 A A H 3k (jω, jω, jω ) ω ω 3 4 A A H 3k(jω, jω, jω ) ω ω 3 4 AA H 3k(jω, jω, jω ) 3ω 4 A3 H 3k(jω, jω, jω ) 3ω 4 A3 H 3k(jω, jω, jω ) s i = {±jω, ±jω }, i =,, 3 () (5) (4) 3 H (jω )H (jω ) H (jω )H (jω )] () 5 ω ω ω ω MATLAB [7] i = I S (α F exp(v BE /V T ) exp(v B /V T )) i B = I S ((α F ) exp(v BE /V T )(α ) exp(v B /V T )) i E = I S (exp(v BE /V T ) α exp(v B /V T )) (3) I S = [A], V T =, α F =.99, α =.3 () (3) HB HB HB V d 3 i d = k (V d ) k (V d )v d k (V d )v d k 3 (V d )v 3 d (5) (4) K v d (t)=v d (V d,k cos ν k tv d,k sin ν k t) k=, () K i d (t)=i d {I d,k cos ν k ti d,k sin ν k t) k= () (5) i d MATLAB 5 5 5 3 = 7. (7) (4) Spice HB 3

i d v - d (a) Vd Vdcosν t Vd sinνt V dk sinνkt Diode HB model (b) Id I cosν d t I d sinνt I dk sinνkt 3 (a) (b) HB L i = v v L = L i L dt, dt, v = i, v = V cos ν k t V sin ν k t i L = I cos ν k t I sin ν k t i = I cos ν k t I sin ν k t V L = ν k LI, V L = ν k LI V = I, V = I (8) Sine-osine [5,] I = ν k V, I = ν k V (9) e (t) e (t) (a) Q L Vout E V (jω ) V (jω ) α F I d I d g d (b) L V out - 5 (a) (b) = 5[kΩ], = [kω], =.[kω] = [nf], = [nf], = [nf], L = [µf], E = v = sin ω t, v = sin ω t, for ω = 8. [rad/sec].5..5..5 ω ω ω (Volterra) ω ω ω ω 5 5 5 3 ω ω (c) [x rad/s] (c). ω osine Sine il I I. ω Inductor v L L V L V L V L= ν k LI V L = ν k LI.8.4 ω ω ω ω ω apacitor esistor v v i i I I = ν k V V V V I I I = ν k I V V (d) 5 5 5 3 ω ω [x rad/s] (d) 4.. Steady-state waveform V =I V =I 4 L Sine-osine -. L Sine-osine -4. 4 8 [µs] Spice D (e) ω = 7 [rad/sec],. 4.4. HB 5(a) 3 i [8] B = I B, (V B, )I B, (V B, )v B I B, (V B, )v B 3 I B,3(V B, )v 3 B () i BE = I BE, (V BE, )I BE, (V BE, )v BE 3 I BE, (V BE, )v BE I BE,3(V BE, )v 3 BE.4. HB 5(a) 5(d) v d =.58 3 HB i d = 3.5v d.4v d 38.v 3 d. () ω = 8. [rad/sec] ω 4 HB 78.38[sec] k =.5(= g d ), k =.4, k 3 = 38. () L.3 3 3 5(e) MATLAB.4.3 ω ω 5(c) HB 4 4 V B < 3 HB I S exp(v B /V T ) = 4

V v L out 4 ω ω (ω = 7 [rad/s], ω = 8. [rad/s]) HB V = V ω ω ω ω ω ω.95.93.99.9.93.98..4.7.3.8.9 3 3.9.3.5.9.7.7 4.5 3.35 3.35.59.5. 5 9.8 4.55 4.3 3.34.75.38 V V (a) = [kω], = [Ω], L = [µh], (3) V =, V =, V = 5 V = V = ω. ω ω HB.4 [x]. ω 7 (b) [x rad/s] (b) = [pf], v 3 = sin ω t, v =. sin 57 t. HB HB 3. -. 3 (a) -3. [8] (c) v (t) v (t) (c) v (t) = sin 5 t, 4 L (3) 3 ω.8. v (t) - Q Q Q 3 ω [ω =57x rad/s] v (t) ω ω [x] 3 4 5 7 8 9 3... -. Output waveform 3 4 5 [µsec] ω=.[x rad/s] v (t) =. sin 57 t i d = I S e λv d, for I S = [A], λ = 4, α =.99 (3) ω ω [x] ω ω [x] i d k (v d )k (v d )v k (v d )v k 3(v d )v 3, v d = v d v (4) (d) ω [x rad/s] (4) 3 MAT- (d) = [nf], v LAB = sin ω t, v =. sin. t. HB L 4. Sine-osine 4. Spice (b) ω = 57 -. [rad/s] ω ω = 5 [rad/s] -4. (c) 4 8 (e) [µsec] HB (e) v (t) = sin 7 t, v (t) =. sin. t V out, =.799 (HB) V =.83 (Tran. DFT) (a) V out, =.93 (HB) V =.9585 (Trans. DFT) L 7 [rad/s] ω ω = 5 [rad/s], ω = 57 [rad/s] ω 7 [rad/s] (d) (ω ω ) HB ( ω ω ) ω = ω = 57 [rad/s] ω ω 5[s] ω [x] 4 8 4 8 5

