204,34() 30~39 China Environmental Science, *,,2,, (., 20044 2., 3400), 202 9~3. : PM.0 5.5µg/(m 3 h) ;.625km/h.,. PM 2. PM. K + SO 4 NO 3 Cl Mg 2+ 6%~38%,. 0.2~2.0µm,,. X3. A 000 6923(204)0 0030 0 The mass concentration and chemical compositions of the atmospheric aerosol during the Spring Festival in Nanjing. WANG Hong-lei, ZHU Bin *, SHEN Li-juan, 2, ZHANG Ze-feng, LIU Xiao-hui (.Key Laboratory for Aerosol-Cloud-Precipitation, China Meterological Administration, Nanjing University of Information Science and Technology, Nanjing 20044, China 2.Jiaxing Environmental Monitoring Station, Jiaxing 3400, China). China Environmental Science, 204,34() 30~39 Abstract In China, the most intensive burning of firework event occurs in the New Year Festivities, which release the high concentrations of particles, and cause acute short term air pollution. Concentrations and chemical components of PM 0 were measured and analyzed in Nanjing, during the Spring Festival on January 9~3, 202, for assessing the impacts of fireworks on ambient air quality. The PM.0 concentration increased at the rate of 5.5µg/(m 3 h) and the visibility was reduced at the rate of.625km/h during the study period. The results of the mass spectra and water-soluble ions spectrum can be described as trimodal distributions during the burning periods and bimodal distributions during non-burning periods. The ions of K +, SO 4, NO 3, Cl and Mg 2+ in PM 2. and PM. increased by the range of 6%~38% during the burning periods. For aerosol in the range of 0.2~2.0µm, nitrate, zinc, copper and part of K-including particles were mainly originated from firework burning, however, sulfate particles were hardly originated by this process, Pb-including particles were from industry emission. Key words the Spring Festival aerosol fireworks mass concentration water-soluble ions heavy metal,, [ 9].. SO 2 NO x CO [0 4]. PM 0 PM 2.5 4 6, [5 6]., 203 05 20 (427543,400507) (GYHY202060) (2KJA70003); 333 ; ; (KDW03,KDW02); (PAPD) *,, binzhu@nuist.edu.cn
3,,., [,7 9], [3,5 6] [0,20] [4,2] [22] [23].,, [24], [25 26],. 202 β Andersen II 9 IC. (32.207 N,8.77 E)2, 500m,. 900m, 00m.,,. 2, 62m, 202 2~28, 9:00 8:30.β 2, 67m, 202 9~3. 2, 62m, 202 20~3. 2 5, 72h..2 Andersen II 9 :9.0~0.0µm,5.8~9.0µm, 4.7~5.8µm,3.3~4.7µm,2.~3.3µm,.~2.µm,0.65 ~.µm,0.43~0.65µm,0.0~0.43µm.andersen g/cm 3, 28.3L/min. Mettler Toledo MX5. 4.PM.0 FH62C4 β, C 4,, 0.5h,, EPA (Environmental Protection Agency, http://www. epa.gov/ttn/amtic/criteria.html). / 50mL PET 20mL h h 24h 0.45μm 5mL 850professional IC, NH + 4 Ca 2+ Mg 2+ Na + K + Cl NO 3 SO 4 F NO 2 0.850professional IC, 858 MagIC Net ( ); :Metrosep C 4 50/4.0 ; :3.2mmol/L Na 2 CO 3 +.0mmol/L NaHCO 3 ( ),.7mmol/L +0.7mmol/L ( ); :30 ; :.0mL/min; :20μL. 8.2M
32 34 (SPAMS05 ). 200nm~2.0µm, 30min. SPAMS, 532nm (266nm). [27]. 2 2. PM. β PM.0,, 0.957,,. 2 ( ) BIRAL VPF 730, min. 2a,22 4:00 PM.0, 4:00 8µg/m 3 20:00 µg/m 3. PM.0,4:00 4.64km, 20:00 4.89km. 2b,PM.0, 0.59;22 4:00~20:00 PM.0 0.959, 22~28 0.567., PM.0, 5.5µg/(m 3 h),,.625km/h. 20 0 00 90 PM PM. y =5.274+0.82X, R=0.957 N=7, SD=7.296, P=7.0-4 80 70 60 50 40 30 30 40 50 60 70 80 90 00 0 20 Andersen PM. β PM.0 Fig. The concentration correlation between Anderson impactor and β ray instrument measuring dust 250 200 a PM.0 8 5 8 6 4 b Y= 05.075-4.04098X-0592X2 R= -0.59,SD=28.08,N=322,P<0.000 PM.0(g/m 3 ) 50 00 2 9 6 (km) (km) 2 0 8 6 50 0 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0-28 0:00 3 0 4 2 0 0 50 00 50 200 250 PM.0(g/m 3 ) 2 PM.0 Fig.2 The correlation between the PM.0 mass concentration and visibility and their time series 2 0:00~22 02:00,,,
