SO 2 NO x CO [10 14]. China Environmental Science

Σχετικά έγγραφα
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΦΥΣΙΚΩΝ ΠΟΡΩΝ& ΠΕΡΙΒΑΛΛΟΝΤΟΣ

Supporting information. An unusual bifunctional Tb-MOF for highly sensing of Ba 2+ ions and remarkable selectivities of CO 2 /N 2 and CO 2 /CH 4

ΤΜΗΜΑ ΦΥΣΙΚΩΝ ΠΟΡΩΝ & ΠΕΡΙΒΑΛΛΟΝΤΟΣ

PM Characterization of Organic Carbon OC and Elemental Carbon EC in PM 2. 5 During the Winter in Three Major Cities in Fujian Province China

Distribution Characteristics of Polycyclic Aromatic Hydrocarbons and Black Carbon in Road Dusts from Typical Cities of China and India

Conductivity Logging for Thermal Spring Well

CorV CVAC. CorV TU317. 1

Gro wth Properties of Typical Water Bloom Algae in Reclaimed Water

The toxicity of three chitin synthesis inhibitors to Calliptamus italicus Othoptera Acridoidea

Accumulation of Soil Arsenic by Panax notoginseng and Its Associated Health Risk

Research on the Effect and Technique of Remediation for Multi-Metal Contaminated Tailing Soils

1 h, , CaCl 2. pelamis) 58.1%, (Headspace solid -phase microextraction and gas chromatography -mass spectrometry,hs -SPME - Vol. 15 No.

2 PbO 2. Pb 3 O 4 Sn. Ti/SnO 2 -Sb 2 O 4 -CF/PbO x SnO 2 -Sb PbO 2. Sn-Sb 1:1. 1 h. Sn:Sb=10:1. PbO 2 - CeO 2 PbO 2. [8] SnO 2 +Sb 2 O 4 _

ΠΟΙΟΤΗΤΑ ΑΤΜΟΣΦΑΙΡΙΚΟΥ ΠΕΡΙΒΑΛΛΟΝΤΟΣ

ΠΑΝΔΠΗΣΖΜΗΟ ΠΑΣΡΩΝ ΓΗΑΣΜΖΜΑΣΗΚΟ ΠΡΟΓΡΑΜΜΑ ΜΔΣΑΠΣΤΥΗΑΚΩΝ ΠΟΤΓΩΝ «ΤΣΖΜΑΣΑ ΔΠΔΞΔΡΓΑΗΑ ΖΜΑΣΩΝ ΚΑΗ ΔΠΗΚΟΗΝΩΝΗΩΝ» ΣΜΖΜΑ ΜΖΥΑΝΗΚΩΝ Ζ/Τ ΚΑΗ ΠΛΖΡΟΦΟΡΗΚΖ

Εργαστήριο Ραδιενέργειας Περιβάλλοντος ΙΠΤΑ ΕΚΕΦΕ Δ. Στοιχειακή ανάλυση ατμοσφαιρικού αερολύματος. Καταμερισμός των πηγών εκπομπής

E#ects of Drying on Bacterial Activity and Iron Formation in Acid Sulfate Soils

phthalate esters PAEs) n=12 n=20 - GC-MS 13 PAEs 18.77~ ng/l DiBP DEP 2- PAEs PAEs PAEs PAEs DnBP (2011)

Supporting information. Influence of Aerosol Acidity on the Chemical Composition of Secondary Organic Aerosol from β caryophyllene

An experimental and theoretical study of the gas phase kinetics of atomic chlorine reactions with CH 3 NH 2, (CH 3 ) 2 NH, and (CH 3 ) 3 N

ΥΠΕΥΘΥΝΟΣ ΚΑΘΗΓΗΤΗΣ: ΜΟΥΣΙΟΠΟΥΛΟΣ ΝΙΚΟΛΑΟΣ ΑΡΜΟΔΙΟΙ ΠΑΡΑΚΟΛΟΥΘΗΣΗΣ: ΦΡΑΓΚΟΥ ΕΥΑΓΓΕΛΙΑ, ΝΤΟΥΡΟΣ ΙΩΑΝΝΗΣ

A facile and general route to 3-((trifluoromethyl)thio)benzofurans and 3-((trifluoromethyl)thio)benzothiophenes

