Large β 0 corrections to the energy levels and wave function at N 3 LO

Σχετικά έγγραφα
News from NRQCD. Matthias Steinhauser TTP Karlsruhe Dresden, July 3,

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Dong Liu State Key Laboratory of Particle Detection and Electronics University of Science and Technology of China

DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E.

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

Hadronic Tau Decays at BaBar

The static quark potential to three loops in perturbation theory

Markov chains model reduction

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

Lecture 21: Scattering and FGR

Three coupled amplitudes for the πη, K K and πη channels without data

D-term Dynamical SUSY Breaking

Higher Derivative Gravity Theories

Lifting Entry (continued)

Concrete Mathematics Exercises from 30 September 2016

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Matrices and Determinants

Wavelet based matrix compression for boundary integral equations on complex geometries

AdS black disk model for small-x DIS

Quantum Statistical Mechanics (equilibrium) solid state, magnetism black body radiation neutron stars molecules lasers, superuids, superconductors

SMD Transient Voltage Suppressors

Πρότυπο Αδρονίων µε Στατικά κουάρκ ΙΙ

The Probabilistic Method - Probabilistic Techniques. Lecture 7: The Janson Inequality

Manuscript submitted to the Journal of the American Society for Mass Spectrometry, September 2011.

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

Higher order corrections to H. production. Nikolaos Kidonakis. production channels. Higher-order corrections. Charged Higgs production at the LHC

Lukasz STAWARZ. on Behalf of the Fermi LAT Collaboration.

Local Approximation with Kernels

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:


Section 7.6 Double and Half Angle Formulas

(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3)

L. F avart. CLAS12 Workshop Genova th of Feb CLAS12 workshop Feb L.Favart p.1/28

measured by ALICE in pp, p-pb and Pb-Pb collisions at the LHC

Coupling of a Jet-Slot Oscillator With the Flow-Supply Duct: Flow-Acoustic Interaction Modeling

Th, Ra, Rn, Po, Pb, Bi, & Tl K x-rays. Rn Kα1. Rn Kα2. 93( 227 Th)/Rn Kβ3. Ra Kα2. Po Kα2 /Bi K α1 79( 227 Th)/Po Kα1. Ra Kα1 /Bi K β1.

Solution Series 9. i=1 x i and i=1 x i.

Electronic structure and spectroscopy of HBr and HBr +

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Revisiting the S-matrix approach to the open superstring low energy eective lagrangian

Numerical Methods for Civil Engineers. Lecture 10 Ordinary Differential Equations. Ordinary Differential Equations. d x dx.

Major Concepts. Multiphase Equilibrium Stability Applications to Phase Equilibrium. Two-Phase Coexistence

Queensland University of Technology Transport Data Analysis and Modeling Methodologies

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΕΡΙΒΑΛΛΟΝΤΟΣ

Physical DB Design. B-Trees Index files can become quite large for large main files Indices on index files are possible.

Andreas Peters Regensburg Universtity

Free Energy and Phase equilibria

Depth versus Rigidity in the Design of International Trade Agreements. Leslie Johns

Πρότυπο Αδρονίων µε Στατικά κουάρκ Ι

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

Estimation for ARMA Processes with Stable Noise. Matt Calder & Richard A. Davis Colorado State University

ME 365: SYSTEMS, MEASUREMENTS, AND CONTROL (SMAC) I

Μάθημα 9o' 12/5/2014

Oscillatory Gap Damping

CE 530 Molecular Simulation

ST5224: Advanced Statistical Theory II

Theory predictions for the muon (g 2): Status and Perspectives

( y) Partial Differential Equations

Hartree-Fock Theory. Solving electronic structure problem on computers

The Simply Typed Lambda Calculus

Υπολογιστική Φυσική Στοιχειωδών Σωματιδίων

Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz

4.6 Autoregressive Moving Average Model ARMA(1,1)

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Monolithic Crystal Filters (M.C.F.)