33. 3a, PM 2.~0, 50%,PM. 30%., 2 >.µm.22,pm., 22,PM. 2 25.69µg/m 3, 2.7.22 PM. 8.4%, 2 25.2%.23,PM. 60%~70%,. PM., >.µm. 0 40 80 20 60 200 0 30 60 80 00 ( g/m 3 ) PM. PM.~2. PM 2.~0 0 20 40 60 80 00 0 20 40 60 80 00 (%) 3 PM. PM.~2. PM 2.~0 Fig.3 The distributions and percentages of mass concentration and ions concentrations in PM., PM. 2., PM 2. 0 0 40 80 20 60 200 0 20 40 60 80 00 0 20 40 60 80 0 20 40 60 80 00 ( g/m 3 ) (%) 4 Fig.4 The distributions and percentages of mass concentration and ions concentrations in different sizes <0.43 m 0.43~0.65 m 0.65~. m.~2. m 2.~3.3 m 3.3~4.7 m 4.7~5.8 m 9.0~0.0 m 4a,22 0.43µm,PM 0.43 46.99µg/m 3 ; 23 PM 0.43 30.7µg/m 3, PM 0.43~0.65 2.55µg/m 3 22 2.96
34 34.24 PM 0.65~. 37.97µg/m 3, 23 2.63.24.22~24,,,,. 4b,, PM 0.43 22, PM 0.43~0.65 PM 0.65~. 23 24,24.,2~23 PM 0, 64.66,76.8,97.36µg/m 3 ; PM 0, 40µg/m 3. 2~23,22 03:00,,.24.22 PM 2. /PM 0 PM. /PM 0 PM. /PM 2. 87.66% 8.4% 92.87%, 72.49% 62.7% 8.56%..µm, 2.µm. 202 2~27 Table The mass concentration and ions concentrations on Jan 2~27, 202 0 2 0 22 0 23 0 24 0 25 0 26 0 27 PM 0 23.35 64.66 76.8 97.36 59.76 33.70 95.7 40.59 (µg/m 3 ) PM 2. 6.04 42.48 66.79 73.80 3.07 02.6 47.73 2.4 PM. 37.40 36.34 62.03 66.66 03.25 80.07 2.40 97.86 PM 2. /PM 0 49.49 65.70 87.66 75.80 82.04 76.76 75.48 86.36 (%) PM. /PM 0 30.32 56.20 8.4 68.47 64.63 59.89 57.43 69.6 PM. /PM 2. 6.27 85.55 92.87 90.3 78.78 78.0 76.08 80.60 (µg/m 3 ) PM.0 40.23 72.77 7.8 0.4 8.3 0.88 88.00 Relative Error (%) 0.7 7.3 6.77 6.94.3 9.36 0.08 PM 0 42.20 8.53 29.74 47.83 73.88 63.6 68.07 87.26 (µg/m 3 ) PM 2. 30.28 2.90 26.50 25.39 53.5 52.90 55.93 60.06 PM. 9.45.9 25.26 22.6 42.23 42.29 42.97 50.34 PM 2. /PM 0 7.75 69.58 89. 53.09 72.43 83.5 82.8 68.83 (%) PM. /PM 0 46.09 60.35 84.93 47.27 57.6 66.47 63.3 57.69 PM. /PM 2. 64.23 86.74 95.30 89.05 78.9 79.95 76.8 83.8 PM 0 28.67 39.03 49. 46.25 47.59 34.78 62.07 / (%) PM 2. 30.36 39.68 34.40 40.83 5.55 37.86 49.47 PM. 30.78 40.7 33.9 40.90 52.8 38.23 5.44 β PM.0, 0%, β,. 2.2,.22 PM 0 29.74µg/m 3 ;PM 2. 26.50µg/m 3, 89.2%, PM 2. 70%.22 PM. 25.26µg/m 3, PM 0 84.93%, PM 2. 95.30%; PM. PM 0 60%, PM 2. 80%. PM. 20%, PM 2. 5%.,.,22 39.03%,
35 50%. 22 PM 2. PM. 39.68% 40.72%,. 3b,, PM.,PM.~2. PM 2.~0.22 PM.,PM.~2.. 3,22 PM., 25.26µg/m 3, PM..23 PM 2.~0 46.9%, 23,SO 2 CO NO 2,.24,.,,. 2 SO 4 /NO 3 Table 2 SO 4 /NO 3 ratio comparison of the firework and non firework events (µm) 0~0.43 0.43~0.65 0.65~..~2. 2.~3.3 3.3~4.7 4.7~5.8 5.8~9.0 9.0~0.0 22 2.43 2.5 2.7.74 2.05 4.5 3.63 5.6 6.54 23~27.83.4.48.90 2.36.90 2.7.80 4.06.05.06.03.8..39.79 2.58 2. SO 4 /NO 3, SO x NO x :3 :8, SO x NO x 2: [20] ; 2 SO 4 /NO 3, 22 SO 4 /NO 3.~2.µm 2, 3.3µm SO 4 /NO 3 4, >3.3µm, <3.3µm. SO 4 /NO 3.4~2.0, SO 4 /NO 3.0,. 5,22 K +, PM., PM. 23.65%. 22 PM. PM 2.~0 NO 3,SO 4 ; PM.~2. NO 3,SO 4, 4,22 <0.43µm, >0.43µm. 23 >3.3µm, <0.43µm, >3.3µm, 0.43~3.3µm. Cl Mg 2+., 22,,. 2,, 2. K + PM 0 PM 2. PM.0 6.4,6.03,5.87µg/m 3, 59.5% 69.86% 0.03%.22 K + PM 0 2.33 ;23 44% 3.59µg/m 3,, 22,., K +,, d,.