Comparison of carbon-sulfur and carbon-amine bond in therapeutic drug: -S-aromatic heterocyclic podophyllum derivatives display antitumor activity

8Q5SAC) 8Q5SAC UV2Vis 8500 ( ) ; PHS23C ) ;721 ( ) :1 4. ;8Q5SAC : molπl ;Britton2Robinson Q5SAC BSA Britton2Robinson,

ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ. Τηλέφωνο εργασίας: (28210)

Physical and Chemical Properties of the Nest-site Beach of the Horseshoe Crab Rehabilitated by Sand Placement

ΤΕΧΝΙΚΟ ΕΠΙΜΕΛΗΤΗΡΙΟ ΕΛΛΑ ΑΣ

,,, (, ) , ;,,, ; -

N 2 O 15 N NH + NH 3 Rittenberg mg mmol L - 1 CuSO mg. 10 mol L. Pre-Concentration device PreCon

Ινστιτούτο Ερευνών Περιβάλλοντος και Βιώσιμης Ανάπτυξης. Following Nafplio, October Δ. Φουντά

SUPPLEMENTAL INFORMATION. Fully Automated Total Metals and Chromium Speciation Single Platform Introduction System for ICP-MS

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΕΠΗΡΕΑΖΕΙ ΤΗΝ ΠΡΟΛΗΨΗ ΚΑΡΚΙΝΟΥ ΤΟΥ ΜΑΣΤΟΥ

Supporting Information

Comparative Study on Determinations of BTEX in Soils from Industrial Contaminated Sites

Geochemical Influence of Drilling a New Hole Adjacent to an Existing Hot Spring

Electronic Supplementary Information (ESI)

Antimicrobial Ability of Limonene, a Natural and Active Monoterpene

Rapid determination of soluble reactive silicate in seawater by flow injection analysis with spectrophotometric detection and its application

Neutralization E#ects of Acidity of Rain by Cover Plants on Slope Land

ΗΣΥΣΤΑΣΗΤΩΝΑΣ2.5 ΣΤΗΝ ΑΤΜΟΣΦΑΙΡΑ ΤΩΝ

Table S1. Summary of data collections and structure refinements for crystals 1Rb-1h, 1Rb-2h, and 1Rb-4h.

Optimizing Microwave-assisted Extraction Process for Paprika Red Pigments Using Response Surface Methodology

Influence of Flow Rate on Nitrate Removal in Flow Process

Research on the Environmental Impact Factors of Electromagnetic Radiation from High - speed Railway

Reaction of a Platinum Electrode for the Measurement of Redox Potential of Paddy Soil

ΜΕΛΕΤΗ ΤΗΣ ΠΛΑΣΤΙΚΟΤΗΤΑΣ ΑΡΓΙΛΟΥΧΩΝ ΜΙΓΜΑΤΩΝ ΜΕ ΠΡΟΣΘΗΚΗ ΣΙΔΗΡΑΛΟΥΜΙΝΑΣ ΑΠΟ ΤΗ ΔΙΕΡΓΑΣΙΑ BAYER

Approximation Expressions for the Temperature Integral

* ** *** *** Jun S HIMADA*, Kyoko O HSUMI**, Kazuhiko O HBA*** and Atsushi M ARUYAMA***

; +302 ; +313; +320,.


Resurvey of Possible Seismic Fissures in the Old-Edo River in Tokyo

Supporting Information One-Pot Approach to Chiral Chromenes via Enantioselective Organocatalytic Domino Oxa-Michael-Aldol Reaction

Ατμοσφαιρική Ρύπανση από Αιωρούμενα Σωματίδια κατά την Χειμερινή Περίοδο σε δυο Ελληνικές Πόλεις

«ΑΝΑΠΣΤΞΖ ΓΠ ΚΑΗ ΥΩΡΗΚΖ ΑΝΑΛΤΖ ΜΔΣΔΩΡΟΛΟΓΗΚΩΝ ΓΔΓΟΜΔΝΩΝ ΣΟΝ ΔΛΛΑΓΗΚΟ ΥΩΡΟ»

Correction of chromatic aberration for human eyes with diffractive-refractive hybrid elements

Isotopic and Geochemical Study of Travertine and Hot Springs Occurring Along the Yumoto Fault at North Coast of the Oga Peninsula, Akita Prefecture

