Self-Gravitating Lattice Gas

Σχετικά έγγραφα
The mass and anisotropy profiles of nearby galaxy clusters from the projected phase-space density

Major Concepts. Multiphase Equilibrium Stability Applications to Phase Equilibrium. Two-Phase Coexistence

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

Spherical Coordinates

Approximation of distance between locations on earth given by latitude and longitude

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

Homework 8 Model Solution Section

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Discontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model

2. Chemical Thermodynamics and Energetics - I

DuPont Suva 95 Refrigerant

DuPont Suva 95 Refrigerant

Higher Derivative Gravity Theories

Technical Information T-9100 SI. Suva. refrigerants. Thermodynamic Properties of. Suva Refrigerant [R-410A (50/50)]

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

DuPont Suva. DuPont. Thermodynamic Properties of. Refrigerant (R-410A) Technical Information. refrigerants T-410A ENG

Graded Refractive-Index

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Thermodynamics of the motility-induced phase separation

Second Order RLC Filters

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

1 String with massive end-points

Free Energy and Phase equilibria

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

Matrices and Determinants

L p approach to free boundary problems of the Navier-Stokes equation

Numerical Analysis FMN011

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

ADVANCED STRUCTURAL MECHANICS

PETROSKILLS COPYRIGHT

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E.

2.1

of the methanol-dimethylamine complex

Solutions to Exercise Sheet 5

Markov chains model reduction

D Alembert s Solution to the Wave Equation

Section 8.3 Trigonometric Equations

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Forced Pendulum Numerical approach

[1] P Q. Fig. 3.1

Martti M. Salomaa (Helsinki Univ. of Tech.)

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

Derivation of Optical-Bloch Equations

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Areas and Lengths in Polar Coordinates

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics

J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

EE512: Error Control Coding

Inverse trigonometric functions & General Solution of Trigonometric Equations

Example Sheet 3 Solutions

the total number of electrons passing through the lamp.

3.5 - Boundary Conditions for Potential Flow

Dr. D. Dinev, Department of Structural Mechanics, UACEG

Finite Field Problems: Solutions

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Numerical Methods for Civil Engineers. Lecture 10 Ordinary Differential Equations. Ordinary Differential Equations. d x dx.

Written Examination. Antennas and Propagation (AA ) April 26, 2017.

Areas and Lengths in Polar Coordinates

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Computing the Gradient

Finite difference method for 2-D heat equation

Coupling of a Jet-Slot Oscillator With the Flow-Supply Duct: Flow-Acoustic Interaction Modeling

ECE 468: Digital Image Processing. Lecture 8

Lecture 26: Circular domains

Lifting Entry (continued)

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

Μονοβάθμια Συστήματα: Εξίσωση Κίνησης, Διατύπωση του Προβλήματος και Μέθοδοι Επίλυσης. Απόστολος Σ. Παπαγεωργίου

High order interpolation function for surface contact problem

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Free Energy Calculation

Lecture 21: Scattering and FGR

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

If we restrict the domain of y = sin x to [ π 2, π 2

Quantum Statistical Mechanics (equilibrium) solid state, magnetism black body radiation neutron stars molecules lasers, superuids, superconductors

CHAPTER (2) Electric Charges, Electric Charge Densities and Electric Field Intensity

Dark matter from Dark Energy-Baryonic Matter Couplings

Electronic Supplementary Information

LP N to BD* C-C = BD C-C to BD* O-H = LP* C to LP* B =5.

Biostatistics for Health Sciences Review Sheet

Macromechanics of a Laminate. Textbook: Mechanics of Composite Materials Author: Autar Kaw

Hartree-Fock Theory. Solving electronic structure problem on computers

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

Answer sheet: Third Midterm for Math 2339

Jackson 2.25 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell

26 28 Find an equation of the tangent line to the curve at the given point Discuss the curve under the guidelines of Section

2.019 Design of Ocean Systems. Lecture 6. Seakeeping (II) February 21, 2011

Exercises to Statistics of Material Fatigue No. 5

Solution to Review Problems for Midterm III

No Item Code Description Series Reference (1) Meritek Series CRA Thick Film Chip Resistor AEC-Q200 Qualified Type

