ERG for a Yukawa Theory in 3 Dimensions

Σχετικά έγγραφα
The Wilson-Fisher Fixed Point via ERG

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Space-Time Symmetries

Symmetric Stress-Energy Tensor

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Approximation of distance between locations on earth given by latitude and longitude

= {{D α, D α }, D α }. = [D α, 4iσ µ α α D α µ ] = 4iσ µ α α [Dα, D α ] µ.

Higher Derivative Gravity Theories

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

UV fixed-point structure of the 3d Thirring model

Reminders: linear functions

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Partial Differential Equations in Biology The boundary element method. March 26, 2013

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

Lecture 2 The Wess-Zumino Model

Second Order Partial Differential Equations

Forced Pendulum Numerical approach

Non-Gaussianity from Lifshitz Scalar

Example Sheet 3 Solutions

Concrete Mathematics Exercises from 30 September 2016

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

D Alembert s Solution to the Wave Equation

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

2 Composition. Invertible Mappings

EE512: Error Control Coding

Exercises to Statistics of Material Fatigue No. 5

Homework 3 Solutions

Areas and Lengths in Polar Coordinates

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1

4.6 Autoregressive Moving Average Model ARMA(1,1)

Matrices and Determinants

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

On the Galois Group of Linear Difference-Differential Equations

Areas and Lengths in Polar Coordinates

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

8.324 Relativistic Quantum Field Theory II

Congruence Classes of Invertible Matrices of Order 3 over F 2

Tridiagonal matrices. Gérard MEURANT. October, 2008

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Section 8.3 Trigonometric Equations

Numerical Analysis FMN011

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

( y) Partial Differential Equations

Spherical Coordinates

Higher spin gauge theories and their CFT duals

Parametrized Surfaces

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Inverse trigonometric functions & General Solution of Trigonometric Equations

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King

Statistical Inference I Locally most powerful tests

Supersymmetric Field Theories in Four and Two Dimensions

Mean-Variance Analysis

Every set of first-order formulas is equivalent to an independent set

Outline Analog Communications. Lecture 05 Angle Modulation. Instantaneous Frequency and Frequency Deviation. Angle Modulation. Pierluigi SALVO ROSSI

Srednicki Chapter 55

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

Non-Abelian Gauge Fields

Other Test Constructions: Likelihood Ratio & Bayes Tests

Symmetries and Feynman Rules for Ramond Sector in WZW-type Superstring Field Theories

Orbital angular momentum and the spherical harmonics

ST5224: Advanced Statistical Theory II

6.3 Forecasting ARMA processes

Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03)..

Homework 8 Model Solution Section

Homework 4 Solutions Weyl or Chiral representation for γ-matrices. Phys624 Dirac Equation Homework 4

1 String with massive end-points

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

ECON 381 SC ASSIGNMENT 2

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Υπολογιστική Φυσική Στοιχειωδών Σωματιδίων

Variational Wavefunction for the Helium Atom

On a four-dimensional hyperbolic manifold with finite volume

Dirac Matrices and Lorentz Spinors

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ

Estimation for ARMA Processes with Stable Noise. Matt Calder & Richard A. Davis Colorado State University

Dark matter from Dark Energy-Baryonic Matter Couplings

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

HW 3 Solutions 1. a) I use the auto.arima R function to search over models using AIC and decide on an ARMA(3,1)

Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz

MA 342N Assignment 1 Due 24 February 2016

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

An Inventory of Continuous Distributions

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Strain gauge and rosettes

Solutions to Exercise Sheet 5

Jordan Form of a Square Matrix

Ηλεκτρονικοί Υπολογιστές IV

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Nonlinear Fourier transform for the conductivity equation. Visibility and Invisibility in Impedance Tomography

4 Dirac Equation. and α k, β are N N matrices. Using the matrix notation, we can write the equations as imc

Supporting Information

Fractional Colorings and Zykov Products of graphs

Geometry of the 2-sphere

Transcript:

ERG for a Yukawa Theory in 3 Dimensions Hidenori SONODA Physics Department, Kobe University, Japan 14 September 2010 at ERG2010 Abstract We consider a theory of N Majorana fermions and a real scalar in the 3 dimensional Euclid space. We construct the RG flow of three parameters using ERG. We look for a non-trivial fixed point by loop expansions. For N = 1, we compare the critical exponents with those of the Wess-Zumino model at the fixed point. We need to improve the numerical accuracy, perhaps, by going to 2-loop. Typeset by FoilTEX

Plan of the talk 1 1. Spinors in D = 3 2. A Yukawa model in R 3 3. ERG formalism (a quick review) 4. RG flow for the Yukawa model 5. 1-loop results 6. Comparison with the Wess-Zumino model 7. Summary and conclusions