V out, = 3.987 (HB) V = 4.8 (Tran. DFT) V out, =.37 (HB) ω = 7 [rad/s], V =.337 (Tran. DFT) ω =. [rad/s] 5 9.3[s] [] K.S.Kundert, J.K.White and A.Sangiovanni-Vincentelle, Steady- State methods for simulating Analog and Microwave ircuits, 4. Kluwe Academic, Pub. 99. Spice MATLAB [3] Y.Yamagami,Y.Nishio, A.Ushida, M.Takahashi and K.Ogawa, HB Analysis of communication circuits based on multidimensional Fourier transformation, IEEE Trans. omput.-aided Des. Interg. ircuits Syst., vol.8, pp.5-77, 999. [4] A.Ushida,T.Adachi and L.O.hua, Steady-state response of HB MATLAB nonlinear circuitsbased on hybrid method, IEEE Trans. on ircuits and Systems-I, vol.39, pp.49-, 99. [5] A.Ushida, Y.Yamagami and Y.Nishio, Frequency responses of nonlinear networks using curve tracing algorithm, ISAS, vol.i, pp.4-44,. [] J.Kawata, Y.Taniguchi, M.Oda,Y.Yamagami and Y.Nishio and A.Ushida Spice-oriented frequencydomain analysis of nonlinear electronic circuits, IEIE Trans. Fundamentals, vol.e9- HB A, pp.4-4, 7. MATLAB [7] MATLAB 4. [8] K.K.larke and D.T.Hess, ommunication ircuits: Analysis 3 and Design, Addison-Wesley Pub. o., 97. [9].Telichevesky and K.Kundert, SpectreF Primer, adence 3 HB MATLAB Design Systems, San Jose, alifornia, 99.. Spice 4 3 4 HB 5. 7 [-3] 3 4 3 HB 5 7 MATLAB [] M.Schetzen, The Volterra and Wiener Theorems of Nonlinear Systems, John Wiley and Sons, 978. [] J.Wood and D.E.oot, Fundamentals of Nonlinear Behavioral Modeling for F and Microwave Design, Artech House, 5. [3] P.Wambacq and W.Sansen, Distortion Analysis of Analog Integrated ircuits, Kluwer Academic Pub., 998. [4] B.J.Leon and D.J.Shaefer, Volterra series and Picard iteration for nonlinear circuits and systems, IEEE Trans. ircuits and Systems, vol.5, pp.789-793, 978. [5].Hayashi, Nonlinear Oscillations in Physical Systems, McGraw-Hill, 94. [] Y.Ueda, The oad to haos-ii, Aerial Press. Inc.,. [7].J.Gilmore and M.B.Steer, Nonlinear circuit analysis using the method of harmonic balance-a review of the Art. Part I. Introductory concepts, Int. Jour. of Microwave and Millimeter- Wave omputer-aided Eng. vol., pp.-37, 99. [8].J.Gilmore and M.B.Steer, Nonlinear circuit analysis using the method of harmonic balance-a review of the Art. Part II. Advanced concepts, Int. Jour. of Microwave and Millimeter- Wave omputer-aided Eng. vol., pp.59-8, 99. [] A.S.Sedra and K..Smith, Microelectronic ircuits, Oxford Univ. Press, 4. [9] 3. [].Telichevesky, K.S.Kundert and J.K.White, Efficient steadystate analysis based on matrix-free Krylov-subspace methods, AM, pp.48-485, 995. HB [5-] 3 Spice 4 5 7 3 HB 3 Spice 4 5 7 4 [-3] 3 FFT 4 5 7 5 [3] 3 FFT 4 5 7 SpectreF[9] 3 4 5 7 5