36 34 PM. 0 0 20 30 50 PM.~2. 0 2 4 6 8 0 2 4 PM 2.~0 0 5 0 5 20 25 30 ( g/m 3 ) 0 20 40 60 80 00 20a 0 20 40 60 80 00 0 20 40 60 80 00 (%) 5 PM. PM.~2. PM 2.~0 Fig.5 The distributions and percentages of major ions concentrations in PM., PM.~2. and PM 2.~0 Na + NH 4 + K + Ca 2+ Mg 2+ C - NO 2 - F NO 3 - SO 4 2- PM 0 SO 4 NO 3 9.26µg/m 3 3.74µg/m 3, 20.67µg/m 3 2.35µg/m 3. SO 4 NO 3 SO 2 NO x. CO SO 2 SO 3 NO x,.,,. SO 2 NO x H 2 SO 4 HNO 3,. SO 4 NO 3 PM 2. /PM 0 6.58% 3.57%, PM. /PM 0 28.46% 22.8%.. Cl SO 4 NO 3,PM 0 4.04µg m 3, 0.64. Cl PM 2. /PM 0 PM. /PM 0 7.97% 25.64%.Cl,. Cl,,. Mg 2+ PM 2. /PM 0 PM. /PM 0 30.88% 37.7%. Mg 2+.,. 2.3 6, 2~22, 0.6µm 0µm ;2~22, 0.6,2.0,5.0µm, 2.0µm. 2~22,
37, 0.6,5,0µm., 0.6~µm 0µm ;NH + 4 K + ;Na + Ca 2+, 2~3µm., 22 K + Mg 2+ Cl SO 4 0.5µm. [ g/(m 3 m)] [ g/(m 3 m)] [ g/(m 3 m)] 00 0 0 2 3 4 5 6 7 8 9 0 Na + 0 0.0 K + 0.0 0 2 3 4 5 6 7 8 9 0 0 2 3 4 5 6 7 8 9 0 0 0 Ca 2+ NO3-0.0 0.0 0.0 0 2 3 4 5 6 7 8 9 0 0 2 3 4 5 6 7 8 9 0 0 2 3 4 5 6 7 8 9 0 0 NH4 + 0 Mg 2+ SO4 2-0.0 0 2 3 4 5 6 7 8 9 0 ( m) 0.0 0 2 3 4 5 6 7 8 9 0 ( m) 0.0 E-3 Cl - 0 2 3 4 5 6 7 8 9 0 ( m) 6 202 2~28 Fig.6 Spectrum distributions of mass concentration and major ions concentrations on Jan 2~28, 202and winter 20 09:00~ 08:30 09:00~ 08:30 09:00~ 08:30 09:00~ 08:30 09:00~ 08:30 09:00~ 08:30 09:00~0-28 08:30 2 2.4 5774860, 354545, 23.46%., 225397, 2.22%. 7, 2~22, 373 447840 69 548 42, 562359 3053 23 27, 466 934 2974 83 49 5,,,,. ( 22 9:00~23 4:00), 445 3769 6257 58 03 22, ;, ;,,. 7b,,,,. 7a, 22 ~30, ;,,.