An experimental and theoretical study of the gas phase kinetics of atomic chlorine reactions with CH 3 NH 2, (CH 3 ) 2 NH, and (CH 3 ) 3 N

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Fundamentals of Signals, Systems and Filtering

The Relationship Between Flux Density and Brightness Temperature

Creative TEchnology Provider

Poroelastic modelling of the coupled mechanical moisture behaviour of wood

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Transcript:

Self-Gravitating Lattice Gas Divana Boukari and Gerhard Müller University of Rhode Island Benaoumeur Bakhti and Philipp Maass Universität Osnabrück Michael Karbach Bergische Universität Wuppertal 11/9/2017 [selgra1 1/22]

Ideal Lattice Gas volume of cell: V c number of cells: N c number of particles: N vacant cell occupied cell density: ρ = N/N c D = 1 D = 2 D = 3 Equations of state (EOS): Lattice gas: FD gas: pv c k B T = ln `1 ρ p P T = f D/2+1 (z), p ρ (D+2)/D ρ. = v T v = f D/2(z) (isotherm) pv c kbt 3.0 2.5 2.0 1.5 1.0 0.5 p pt 5 0 0 1 2 3 v T v 0.0 0.0 0.2 0.4 0.6 0.8 1.0 Ρ 11/9/2017 [selgra2 2/22]

Equilibrium Condition Heterogeneous environment: Presence of external potential U(r). Equilibrium condition has two parts: - equation of state (EOS): (local) thermal equilibrium from minimized free energy density, - equation of motion (EOM): mechanical equilibrium from balanced forces. Equilibrium establishes density profile ρ(r) and pressure profile p(r). Temperature T remains uniform. Potential U(r) here represented by long-range gravitational interactions. Mean-field approach proven exact. Ensemble inequivalence to be heeded. 11/9/2017 [selgra3 3/22]

Gravity in D = 1, 2, 3 Dimensions Interaction potential V ij and force F ij between occupied cells of mass m c at distance r ij : Gauss law: I V ij Gm 2 c 8 >< >: da g(r) = A D Gm in, r ij : D = 1, ln r ij : D = 2, r 1 ij : D = 3. A D = 2πD/2 Γ(D/2) = F ij = Gm2 c r D 1. ij 8 >< >: 2 : D = 1, 2π : D = 2, 4π : D = 3. Symmetric self-gravitating cluster with center of mass at r = 0. Gravitational field: g(r) = m in r D 1. Gravitational potential U(r) from g(r) = du dr. 11/9/2017 [selgra4 4/22]

Self-Gravitating Lattice Gas at Equilibrium Thermal and hydrostatic equilibrium: EOS: p(r)v c k B T = ln 1 ρ(r), EOM: dp dr = m c V c ρ(r)g(r), g(r) = Gm in r D 1, m in = m c V c Z r 0 dr `A D r D 1 ρ(r ). Scaled variables: ˆr. = r r s, ˆp. = p p s, ˆT. = k B T p s V c, Û. = U p s V c, rs D = NV cd, p s = A DG A D 2D Relations between profiles: m 2 c Vc 2 rs 2. EOS & EOM: ˆp(ˆr) = ˆT ln `1 Z dˆp ˆr ˆr ρ(ˆr), dˆr = 2Dρ(ˆr) dˆr «D 1 ρ(ˆr ), 0 ˆr «Û(ˆr) = ˆT 1 ρ(ˆr) ρ(0) ln. Reference value: Û(0) = 0. 1 ρ(0) ρ(ˆr) 11/9/2017 [selgra5 5/22]

Profiles at T = 0: Solid Cluster ρ(ˆr) = ˆp(ˆr) = ( ( 1 : 0 ˆr < 1, 0 : ˆr > 1, 1 ˆr 2 : 0 ˆr < 1, 0 : ˆr > 1, Û(ˆr) = ˆr2 : 0 ˆr 1, 8 >< 2ˆr 1 : D = 1, Û(ˆr) = 2 ln ˆr + 1 : D = 2, >: 3 2/ˆr : D = 3, 9 >= 3 2 1 Ρ p D 1 U D 2 D 3 >; ˆr 1. 0 0 1 2 3 Escape velocity finite in D > 2. Stable clusters of finite mass exist at all ˆT (D = 1), at ˆT < ˆTc (D = 2), at ˆT = 0 only (D = 3). 11/9/2017 [selgra6 6/22]