LUO, Hong2Qun LIU, Shao2Pu Ξ LI, Nian2Bing

Υ ΡΟΓΕΩΛΟΓΙΚΕΣ ΣΥΝΘΗΚΕΣ ΚΑΙ ΠΡΟΒΛΗΜΑΤΑ ΥΠΟΒΑΘΜΙΣΗΣ ΤΗΣ ΠΟΙΟΤΗΤΑΣ ΤΩΝ ΥΠΟΓΕΙΩΝ ΝΕΡΩΝ ΣΤΗΝ ΠΕΡΙΟΧΗ ΜΕΣΣΗΝΗΣ, Ν.ΜΕΣΣΗΝΙΑΣ

Quantitative chemical analyses of rocks with X-ray fluorescence analyzer: major and trace elements in ultrabasic rocks

ΕΠΙΤΡΟΠΗ ΜΕΛΕΤΗΣ ΕΠΙΠΤΩΣΕΩΝ ΚΛΙΜΑΤΙΚΗΣ ΑΛΛΑΓΗΣ

Supporting Information. Asymmetric Binary-acid Catalysis with Chiral. Phosphoric Acid and MgF 2 : Catalytic

Radiation Protection 1. 1

Radiation Protection

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΑΒΑΛΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΠΕΤΡΕΛΑΙΟΥ ΚΑΙ ΦΥΣΙΚΟΥ ΑΕΡΙΟΥ

Journal of the Institute of Science and Engineering. Chuo University

Development of the Nursing Program for Rehabilitation of Woman Diagnosed with Breast Cancer

Journal of the Graduate School of the Chinese Academy of Sciences

1, +,*+* + +-,, -*, * : Key words: global warming, snowfall, snowmelt, snow water equivalent. Ohmura,,**0,**

Comparison of HPLC fingerprint between enzymatic Calculus bovis and natural Calculus bovis

Trace gas emissions from soil ecosystems and their implications in the atmospheric environment

Application of Wavelet Transform in Fundamental Study of Measurement of Blood Glucose Concentration with Near2Infrared Spectroscopy

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΕΡΙΒΑΛΛΟΝΤΟΣ

Πρόσφατα συμπεράσματα από διεθνείς επιδημιολογικές μελέτες. Kλέα

任秉雄 王崇臣 ENVIRONMENTAL CHEMISTRY. 744 t 50% 10% 20% 1 mg L t S. SHZ-82 Spectrum-100 C 16 H 18 N 3 SCl 3H 2 O

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

17 min R A (2009) To probe into the thermal property the mechanism of the thermal decomposition and the prospective

!"#$%&'()*+, N=!"#$%#&' =NMMUTO O=!"#$%&'()* +,-./0 =NMMMPU

Copper-catalyzed formal O-H insertion reaction of α-diazo-1,3-dicarb- onyl compounds to carboxylic acids with the assistance of isocyanide

9-amino-(9-deoxy)cinchona alkaloids-derived novel chiral phase-transfer catalysts

. O 2 + 2H 2 O + 4e 4OH -

Πειραματική διαδικασία προσδιορισμού ιοντικής σύστασης ατμοσφαιρικών σωματιδίων

A strategy for the identification of combinatorial bioactive compounds. contributing to the holistic effect of herbal medicines

ΣΥΓΚΕΝΤΡΩΣΕΙς ΤΩΝ ΒΑΡΕΩΝ ΜΕΤΑΛΛΩΝ ΣΤΑ ΑΙΩΡΟΥΜΕΝΑ ΣΩΜΑΤΙΔΙΑ του ΚΟΛΠΟΥ ΤΗς ΕΛΕΥΣΙΝΑΣ

Free Radical Initiated Coupling Reaction of Alcohols and. Alkynes: not C-O but C-C Bond Formation. Context. General information 2. Typical procedure 2

Fe II aq Fe III oxide electron transfer and Fe exchange: effect of organic carbon

Chemical characteristics of acidic precipitation in Tiantong Zhejiang Province


ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΕΡΓΑΣΤΗΡΙΟ ΔΙΑΧΕΙΡΙΣΗΣ ΤΟΞΙΚΩΝ ΚΑΙ ΕΠΙΚΙΝΔΥΝΩΝ ΑΠΟΒΛΗΤΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Antibacterial property of fabric treated with a fiber-reactive chitosan derivative