Solution of the NLO BFKL Equation and γ γ cross-section at NLO

Information*Loss*and* Entanglement*in* Quantum*Theory* Jürg%Fröhlich% ETH%Zurich%&%IHES%

The mass and anisotropy profiles of nearby galaxy clusters from the projected phase-space density

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

X X (Knee) Knee Victor Franz Hess

Υπολογιστική Φυσική Στοιχειωδών Σωματιδίων

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΓΕΝΙΚΟ ΤΜΗΜΑ

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

Derivation of Optical-Bloch Equations

Notes on the Open Economy

Biostatistics for Health Sciences Review Sheet

Summary of the model specified

difluoroboranyls derived from amides carrying donor group Supporting Information

A manifestly scale-invariant regularization and quantum effective operators

P ²ÒÏ 1,,.Š. μ μ 1, 2, 1, 3, ,. ʳÌÊÊ. Œ œ ˆ ŒˆŠˆ ˆŒ œ ƒ Š ˆ -2Œ ˆ Š Œ ˆ ˆ Œ ˆŸ Œ ˆ. ² μ Ê ² Annals of Nuclear Energy

2 Composition. Invertible Mappings

Risk! " #$%&'() *!'+,'''## -. / # $

GREECE BULGARIA 6 th JOINT MONITORING

Chapter 22 - Heat Engines, Entropy, and the Second Law of Thermodynamics

Laplace Expansion. Peter McCullagh. WHOA-PSI, St Louis August, Department of Statistics University of Chicago

Lecture 34 Bootstrap confidence intervals

NKT NTC Thermistor. Negative Temperature Coefficient Thermistor FEATURES

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

lecture 10: the em algorithm (contd)

HW 3 Solutions 1. a) I use the auto.arima R function to search over models using AIC and decide on an ARMA(3,1)

What happens when two or more waves overlap in a certain region of space at the same time?

Light Hadrons and New Enhancements in J/ψ Decays at BESII

1 String with massive end-points

Ρεύµατα παρουσία τριβής ανεµογενής κυκλοφορία

ON NEGATIVE MOMENTS OF CERTAIN DISCRETE DISTRIBUTIONS

Rating to Unit ma ma mw W C C. Unit Forward voltage Zener voltage. Condition

ΤΕΙ ΚΑΒΑΛΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

Transcript:

Large β corrections to the energy levels and wave function at N LO Matthias Steinhauser, University of Karlsruhe LCWS5, March 5 [In collaboration with A. Penin and V. Smirnov] M. Steinhauser, LCWS5, March 5 p.

Motivation I top R.8.6.4.... 44 45 46 47 48 49 5 5 5 q GeV σ(e + e t t) @ threshold Hoang Teubner R.8.6.4... Beneke Signer Smirnov. 44 45 46 47 48 49 5 5 5 q GeV pole mass, NNLO: 4 different groups no stability in position of peak no stability in normalization of peak [A.H. Hoang, M. Beneke, K. Melnikov, T. Nagano, A. Ota, A.A. Penin, A.A. Pivovarov, A. Signer, V.A. Smirnov, Y. Sumino, T. Teubner, O. Yakovlev, A. Yelkhovsky ] M. Steinhauser, LCWS5, March 5 p.

Motivation I top R.8.6.4.... 4 44 45 46 47 48 49 5 5 q GeV σ(e + e t t) @ threshold Hoang Teubner R.8.6.4... Beneke Signer Smirnov. 4 44 45 46 47 48 49 5 5 q GeV Threshold mass, NNLO: [A.H. Hoang, M. Beneke, K. Melnikov, T. Nagano, A. Ota, A.A. Penin, A.A. Pivovarov, A. Signer, stability in position of peak no stability in normalization of peak V.A. Smirnov, Y. Sumino, T. Teubner, O. Yakovlev, A. Yelkhovsky ] M. Steinhauser, LCWS5, March 5 p.

Motivation I top R.8.6.4.... 4 44 45 46 47 48 49 5 5 q GeV σ(e + e t t) @ threshold Hoang Teubner R.8.6.4... Beneke Signer Smirnov. 4 44 45 46 47 48 49 5 5 q GeV Threshold mass, NNLO: [A.H. Hoang, M. Beneke, K. Melnikov, T. Nagano, A. Ota, A.A. Penin, A.A. Pivovarov, A. Signer, stability in position of peak no stability in normalization of peak V.A. Smirnov, Y. Sumino, T. Teubner, O. Yakovlev, A. Yelkhovsky ] Resummation of logarithms (to NNLL): promising; however: not complete [Hoang,Manohar,Stewart,Teubner,Hoang 4] [Penin,Pineda,Smirnov,MS 4] M. Steinhauser, LCWS5, March 5 p.