Differential Equations for Profiles Analysis of EOS & EOM at ˆT > 0: density: ρ + D 1 ˆr ρ 1 2ρ ρ(1 ρ) (ρ ) 2 + 2Ḓ T ρ2 (1 ρ) = 0, ρ (0) = 0, pressure: ˆp + D 1 ˆr ˆp 1 ρ ˆTρ (ˆp ) 2 + 2D(ρ) 2 = 0, ˆp (0) = 0, potential: Û + D 1 ˆr with ρ(ˆr) = 1 e ˆp(ˆr)/ ˆT ; ρ(ˆr) = Additional boundary conditions: density: D Z pressure: 2D(D 1) 0 Û 2Dρ = 0, Û(0) = Û (0) = 0, dˆr ˆr D 1 ρ(ˆr) = 1, Z 0 dˆr ˆr 2D 3ˆp(ˆr) = 1, in D = 1 only: ˆp(0) = 1, ρ(0) = 1 e 1/ ˆT. 1 e (Û(ˆr) ˆµ)/ ˆT + 1, ˆµ =. µ = ˆT ln p s V c «1 ρ(0). ρ(0) 11/9/2017 [selgra7 7/22]

Ideal Classical Gas Limit (1) ICG assumption: low density ρ(ˆr) 1 realized throughout the cluster. ρ ODE for density profile: ρ + D 1 ˆr with boundary conditions as in ILG. ρ ρ ρ ρ «2 + 2D ˆT ρ = 0, Analytic solutions for finite clusters: D = 1: ρ(ˆr) ICG = 1ˆT sech 2 ˆrˆT solution normalized at all ˆT, «, exponential decay: ρ(ˆr) e 2ˆr/ ˆT. D = 2: ρ(ˆr) ICG = 4cˆT " «# ˆr 2 2 1 + 2c, ˆT solution normalizable only for ˆTc = 1 2, Ρ 2.0 1.5 1.0 0.5 d T 0, 0.1, 0.5, 1.0, 2.0 0.0 0.0 0.5 1.0 1.5 2.0 power-law decay: ρ(ˆr) ˆr 4. 11/9/2017 [selgra8 8/22]

Ideal Classical Gas Limit (2) ICG in D = 3 confined to sphere of radius ˆR. = R/r s. Rescaled variables: r. = ˆr/ ˆR, ρ. = ˆR 3 ρ, T. = ˆR ˆT. ODE: ρ ρ + 2 r ρ ρ «2 ρ + 6 ρ T Z 1 ρ = 0, ρ (0) = 0, 3 0 d r r 2 ρ( r) = 1. Normalizable solutions exist for T TC = 0.794422... Vega and Sanchez (2006) predict spinodal point: TC = 0.79442, transition point: TT = 0.8215, based on computer simulations. Ρ 10.0 5.0 2.0 1.0 0.5 T T c T 0.8, 0.9, 1.0, 1.1 0.0 0.2 0.4 0.6 0.8 1.0 r 11/9/2017 [selgra22 9/22]

ILG Profiles in D = 1 p 1.0 0.8 0.6 a 1.0 0.8 0.6 b T 0, 0.1, 0.5, 1.0, 2.0 Ρ 0.4 0.2 T 0, 0.1, 0.5, 1.0, 2.0 0.4 0.2 0.0 0.0 0.5 1.0 1.5 2.0 Analytic ICG profile: ρ(ˆr) ICG = 1ˆT sech 2 ˆrˆT Exact ILG asymptotics: «Ρ 0.0 0.0 0.5 1.0 1.5 2.0 1.00 0.50 0.20 0.10 0.05 T 1.0, 2.0, 3.0 c 2ˆr/ ˆT ρ(ˆr) as e : ˆr 1 0.02 0.01 0 1 2 3 4 5 6 11/9/2017 [selgra9 10/22]