A new ent-kaurane diterpene from Euphorbia stracheyi Boiss

Μηχανική ποιότητας αέρα


Preparation of Hydroxyapatite Coatings on Enamel by Electrochemical Technique

Electrolyzed-Reduced Water as Artificial Hot Spring Water

Extract Isolation Purification and Identification of Polysaccharides from Exocarp of Unripe Fruits of Juglans mandshurica

Iron recovery from copper-slag with lignite-based direct reduction followed by magnetic separation

ΑΤΜΟΣΦΑΙΡΙΚΗ ΡΥΠΑΝΣΗ ΚΑΤΑ ΤΗΝ ΧΕΙΜΕΡΙΝΗ ΠΕΡΙΟΔΟ ΚΑΙ Η ΕΛΛΗΝΙΚΗ ΟΙΚΟΝΟΜΙΚΗ ΚΡΙΣΗ

D-Glucosamine-derived copper catalyst for Ullmann-type C- N coupling reaction: theoretical and experimental study

Οι απόψεις και τα συμπεράσματα που περιέχονται σε αυτό το έγγραφο, εκφράζουν τον συγγραφέα και δεν πρέπει να ερμηνευτεί ότι αντιπροσωπεύουν τις

( ) , ) , ; kg 1) 80 % kg. Vol. 28,No. 1 Jan.,2006 RESOURCES SCIENCE : (2006) ,2 ,,,, ; ;

Transcript:

204,34() 30~39 China Environmental Science, *,,2,, (., 20044 2., 3400), 202 9~3. : PM.0 5.5µg/(m 3 h) ;.625km/h.,. PM 2. PM. K + SO 4 NO 3 Cl Mg 2+ 6%~38%,. 0.2~2.0µm,,. X3. A 000 6923(204)0 0030 0 The mass concentration and chemical compositions of the atmospheric aerosol during the Spring Festival in Nanjing. WANG Hong-lei, ZHU Bin *, SHEN Li-juan, 2, ZHANG Ze-feng, LIU Xiao-hui (.Key Laboratory for Aerosol-Cloud-Precipitation, China Meterological Administration, Nanjing University of Information Science and Technology, Nanjing 20044, China 2.Jiaxing Environmental Monitoring Station, Jiaxing 3400, China). China Environmental Science, 204,34() 30~39 Abstract In China, the most intensive burning of firework event occurs in the New Year Festivities, which release the high concentrations of particles, and cause acute short term air pollution. Concentrations and chemical components of PM 0 were measured and analyzed in Nanjing, during the Spring Festival on January 9~3, 202, for assessing the impacts of fireworks on ambient air quality. The PM.0 concentration increased at the rate of 5.5µg/(m 3 h) and the visibility was reduced at the rate of.625km/h during the study period. The results of the mass spectra and water-soluble ions spectrum can be described as trimodal distributions during the burning periods and bimodal distributions during non-burning periods. The ions of K +, SO 4, NO 3, Cl and Mg 2+ in PM 2. and PM. increased by the range of 6%~38% during the burning periods. For aerosol in the range of 0.2~2.0µm, nitrate, zinc, copper and part of K-including particles were mainly originated from firework burning, however, sulfate particles were hardly originated by this process, Pb-including particles were from industry emission. Key words the Spring Festival aerosol fireworks mass concentration water-soluble ions heavy metal,, [ 9].. SO 2 NO x CO [0 4]. PM 0 PM 2.5 4 6, [5 6]., 203 05 20 (427543,400507) (GYHY202060) (2KJA70003); 333 ; ; (KDW03,KDW02); (PAPD) *,, binzhu@nuist.edu.cn