Motivation I top R.8.6.4.... 4 44 45 46 47 48 49 5 5 σ(e + e t t) @ threshold Hoang Teubner Beneke Signer Smirnov Needed: N LO prediction. for σ(e + e t t) R.8.6.4... 4 44 45 46 47 48 49 5 5 i.e.: N LO corrections to δe n, δψ n, δg Threshold mass, NNLO: [A.H. Hoang, M. Beneke, K. Melnikov, T. Nagano, A. Ota, A.A. Penin, A.A. Pivovarov, A. Signer, stability in position of peak no stability in normalization of peak V.A. Smirnov, Y. Sumino, T. Teubner, O. Yakovlev, A. Yelkhovsky ] Resummation of logarithms (to NNLL): promising; however: not complete [Hoang,Manohar,Stewart,Teubner,Hoang 4] [Penin,Pineda,Smirnov,MS 4] M. Steinhauser, LCWS5, March 5 p.

Motivation II bottom Determination of m b from bottom system: low-moment SR: NNLO: δm b = 5 MeV N LO: still missing [Kühn,Steinhauser ; Corcella,Hoang ] Υ(S)-system: M Υ(S) = m b + E p.t. + δ n.p. E needed: E p.t. to N LO [Penin,MS ] δm b = 7 MeV Υ SR: NNLO: δm b = 5 MeV N LO:??? needed: δe n and δψ n to N LO [Penin,Pivovarov 98; Beneke,Signer 99; Melnikov,Yelkhovsky ; Hoang ] M. Steinhauser, LCWS5, March 5 p.

Framework G(,, E) = n= ψ n () E E n ψ n () = ψn C () + δψ n () + δψ n () + δψ n () +... E n = En C + δe n () + δe n () + δe n () +... M. Steinhauser, LCWS5, March 5 p.4

Framework G(,, E) = n= ψ n () E E n ψ n () = ψn C () + δψ n () + δψ n () + δψ n () +... E n = En C + δe n () + δe n () + δe n () +.... insert. expand for E E C n single pole: (n) ψ double pole: (n) E M. Steinhauser, LCWS5, March 5 p.4

Framework G(,, E) = n= ψ n () E E n ψ n () = ψn C () + δψ n () + δψ n () + δψ n () +... E n = En C + δe n () + δe n () + δe n () +.... insert. expand for E E C n single pole: (n) ψ double pole: (n) E δg(,, E) G C H G C + G C H G C H G C +... M. Steinhauser, LCWS5, March 5 p.4

Framework G(,, E) = n= ψ n () E E n ψ n () = ψn C () + δψ n () + δψ n () + δψ n () +... E n = En C + δe n () + δe n () + δe n () +.... insert. expand for E E C n single pole: (n) ψ double pole: (n) E δg(,, E) G C H G C + G C H G C H G C +... G C (x, y, k) P l= (l + ) P m= L l+ m (kx)ll+ m (ky)m! P (m+l+ α s C F m q /(k))(m+l+)! l((xy)/xy) single, double and triple sums analytical solution in terms of ζ function possible M. Steinhauser, LCWS5, March 5 p.4

Framework II potential NRQCD [Pineda,Soto 98,Brambilla,Pineda,Soto,Vairo ] expansion parameters: α s, /m q dynamical degrees of freedom: potential quarks, ultra-soft gluons effective Hamiltonian known to N LO [Kniehl,Penin,Smirnov,MS ] M. Steinhauser, LCWS5, March 5 p.5

Effective Hamiltonian = (π) δ( q) ( p m q p 4 + πc F α s (µ) m q [ 4m q ) + C c (α s )V C ( q ) + C /m (α s )V /m ( q ) C δ (α s ) + C p (α s ) p + p q + C s (α s ) S ] Static potential: V C ( q ) = 4πC F α s ( q ) q /m q potential: V /m ( q ) = π C F α s( q ) m q q Breit potential: /m q q = p p C C (α s ) = + α «s( q ) 4π a αs ( q ) + a + 4π q ««αs ( q ) a +8π C A ln µ 4π q +.. S: spin; L = ; no /m q (tree-level) potential M. Steinhauser, LCWS5, March 5 p.6

Perturbation theory for E n Energy level: E n = En C + δe n () + δe n () + δe n () +... En C = C F α s m q 4n (a) δe n () : G C δh NLO G C (b) δe n () : G C δh NNLO G C, nd iteration of δh NLO (c) δe n () : G C δh N LO G C iteration of δh NLO and δh NNLO ; rd iteration of δh NLO ultrasoft contribution: G C δ us H G C retarded ultrasoft contribution M. Steinhauser, LCWS5, March 5 p.7