Spinors in D = 3 2 1. Minkowski space (a) We can choose the gamma matrices pure imaginary: γ 0 = σ y, γ 1 = iσ x, γ 2 = iσ z satisfy {γ µ, γ ν } = 2η µν 1 2 (b) A Lorentz transformation transforms a two-component spinor ψ as ψ Aψ where A SL(2, R) real! Its complex conjugate ψ ψ γ 0 transforms as ψ ψa 1

(c) Given ψ = 1 2 (u + iv), where u, v are Majorana (real) spinors, 3 ψ (iγ µ µ m) ψ = 1 ( ) ũ(iγ }{{} µ µ m)u + ṽ(iγ µ µ m)v 2 real where ũ u T σ y transforms as ũ ũa 1. (σ y A T σ y = A 1 ) (d) Parity { ψ(x, y, t) iγ 1 ψ( x, y, t) = σ x ψ( x, y, t) ψ(x, y, t) ψ( x, y, t)iγ 1 = ψ( x, y, t)( )σ x forbids the mass term ψψ.

2. Euclid space 4 (a) A spatial rotation transforms a two-component spinor ψ as ψ Uψ where U SU(2) complex! and ψ ψ T σ y as ψ ψu 1 (b) Though a Majorana spinor ψ is not real, the action d 3 x 1 2 ψ ( σ + m) ψ makes sense for the anticommuting ψ.

5 (c) Parity { ψ(x, y, z) σy ψ(x, y, z) ψ(x, y, z) ψ(x, y, z)( )σ y forbids the mass term ψψ. (d) Parity Parity & π-rotation around the y-axis gives { ψ(x, y, z) iψ( x, y, z) ψ(x, y, z) i ψ( x, y, z)

A Yukawa model in R 3 6 1. The classical lagrangian L = 1 2 ( φ)2 + 1 2 N I=1 χ I σ χ I + 1 2 m2 φ 2 + λ 4! φ4 + g φ 1 2 N I=1 χ I χ I where φ is a real scalar, and χ I (I = 1,, N) are Majorana spinors. 2. three dimensionful parameters [m 2 ] = 2, [λ] = 1, [g] = 1/2 3. A fermion mass term is forbidden by the Z 2 invariance (parity): { φ( x) φ( x) χ I ( x) iχ I ( x)

4. Classical phase analysis 7 { m 2 > 0 Z 2 exact φ = 0, m χ = 0 m 2 < 0 Z 2 broken φ = 0, m χ 0 5. Related models with the same Z 2 invariance (a) N = 1 Wess-Zumino model (1 SUSY), classically λ = 3g 2 L W Z = 1 2 ( φ)2 + 1 2 χ σ χ + g φ1 2 χχ + 1 8 g2 ( φ 2 v 2) 2 Classical phase analysis Z 2 SUSY φ masses v 2 < 0 exact broken 0 m χ = 0, m 2 φ = g2 2 ( v2 ) v 2 > 0 broken exact ±v m χ = m φ = g v

(b) N 2 Gross-Neveu model with O(N) invariance 8 L GN = 1 2 I χ I σ χ I g 0 2N ( 1 2 I χ I χ I ) 2 Expectation Z 2 I 1 2 χ Iχ I m χ g 0 > g 0,cr exact 0 = 0 g 0 < g 0,cr broken 0 0 O(N) unbroken

6. We wish to do two things: 9 (a) construct the RG flow of m 2, λ, g for the Yukawa model, (b) find a non-trivial fixed point and obtain the critical exponents there. 7. The non-trivial fixed point is accessible from the gaussian fixed point. Perturbation theory is applicable. 8. Motivated by works by Wipf, Synatschke-Czerwonka, Braun,... on SUSY models in 1 & 2 dimensions. 9. Talks on related subjects by Wipf, Synatschke-Czerwonka, Scherer.

Gross-Neveu N>1 g g 0 0,cr RG flows for the Yukawa theory with N Majorna fermions λ Z broken 2 Z exact 2 Wilson-Fisher f.p. (m 2*, λ *, g * ) 10 g m 2 Gaussian f.p. 2 m 2 m cr (g) Wess-Zumino g fixed N=1

ERG formalism (a quick review) 11 1. Wilson action with a momentum cutoff Λ S Λ = 1 2 p p 2 K ( p)φ(p)φ( p) + S I,Λ Λ 1 K(x) 0 1 x 2 2. the ERG differential equation by J. Polchinski (1983) Λ Λ S I,Λ = 1 2 p (p/λ) p 2 { δsi,λ δs I,Λ δφ( p) δφ(p) + δ 2 } S I,Λ δφ( p)δφ(p)

where (p/λ) Λ K ( p Λ) Λ. 12 3. Λ independence of the correlation functions 4. Vertices defined by 1 φ(p)φ( p) φ(p)φ( p) K( Λ) p 2 SΛ + 1 1/K ( Λ) p p 2 φ(p 1 ) φ(p n ) N 1 i=1 K( p i Λ ) φ(p 1) φ(p N ) SΛ S Λ = n=1 1 (2n)! p 1,,p 2n δ(p 1 + p 2n ) u 2n (Λ; p 1,, p 2n )φ(p 1 ) φ(p 2n )