3,,., [,7 9], [3,5 6] [0,20] [4,2] [22] [23].,, [24], [25 26],. 202 β Andersen II 9 IC. (32.207 N,8.77 E)2, 500m,. 900m, 00m.,,. 2, 62m, 202 2~28, 9:00 8:30.β 2, 67m, 202 9~3. 2, 62m, 202 20~3. 2 5, 72h..2 Andersen II 9 :9.0~0.0µm,5.8~9.0µm, 4.7~5.8µm,3.3~4.7µm,2.~3.3µm,.~2.µm,0.65 ~.µm,0.43~0.65µm,0.0~0.43µm.andersen g/cm 3, 28.3L/min. Mettler Toledo MX5. 4.PM.0 FH62C4 β, C 4,, 0.5h,, EPA (Environmental Protection Agency, http://www. epa.gov/ttn/amtic/criteria.html). / 50mL PET 20mL h h 24h 0.45μm 5mL 850professional IC, NH + 4 Ca 2+ Mg 2+ Na + K + Cl NO 3 SO 4 F NO 2 0.850professional IC, 858 MagIC Net ( ); :Metrosep C 4 50/4.0 ; :3.2mmol/L Na 2 CO 3 +.0mmol/L NaHCO 3 ( ),.7mmol/L +0.7mmol/L ( ); :30 ; :.0mL/min; :20μL. 8.2M

32 34 (SPAMS05 ). 200nm~2.0µm, 30min. SPAMS, 532nm (266nm). [27]. 2 2. PM. β PM.0,, 0.957,,. 2 ( ) BIRAL VPF 730, min. 2a,22 4:00 PM.0, 4:00 8µg/m 3 20:00 µg/m 3. PM.0,4:00 4.64km, 20:00 4.89km. 2b,PM.0, 0.59;22 4:00~20:00 PM.0 0.959, 22~28 0.567., PM.0, 5.5µg/(m 3 h),,.625km/h. 20 0 00 90 PM PM. y =5.274+0.82X, R=0.957 N=7, SD=7.296, P=7.0-4 80 70 60 50 40 30 30 40 50 60 70 80 90 00 0 20 Andersen PM. β PM.0 Fig. The concentration correlation between Anderson impactor and β ray instrument measuring dust 250 200 a PM.0 8 5 8 6 4 b Y= 05.075-4.04098X-0592X2 R= -0.59,SD=28.08,N=322,P<0.000 PM.0(g/m 3 ) 50 00 2 9 6 (km) (km) 2 0 8 6 50 0 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0-28 0:00 3 0 4 2 0 0 50 00 50 200 250 PM.0(g/m 3 ) 2 PM.0 Fig.2 The correlation between the PM.0 mass concentration and visibility and their time series 2 0:00~22 02:00,,,

33. 3a, PM 2.~0, 50%,PM. 30%., 2 >.µm.22,pm., 22,PM. 2 25.69µg/m 3, 2.7.22 PM. 8.4%, 2 25.2%.23,PM. 60%~70%,. PM., >.µm. 0 40 80 20 60 200 0 30 60 80 00 ( g/m 3 ) PM. PM.~2. PM 2.~0 0 20 40 60 80 00 0 20 40 60 80 00 (%) 3 PM. PM.~2. PM 2.~0 Fig.3 The distributions and percentages of mass concentration and ions concentrations in PM., PM. 2., PM 2. 0 0 40 80 20 60 200 0 20 40 60 80 00 0 20 40 60 80 0 20 40 60 80 00 ( g/m 3 ) (%) 4 Fig.4 The distributions and percentages of mass concentration and ions concentrations in different sizes <0.43 m 0.43~0.65 m 0.65~. m.~2. m 2.~3.3 m 3.3~4.7 m 4.7~5.8 m 9.0~0.0 m 4a,22 0.43µm,PM 0.43 46.99µg/m 3 ; 23 PM 0.43 30.7µg/m 3, PM 0.43~0.65 2.55µg/m 3 22 2.96