δe () = δe () β(αs )= + δe () β(αs ) δe () = E β(α C s)= + + α s π ( a a + a π + " C A C F» 49 + 4 `ln + L αs C» A C F + 5 + 6 7 " 5 + 8 # S(S + ) ln + Lαs C F» + 9 5 + 49C A C F T F n l 6» + 8 7 + 9 6 S(S + ) CF T F n l + CF LE! # " S(S + ) + CF a + + ln 6 6 ln + 7 85 Lαs + 7 «Lαs 6 54 6 + ln + ( ln )S(S + ) C F T F 8 δe () = E n β(α C α «s < s) π : β L µ h4β + i + a β + 8β β L µ + 4@ 6π + @4β + a + a + 8π C A C F + @ π 6π S(S + ) A CF + @ 8 + 4π + π4 + 64ζ() 8π ζ() + 96ζ(5) A β + @ π + 8ζ() A a β 45 + @@8 + 7π + 6ζ() A β a + a + @6π π4 A C A C F 8 4 9 + @8π 4π4 + @ 4π + 4π4 = A S(S + ) A CF A β + a β + 4β 9 ; also known: n =, [Penin,Smirnov,MS 5; Beneke,Kiyo,Schuller 5] ) A β + a β + 4β S(S + ) C A CF + L αs 6 [Kniehl,Penin,Smirnov,MS ] + 64ζ() A β + a β 5 Lµ [Penin,MS ] Lαs = ln(c F α s), Lµ = ln(µ/(c F αsm)) # C A M. Steinhauser, LCWS5, March 5 p.8

Perturbation theory for ψ n Wave function: ( ) ψ n () = ψn C () + δψ n () + δψ n () + δψ n () +... δψ n () = K ln β α s + K ln α s + K }{{} known V C (r) = C F α s r ( + α s 4π (8β L r + a ) + αs 4π " +... ψ C n () = C F α s m q 8πn rem + K }{{} unknown 64β L r + (6a β + β ) L r # +a + 6π β αs + "5β L 9a r 4π + β + 64β β + 8π β + 4a β + 64a β + 8β + 6π C A L r +a + 6π a β + 4ζ()β + 6π β β # + O(α 4 s ) ) L r L r = ln(e γ E µr) M. Steinhauser, LCWS5, March 5 p.9

δψ () n and δψ () ln n α s ln αs δ ln α s ψ() = α s π + ( C A C F + 4 + 4 S(S + ) «4 + 7 «S(S + ) C A C F C F C F ) «β C A C F ln (C F α s ) δ ln α s ψ() = α s π +» [Kniehl,Penin ; Manohar,Stewart ] ("! "! # # + π 4π C A C F + 9 + 4π S(S + ) C F 9 4 C AC F + 94 + «# S(S + ) C F a + 59 4 C A + 6 4 ln " 4 + 6 S(S + )» 9 4 ln S(S + ) C A C F 8 + 5 8 + 8 ln» C F + + ln + ( ln ) S(S + ) 5 + 49» 8 6 C AC F T F n l + 9 S(S + ) 7 C F T F n l ) C F T F ln (C F α s ) β «C A C F [Kniehl,Penin,Smirnov,MS ;Hoang 4] M. Steinhauser, LCWS5, March 5 p.

new: δψ () n β δψ () δψ () δψ () β = β = β = «β α «s»8l 5 π + 8π L 4 + 6π + π4 9 + π + ζ() 7π4 5 + 4π6 5 + ζ() π ζ() 6ζ() 4ζ(5) «β α «s»8l π + 6π L 8 + 66π 6 + 7π β α s π + 4π4 9 # «L + 4ζ() 6π4 45 + π6 5 + 496ζ() 48π ζ() 8ζ() 6ζ(5) 8L + 6 8π L + 89 8π + π 4 + 6ζ() # ««L L 679 54 6ζ(5) + 8π # [Penin,Smirnov,MS 5; Beneke,Kiyo,Schuller 5] + 5π4 5 + 6π6 5 + 74ζ() 8π ζ() 4ζ() L n = ln nµ C F αs(µ)mq M. Steinhauser, LCWS5, March 5 p.

Excited states of bottomonium M Υ(nS) = m b + E p.t. n ρ n = E n E m b +E + δ n.p. E n ( does not suffer from renormalon ambiguities) ρ p.t. =.49 ` +.79 NLO +.8 NNLO +. N LO +... = 6. +.7. ρ exp = 5.95 ρ p.t. =.77 ` +.9 NLO +.7 NNLO +.55 N LO +... = 8.6 +.4.8 ρ exp = 9.46 convergence not good N LO terms needed to match experimental result; impressive agreement non-perturbative contribution small!? M. Steinhauser, LCWS5, March 5 p.