5. S Λ determined uniquely by the ERG diff eq & two sets of conditions: one at Λ = µ, another at Λ. (a) conditions at Λ = µ introduce m 2 and λ: u 2 (µ; 0, 0) = m 2 u p 2 2 (µ; p, p) = 1 p 2 =0 u 4 (µ; 0,, 0) = λ (b) asymptotic conditions for Λ for renormalizability u 2 (Λ; p, p) Λ linear in p 2 u 4 (Λ; p 1,, p 4 ) Λ u 2n 6 (Λ; p 1,, p 2n ) Λ 0 independent of p i This guarantees that the flow starts from the gaussian fixed point. 13

6. µ dependence where O m O λ N µ S Λ µ = βo λ + β m O m + γn m 2S Λ λ S Λ [ φ(p) δs Λ p δφ(p) + K ( p Λ ) (1 K( p Λ ) ) { δs Λ δs Λ p 2 δφ(p) δφ( p) + δ2 S Λ δφ(p)δφ( p) }] 14 N counts φ: RG equation N φ(p 1 ) φ(p n ) = n φ(p 1 ) φ(p n ) ( µ ) µ + β λ + β m m 2 φ(p 1 ) φ(p n ) = nγ φ(p 1 ) φ(p n )

7. dimensional analysis ( Λ Λ + µ µ + 2m2 m 2 + λ λ ) S Λ = p ( p i φ(p) p i + 5 ) 2 φ(p) δsλ δφ(p) 15 8. Combining the ERG diff eq, µ dependence, and dimensional analysis, we obtain { (λ + β) λ + (2m 2 } + β m ) m 2 S(m 2, λ) = + p [ { p i φ(p) p i + (p/µ) 2γK(1 K) 1 p 2 2 ( 5 2 γ + (p/µ) ) } δs φ(p) K(p/µ) δφ(p) { δs δs δφ(p) δφ( p) + δ 2 } ] S δφ(p)δφ( p) where we have set Λ = µ (fixed).

9. RG flow in the parameter space 16 { d dt m2 = 2m 2 + β m (m 2, λ) d dt λ = λ + β(m2, λ) 10. Scaling formula φ(p1 e t ) φ(p n e t ) m 2 e 2 t (1+ t β m ), λe t (1+ t β) = e t {3+n( 5 2 +γ )} φ(p1 ) φ(p n ) m 2,λ 11. Universality The dependence on the choice of K is absorbed into the parameters m 2, λ. Hence, the critical exponents are universal.

RG flow for the Yukawa model 17 1. RG flow d dt m2 = 2m 2 + β m (m 2, λ, g) d dt λ = λ + β λ(λ, g) d dt g = 1 2 g + β g(λ, g) 2. A fixed point (m 2, λ, g ) is determined by 2m 2 + β m (m 2, λ, g ) = 0 λ + β λ (λ, g ) = 0 1 2 g + β g (λ, g ) = 0

3. y E = 1 ν determined by the linearized RG equation at the fixed point: 18 d dt ( m 2 m 2 ) = y E ( m 2 m 2 ) Hence, y E = 2 + m 2β m m 2,λ,g 4. The anomalous dimensions γ φ, γ χ determined by γ φ = γ φ (λ, g ), γ χ = γ χ (λ, g ) 5. parametrization and normalization determined through the low momentum expansions of the vertices

m 2 p 2 φ I I p p p p J J p 2 =m 2 =0 p 2 =m 2 =0 p 2 =m 2 =0 m 2 =0 pi =m 2 =0 = 0 = 1 = 1 = i p σδ IJ + O(p 2 ) = g N δ IJ 19 pi =m 2 =0 = λ

6. The beta functions are computed from the RG equation 20 µ µ S Λ = β λ ( λ S Λ ) + β g ( g S Λ ) + β m O m + γ φ N φ + γ χ N χ where O m m 2S Λ since we have incorporated m 2 in the scalar propagator. O m = m 2S Λ { K(1 K) 1 δsλ δs Λ (q 2 + m 2 ) 2 2 δφ(q) δφ( q) + q δ 2 } S Λ δφ(q)δφ( q)