34 34.24 PM 0.65~. 37.97µg/m 3, 23 2.63.24.22~24,,,,. 4b,, PM 0.43 22, PM 0.43~0.65 PM 0.65~. 23 24,24.,2~23 PM 0, 64.66,76.8,97.36µg/m 3 ; PM 0, 40µg/m 3. 2~23,22 03:00,,.24.22 PM 2. /PM 0 PM. /PM 0 PM. /PM 2. 87.66% 8.4% 92.87%, 72.49% 62.7% 8.56%..µm, 2.µm. 202 2~27 Table The mass concentration and ions concentrations on Jan 2~27, 202 0 2 0 22 0 23 0 24 0 25 0 26 0 27 PM 0 23.35 64.66 76.8 97.36 59.76 33.70 95.7 40.59 (µg/m 3 ) PM 2. 6.04 42.48 66.79 73.80 3.07 02.6 47.73 2.4 PM. 37.40 36.34 62.03 66.66 03.25 80.07 2.40 97.86 PM 2. /PM 0 49.49 65.70 87.66 75.80 82.04 76.76 75.48 86.36 (%) PM. /PM 0 30.32 56.20 8.4 68.47 64.63 59.89 57.43 69.6 PM. /PM 2. 6.27 85.55 92.87 90.3 78.78 78.0 76.08 80.60 (µg/m 3 ) PM.0 40.23 72.77 7.8 0.4 8.3 0.88 88.00 Relative Error (%) 0.7 7.3 6.77 6.94.3 9.36 0.08 PM 0 42.20 8.53 29.74 47.83 73.88 63.6 68.07 87.26 (µg/m 3 ) PM 2. 30.28 2.90 26.50 25.39 53.5 52.90 55.93 60.06 PM. 9.45.9 25.26 22.6 42.23 42.29 42.97 50.34 PM 2. /PM 0 7.75 69.58 89. 53.09 72.43 83.5 82.8 68.83 (%) PM. /PM 0 46.09 60.35 84.93 47.27 57.6 66.47 63.3 57.69 PM. /PM 2. 64.23 86.74 95.30 89.05 78.9 79.95 76.8 83.8 PM 0 28.67 39.03 49. 46.25 47.59 34.78 62.07 / (%) PM 2. 30.36 39.68 34.40 40.83 5.55 37.86 49.47 PM. 30.78 40.7 33.9 40.90 52.8 38.23 5.44 β PM.0, 0%, β,. 2.2,.22 PM 0 29.74µg/m 3 ;PM 2. 26.50µg/m 3, 89.2%, PM 2. 70%.22 PM. 25.26µg/m 3, PM 0 84.93%, PM 2. 95.30%; PM. PM 0 60%, PM 2. 80%. PM. 20%, PM 2. 5%.,.,22 39.03%,

35 50%. 22 PM 2. PM. 39.68% 40.72%,. 3b,, PM.,PM.~2. PM 2.~0.22 PM.,PM.~2.. 3,22 PM., 25.26µg/m 3, PM..23 PM 2.~0 46.9%, 23,SO 2 CO NO 2,.24,.,,. 2 SO 4 /NO 3 Table 2 SO 4 /NO 3 ratio comparison of the firework and non firework events (µm) 0~0.43 0.43~0.65 0.65~..~2. 2.~3.3 3.3~4.7 4.7~5.8 5.8~9.0 9.0~0.0 22 2.43 2.5 2.7.74 2.05 4.5 3.63 5.6 6.54 23~27.83.4.48.90 2.36.90 2.7.80 4.06.05.06.03.8..39.79 2.58 2. SO 4 /NO 3, SO x NO x :3 :8, SO x NO x 2: [20] ; 2 SO 4 /NO 3, 22 SO 4 /NO 3.~2.µm 2, 3.3µm SO 4 /NO 3 4, >3.3µm, <3.3µm. SO 4 /NO 3.4~2.0, SO 4 /NO 3.0,. 5,22 K +, PM., PM. 23.65%. 22 PM. PM 2.~0 NO 3,SO 4 ; PM.~2. NO 3,SO 4, 4,22 <0.43µm, >0.43µm. 23 >3.3µm, <0.43µm, >3.3µm, 0.43~3.3µm. Cl Mg 2+., 22,,. 2,, 2. K + PM 0 PM 2. PM.0 6.4,6.03,5.87µg/m 3, 59.5% 69.86% 0.03%.22 K + PM 0 2.33 ;23 44% 3.59µg/m 3,, 22,., K +,, d,.