ILG Profiles for D = 2: Unconfined Space p 1.0 0.8 0.6 a T 0.1, 0.2, 0.3, 0.4 1.0 0.8 0.6 b T 0.1, 0.2, 0.3, 0.4 Ρ 0.4 0.4 0.2 0.2 0.0 0.0 0.5 1.0 1.5 2.0 Critical ILG profile: ˆT ˆTc = 1 2 " ρ(ˆr) ICG = 4cˆT «# ˆr 2 2 1 + 2c ˆT Exact ILG asymptotics: 0 ˆT ˆT c 2/ ˆT ρ(ˆr) as ˆr : ˆr 1 Ρ 0.0 0.0 0.5 1.0 1.5 2.0 1 0.01 10 4 10 6 10 8 T 0.1, 0.2, 0.3, 0.4 c 1.0 1.5 2.0 3.0 5.0 11/9/2017 [selgra10 11/22]

ILG Profiles for D = 2: Confined Space 0.1 a 0.01 b T 0.5 Ρ 10 5 T 0.45 Ρ 10 4 T 0.55 10 7 1 2 5 10 20 50 100 10 5 10 6 1 2 5 10 20 50 100 ILG in D = 2 confined to disk of radius ˆR = 20, 30,50,100. ˆT = 0.45: stable cluster, ˆT = 0.5: stability limit, ˆT = 0.55: unstable cluster. 11/9/2017 [selgra23 12/22]

ILG Profiles for D = 3: Confined Space ILG in D = 3 confined to sphere of radius ˆR. Ρ 1.000 0.500 0.100 0.050 0.010 0.005 T 0.21, 0.22, 0.23, 0.235, 0.24, 0.25 0.0 0.5 1.0 1.5 2.0 2.5 3.0 ˆR = 3 one normalizable solution at all ˆT, gradual cluster formation, no phase transition. Ρ 1.000 0.500 0.100 0.050 0.010 0.005 T 0.19, 0.195, 0.20, 0.205, 0.21 0 1 2 3 4 ˆR = 4 three normalizable solutions in ˆT interval, two mechanically stable solutions, free energy minimum switches, first-order phase transition. 11/9/2017 [selgra24 13/22]

ILG Profiles for D = 3: First-Order Transition T t 0.25 0.20 0.15 0.10 0.05 a 0.17 0.16 0.16 0.15 0.15 0.14 0.14 0 0.01 0.17 0.99 1. 0.00 0.0 0.2 0.4 0.6 0.8 1.0 Ρ 0 Guggenheim plot T t 0.25 0.2 0.15 0.1 0.05 b 0 0 0.1 0.2 0.3 1 R transition temperature ˆT t critical temperature: ˆTc 0.23, critical radius: ˆRc 3.1 11/9/2017 [selgra25 14/22]

Open ILG Clusters Closed system: finite mass, confined or unconfined space. ρ + D 1 ˆr ρ 1 2ρ ρ(1 ρ) (ρ ) 2 + 2Ḓ Z ˆR T ρ2 (1 ρ) = 0, ρ (0) = 0, D dˆr ˆr D 1 ρ(ˆr) = 1. 0 ˆr. = r r s, ˆp. = p p s, ˆT. = k B T p s V c, Û. = Um c p s V c, rs D = NV cd, p s = A DG A D 2D m 2 c Vc 2 rs 2. Open system: finite or infinite mass, unconfined space. ρ + D 1 r ρ 1 2ρ 0 ρ ρ(1 ρ 0 ρ) r. = ` ρ 2 + ρ 2 (1 ρ 0 ρ) = 0, ρ(0) = 1, ρ (0) = 0. s 2Dρ 0 ˆT ˆr, ρ. = ρ ρ 0. ICG limit ρ 0 0: ρ ρ + D 1 r ρ ρ «2 ρ + ρ = 0 ρ( r) ρ 8 >< >: e 2 r : D = 1, r 4 : D = 2, r 2 : D = 3. 11/9/2017 [selgra26 15/22]