1-loop results 21 1. 1-loop calculations give β m = 1 2 λµ q q 2 2g2 N µ (1 K) q q 2 [ { 1 m 2 λ 2 µ q q + 2 g2 1 4 Nµ q q 4 3 (1 K) + 1 } ] ( + ) 6 β λ = 3 λ2 (1 K) + 24 g4 (1 K) 3 µ q q 4 Nµ q q 4 { 4λ g2 1 Nµ q q 4 3 (1 k) + 1 } ( + ) 6 [ β g = g g2 (1 K) 2 (1 K) 3 + Nµ q 4 q 4 q q

+ q q 4 where (q) 2q 2 d dq 2 (q) = The anomalous dimensions are given by { 1 3 (1 K) + 1 } ] ( + ) 6 ( 2q 2 d dq 2 ) 2 K(q). ( γ φ = g2 1 5 µ q q4(1 K) 6 + 1 6 γ χ = g2 1 1 Nµ 2 q4 (1 K) q ) 22

2. Choice of K with one parameter a for optimization 23 K(q) = 1 if 0 < q 2 < a 2 1 q 2 1 a 2 if a 2 < q 2 < 1 0 if 1 < q 2 1 0 K(q) a 2 1 q 2 Two limits: { Litim a 2 = 0 Wegner-Houghton a 2 = 1

3. a dependence of y E for N = 1 24 1.4 N=1 1.35 1.3 1.25 y E 1.2 1.15 1.1 1.05 1 0 0.2 0.4 0.6 0.8 1 a Optimized at a 0.646, giving y E 1.36.

4. γ φ = γ χ is expected from SUSY, but 25 0.5 0.45 gamma-phi gamma-chi 0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05 0 0 0.2 0.4 0.6 0.8 1 a γ φ 0.170, γ χ 0.056 at a = 0.646

5. N dependence 26 y E N 1 γ φ N 1 2 γ χ N 0 1.4 1.35 N=1 N=10 N=100 0.5 0.45 N=1 N=10 N=100 0.07 0.06 N=1 N=10 N=100 y E 1.3 1.25 1.2 1.15 1.1 1.05 gamma-phi 0.4 0.35 0.3 0.25 0.2 gamma-chi 0.05 0.04 0.03 0.02 1 0.15 0.01 0.95 0 0.2 0.4 0.6 0.8 1 a 0.1 0 0.2 0.4 0.6 0.8 1 a 0 0 0.2 0.4 0.6 0.8 1 a The large N limits are independent of a. The above results agree with the large N limit of the Gross-Neveu model.

Comparison with the Wess-Zumino model 27 1. Classical action with an auxiliary field L = 1 2 ( φ)2 + 1 2 χ σ χ + 1 2 F 2 + g { if 1 2 ( φ 2 v 2) + φ 1 2 χχ } where v 2 = 2 g 2 m 2. 2. Linear SUSY transformation (arbitrary constant spinor ξ) δφ δχ δif = χξ = ( σ φ if ) ξ = χ σξ

28 3. The supersymmetric φif + 1 2 χχ is forbidden by the Z 2 φ( x) φ( x) χ( x) iχ( x) F ( x) F ( x) 4. R-invariance g g, φ φ, F F 5. ERG is consistent with the linear SUSY. 6. RG equation µ µ S Λ = β g ( g S Λ ) + β v 2 ( v 2S Λ ) + γn

29 7. RG flow { d dt g = 1 2 g + β g d dt v2 = v 2 + β v 2 8. 1-loop results γ = 1 g 2 (1 K) 2 µ [ q q 4 = g3 µ 3 q = µ + v 2 g 2 q q 2 µ β g β v 2 (1 K) 2 + 1 q 4 2 [ 3 q ] (1 K) q 4 q (1 K) 2 q 4 + q ] (1 K) q 4 9. y E = 1 ν determined by y E = 1 + v 2β v 2 v 2,g

10. At 1-loop, we have reproduced the relation found by Wipf,... 30 γ + y E = 3 2 11. No optimization available, but γ depends little on a. 0.076 γ = 5(2a2 + 3a + 1) 6(26a 2 + 33a + 11) Comparable with γ χ 0.056 for the Yukawa model. gamma-star 0.0755 0.075 0.0745 0.074 0.0735 0.073 0.0725 0.072 0.0715 0.071 0 0.2 0.4 0.6 0.8 1 a

Summary and conclusions 31 WZ Y (N = 1) Y (large N) GN (large N) y E 1.429-1.424 1.36 1 1 γφ 0.071-0.076 0.17 0.5 0.5 γχ = γφ 0.056 0 0 1. ERG gives an exact formulation of the RG flows for the Yukawa model in D = 3. 2. Perturbative approximations give reasonable numerical results. 3. Hopefully two-loop calculations (in progress) will improve the numerical accuracy.