Υ SR Compare exp. and th. moments: M th k! = M exp k Experimental input: masses and leptonic width of Υ resonances Theory input: (corrections to) energy and wave function; non-perturbative effects under control Estimate N LO corrections: k : corrections to ground state energy dominate δ m b ( m b ) N LO > small k = 4: corrections to wave function become important δ m b ( m b ) N LO MeV Wait for complete N LO result M. Steinhauser, LCWS5, March 5 p.

Peak for σ(e + e t t) at N LO Normalization of peak R res (e + e t t) = 6πN cq t m t Γ t c v ψ () c v : hard matching coefficient [Czarnecki,Melnikov 97; Beneke,Signer,Smirnov 97] ψ () : ln, α s, β terms known at N LO [Kniehl,Penin,Smirnov,MS ;Hoang 4] R res (µ)/rres LO (µ s )..8..5 R /R.6.4.. 4 5 6 7 8 9 LO 5 µ(gev) µ (GeV) [Penin,Smirnov,MS 5] M. Steinhauser, LCWS5, March 5 p.4

Peak for σ(e + e t t) at N LO Normalization of peak R res (e + e t t) = 6πN cq t m t Γ t c v ψ () c v : hard matching coefficient [Czarnecki,Melnikov 97; Beneke,Signer,Smirnov 97] ψ () : ln, α s, β terms known at N LO [Kniehl,Penin,Smirnov,MS ;Hoang 4] R res (µ)/rres LO (µ s )..8..5 R /R.6.4.. 4 5 6 7 8 9 5 µ(gev) µ (GeV) NLO LO [Penin,Smirnov,MS 5] M. Steinhauser, LCWS5, March 5 p.4

Peak for σ(e + e t t) at N LO Normalization of peak R res (e + e t t) = 6πN cq t m t Γ t c v ψ () c v : hard matching coefficient [Czarnecki,Melnikov 97; Beneke,Signer,Smirnov 97] ψ () : ln, α s, β terms known at N LO [Kniehl,Penin,Smirnov,MS ;Hoang 4] R res (µ)/rres LO (µ s )..8..5 R /R.6.4.. 4 5 6 7 8 9 5 µ(gev) µ (GeV) NNLO NLO LO [Penin,Smirnov,MS 5] M. Steinhauser, LCWS5, March 5 p.4

Peak for σ(e + e t t) at N LO Normalization of peak R res (e + e t t) = 6πN cq t m t Γ t c v ψ () c v : hard matching coefficient [Czarnecki,Melnikov 97; Beneke,Signer,Smirnov 97] ψ () : ln, α s, β terms known at N LO [Kniehl,Penin,Smirnov,MS ;Hoang 4] R res (µ)/rres LO (µ s )..8..5 R /R.6.4.. 4 5 6 7 8 9 5 µ(gev) µ (GeV) N LO NNLO NLO LO [Penin,Smirnov,MS 5] nice µ dependence first sign of convergence complete N LO-constant needed! M. Steinhauser, LCWS5, March 5 p.4

Γ(Υ(S) e + e ) Γ exp =. kev Γ(µ)/Γ LO (µ s ) Γ /Γ.8.6.4...5.5.5 4 4.5 5 µ (GeV) experiment LO M. Steinhauser, LCWS5, March 5 p.5

Γ(Υ(S) e + e ) Γ exp =. kev Γ(µ)/Γ LO (µ s ) Γ /Γ.8.6.4...5.5.5 4 4.5 5 µ (GeV) experiment NLO LO M. Steinhauser, LCWS5, March 5 p.5

Γ(Υ(S) e + e ) Γ exp =. kev Γ(µ)/Γ LO (µ s ) Γ /Γ.8.6.4...5.5.5 4 4.5 5 µ (GeV) experiment NNLO NLO LO M. Steinhauser, LCWS5, March 5 p.5

Γ(Υ(S) e + e ) Γ exp =. kev α s (M Z ) = ±. Γ(µ)/Γ LO (µ s ) Γ /Γ.8.6.4...5.5.5 4 4.5 5 µ (GeV) N LO experiment NNLO NLO LO M. Steinhauser, LCWS5, March 5 p.5

Summary N LO corrections to energy levels, δe n () : complete N LO corrections to wave function, δψ () n : ln, ln, β stabilization of pertubative series observed excited states of bottomonium Υ(S) leptonic width Υ sum rules t t threshold production Third-order corrections to δψ to be completed M. Steinhauser, LCWS5, March 5 p.6