Open ILG Cluster in D = 1 Use inverse function r( ρ) for analytic solution: r + 1 2ρ ρ(1 ρ) r 1 ρ 2 (1 ρ)( r ) 3 = 0, ρ = ρ 0 ρ, r(ρ 0 ) = 0, r (ρ 0 ) = ρ 0 r( ρ) = r ρ0 2 Z 1 ρ( r) as e ν 1(ρ 0 ) r s ν 1 (ρ 0 ) = ρ d ρ q : 0 ρ 1 ρ (1 ρ 0 ρ ) ln 1 ρ 0 ρ 1 ρ 0 2 ρ 0 ln(1 ρ 0 ) ρ( r) ICG = sech 2 r 2 «finite mass, exponential decay law Ρ 1 0.1 0.01 10 4 10 5 10 6 Ρ 0 0, 0.9, 0.99, 0.999 2 4 6 8 10 11/9/2017 [selgra27 16/22]

Open ILG Cluster in D = 2 Numerical solution: ρ( r) as r ν 2(ρ 0 ), ρ( r) ICG = 1 `1 + r 2 /8 2 finite mass, algebraic decay law ν 2 (ρ 0 ) ρ 0 1 2 ln(1 ρ 0 ) Ρ 0.1 10 5 10 7 1 Ρ 0 0, 0.9, 0.5 0.75 1. 5 0.99, 0.999 10 9 0.1 1 10 100 1000 ν2 20 15 10 4 3 2 ν 2 / 2ln(1-ρ 0 ) 0 0.0 0.2 0.4 0.6 0.8 1.0 ρ 0 11/9/2017 [selgra28 17/22]

Open ILG Cluster in D = 3 Numerical solution: ρ( r) as 2 r 2 infinite mass, algebraic decay law ICG: Bonnor-Ebert sphere gaseous core gaseous halo ILG: emerging horizon condensed matter core gaseous shell gaseous halo Ρ 1 0.01 10 4 10 6 Ρ 0 0, 0.9, 0.99, 0.999 10 8 0.1 1 10 100 1000 10 4 11/9/2017 [selgra29 18/22]

ICG Asymptotics in D 3 ρ ρ + D 1 r ρ ρ «2 ρ + ρ = 0 ρ( r) ρ 8 >< >: e 2 r : D = 1, r 4 : D = 2, r 2 : D = 3. ρ( r) a r α ; α = 2, a = 2(D 2). infinite mass, algebraic decay law 0.100 (a) 1 0.500 (b) ρ ρ 0.100 0.050 10-5 10-7 D =3 0.1 1 10 100 1000 10 4 r 0.010 0.005 D =3,4,5 1 2 5 10 20 50 r 11/9/2017 [selgra30 19/22]

ICG Asymptotics in 2 D 3 infinite mass, crossover between algebraic decay laws 0.100 (a) 0.100 (b) ρ ρ 10-5 10-5 10 - D =2.5 10-7 D =2.3 0.1 1 10 100 1000 10 4 r 0.1 1 10 100 1000 10 4 r 0.100 (c) 0.100 ( ) ρ ρ 10-5 10-10 -7 D =2.1 10 - D =2.05 0.1 1 10 100 1000 10 4 r 0.1 1 10 100 1000 10 4 r 11/9/2017 [selgra31 20/22]

ICG Asymptotics in 1 D 2 ρ ρ + D 1 r ρ ρ «2 ρ + ρ = 0 ρ( r) ρ 8 >< >: e 2 r : D = 1, r 4 : D = 2, r 2 : D = 3. ρ( r) exp b r β ; β = 2 D, lim D 1 b(d) = 2, finite mass, stretched exponential decay law lim β(d)b(d) = 4. D 2 ln ρ 0-5 -10-15 = -20 0 6 8 10 12 2-D r 7 6 5 4 3 2 1 0 1.0 1.2 1.4 1.6 1.8 2.0 D b(d) (2-D) b(d) 11/9/2017 [selgra32 21/22]

Outlook Rotating clusters: Competition between gravitational and centrifugal forces. Multivalued functional relation between L and ω. instabilities of density profiles: - binary configurations in D = 1, - ring configurations in D = 2, - effects of hysteresis. Quantum gas clusters: ODE for fugacity profile z(r). Comparison between FD and BE gases, CS generalization. FD Pauli principle vs ILG hardcore repulsion. Relativistic effects. BE condensation vs gravitational collapse. FD cluster drifting into region of magnetic field. 11/9/2017 [selgra33 22/22]