38 34 0 4 4 a NO 3 - K SO 4 2- ( ) 2 0 3 4 2 0-20 0-28 0-29 0-30 ( ) 000 4 2 00 4 2 0 b Pb Zn Cu 0-20 0-28 0-29 0-30 7 202 20 ~30 Fig.7 Time variations of inorganic salts and heavy metal number concentration on January 20~30, 202 3 Table 3 The correlation coefficients between different inorganic salts and heavy metal number concentration during the firework burning events in Spring Festival SO 4 SO 4 K + NO 3 Cu Zn Pb 0.40 0.53 0.42 0.90 3 K + 0.79 0.89 0.66 0.50 NO 3 0.87 0.80 0.33 Cu 0.77 0.74 Zn 0.83 Pb 3,,,.,,.,,.,, 2.2. 3 3. PM.0, 5.5µg/(m 3 h);,.625km/h.pm.0, 0.59. 3.2. K +, K + PM 0 PM 2. PM.0 59.5% 69.86% 0.03%. PM 2. PM. K + SO 4 NO 3 Cl Mg 2+ PM 0 6%~38%.. 3.3, 0.6,2.0,5.0µm., 0.6µm 0µm., 0.6,5,0µm., 0.6~µm 0µm. 3.4 0.2~2.0µm,
39 ;, ;.,,,. [] McCormick R A, Ludwig J H. Climate modification by atmospheric aerosols [J]. Science, 967,56(3780):358 359. [2] Fan J, Rosenfeld D, Ding Y, et al. Potential aerosol indirect effects on atmospheric circulation and radiative forcing through deep convection [J]. Geophysical Research Letters, 202, 39(L09806): 7. [3] Pöschl U. Atmospheric aerosols: composition, transformation, climate and health effects [J]. Angewandte Chemie International Edition, 2005,44(46):7520 7540. [4] Han S, Bian H, Zhang Y, et al. Effect of Aerosols on visibility and radiation in Spring 2009 in Tianjin, China [J]. Aerosol and Air Quality Research, 202,2:27. [5] Katsouyanni K, Touloumi G, Spix C, et al. Short term effects of ambient sulphur dioxide and particulate matter on mortality in 2European cities: results from time series data from the APHEA project. Air pollution and health: a European approach [J]. British Medical Journal, 997,34:658 663. [6] Pope C, Burnett R, Thun M, et al. Lung cancer, cardiopulmonary mortality, and long term exposure to fine particulate air pollution [J]. Journal of the American Medical Association, 2002,287(9):34. [7],,,. 0 [J]., 203,33(9):539 545. [8],,,. [J]., 200,30(7):93 940. [9],,,. [J]., 200,30(5):585 592. [0] Zhang M, Wang X, Chen J, et al. Physical characterization of aerosol particles during the Chinese New Year s firework events [J]. Atmospheric Environment, 200,44(39):59 598. [] Drewnick F, Hings S S, Curtius J, et al. Measurement of fine particulate and gas phase species during the New Year s fireworks 2005in Mainz, Germany [J]. Atmospheric Environment, 2006,40(23):436 4327. [2] Ravindra K, Mittal A K, Grieken RV. Health risk assessment of urban suspended particulate matter with special reference to polycyclic aromatic hydrocarbons: A review [J]. Reviews on Environmental Health, 200,6(3):69 89. [3] Wang Y, Zhuang G, Xu C, et al. The air pollution caused by the burning of fireworks during the lantern festival in Beijing [J]. Atmospheric Environment, 2007,4(2):47 43 [4],,. [J]., 203,34(2):448 454. [5],,,. [J]., 2006,26(5):537 54. [6],,. [J]., 2008,24(4):6 2. [7] Vecchi R, Bernardoni V, Cricchio D, et al. The impact of fireworks on airborne particles [J]. Atmospheric Environment, 42(6):32. [8] Shi Y, Zhang N, Gao J, et al. Effect of fireworks display on perchlorate in air aerosols during the Spring Festival [J]. Atmospheric Environment, 20,45(6):323 327 [9] Sarkar S, Khillare P S, Jyethi DS, et al. Chemical speciation of respirable suspended particulate matter during a major firework festival in India [J]. Journal of Hazardous Materials, 200,84:32 330. [20],,,. [J]., 20,30(5):93 99. [2],,. [J]., 2008,8(): 83 86. [22],,. [J]., 2008,2(5):37 4 [23],,,. [J]., 20,32(5):224 230. [24] Chen Y, Ho KF, Ho SSH, et al. Gaseous and particulate polycyclic aromatic hydrocarbons (PAHs) emissions from commercial restaurants in Hong Kong [J]. Journal of Environmental Monitoring, 2007,9(2):40409. [25],,,. 3 [J]., 202,33(6): 944 95. [26] Wang H, Zhu B, Shen L, et al. Size distributions of aerosol and water soluble ions in Nanjing during a crop residual burning event [J]. Journal of Environmental Sciences, 202,24(8):457 465. [27] Bi X, Zhang G, Li L, et al. Mixing state of biomass burning particles by single particle aerosol mass spectrometer in the urban area of PRD, China [J]. Atmospheric Environment, 20,45(20):3447 3453. (988 ),,,,,,. 5.