36 34 PM. 0 0 20 30 50 PM.~2. 0 2 4 6 8 0 2 4 PM 2.~0 0 5 0 5 20 25 30 ( g/m 3 ) 0 20 40 60 80 00 20a 0 20 40 60 80 00 0 20 40 60 80 00 (%) 5 PM. PM.~2. PM 2.~0 Fig.5 The distributions and percentages of major ions concentrations in PM., PM.~2. and PM 2.~0 Na + NH 4 + K + Ca 2+ Mg 2+ C - NO 2 - F NO 3 - SO 4 2- PM 0 SO 4 NO 3 9.26µg/m 3 3.74µg/m 3, 20.67µg/m 3 2.35µg/m 3. SO 4 NO 3 SO 2 NO x. CO SO 2 SO 3 NO x,.,,. SO 2 NO x H 2 SO 4 HNO 3,. SO 4 NO 3 PM 2. /PM 0 6.58% 3.57%, PM. /PM 0 28.46% 22.8%.. Cl SO 4 NO 3,PM 0 4.04µg m 3, 0.64. Cl PM 2. /PM 0 PM. /PM 0 7.97% 25.64%.Cl,. Cl,,. Mg 2+ PM 2. /PM 0 PM. /PM 0 30.88% 37.7%. Mg 2+.,. 2.3 6, 2~22, 0.6µm 0µm ;2~22, 0.6,2.0,5.0µm, 2.0µm. 2~22,

37, 0.6,5,0µm., 0.6~µm 0µm ;NH + 4 K + ;Na + Ca 2+, 2~3µm., 22 K + Mg 2+ Cl SO 4 0.5µm. [ g/(m 3 m)] [ g/(m 3 m)] [ g/(m 3 m)] 00 0 0 2 3 4 5 6 7 8 9 0 Na + 0 0.0 K + 0.0 0 2 3 4 5 6 7 8 9 0 0 2 3 4 5 6 7 8 9 0 0 0 Ca 2+ NO3-0.0 0.0 0.0 0 2 3 4 5 6 7 8 9 0 0 2 3 4 5 6 7 8 9 0 0 2 3 4 5 6 7 8 9 0 0 NH4 + 0 Mg 2+ SO4 2-0.0 0 2 3 4 5 6 7 8 9 0 ( m) 0.0 0 2 3 4 5 6 7 8 9 0 ( m) 0.0 E-3 Cl - 0 2 3 4 5 6 7 8 9 0 ( m) 6 202 2~28 Fig.6 Spectrum distributions of mass concentration and major ions concentrations on Jan 2~28, 202and winter 20 09:00~ 08:30 09:00~ 08:30 09:00~ 08:30 09:00~ 08:30 09:00~ 08:30 09:00~ 08:30 09:00~0-28 08:30 2 2.4 5774860, 354545, 23.46%., 225397, 2.22%. 7, 2~22, 373 447840 69 548 42, 562359 3053 23 27, 466 934 2974 83 49 5,,,,. ( 22 9:00~23 4:00), 445 3769 6257 58 03 22, ;, ;,,. 7b,,,,. 7a, 22 ~30, ;,,.

38 34 0 4 4 a NO 3 - K SO 4 2- ( ) 2 0 3 4 2 0-20 0-28 0-29 0-30 ( ) 000 4 2 00 4 2 0 b Pb Zn Cu 0-20 0-28 0-29 0-30 7 202 20 ~30 Fig.7 Time variations of inorganic salts and heavy metal number concentration on January 20~30, 202 3 Table 3 The correlation coefficients between different inorganic salts and heavy metal number concentration during the firework burning events in Spring Festival SO 4 SO 4 K + NO 3 Cu Zn Pb 0.40 0.53 0.42 0.90 3 K + 0.79 0.89 0.66 0.50 NO 3 0.87 0.80 0.33 Cu 0.77 0.74 Zn 0.83 Pb 3,,,.,,.,,.,, 2.2. 3 3. PM.0, 5.5µg/(m 3 h);,.625km/h.pm.0, 0.59. 3.2. K +, K + PM 0 PM 2. PM.0 59.5% 69.86% 0.03%. PM 2. PM. K + SO 4 NO 3 Cl Mg 2+ PM 0 6%~38%.. 3.3, 0.6,2.0,5.0µm., 0.6µm 0µm., 0.6,5,0µm., 0.6~µm 0µm. 3.4 0.2~2.0µm,

39 ;, ;.,,,. [] McCormick R A, Ludwig J H. Climate modification by atmospheric aerosols [J]. Science, 967,56(3780):358 359. [2] Fan J, Rosenfeld D, Ding Y, et al. Potential aerosol indirect effects on atmospheric circulation and radiative forcing through deep convection [J]. Geophysical Research Letters, 202, 39(L09806): 7. [3] Pöschl U. Atmospheric aerosols: composition, transformation, climate and health effects [J]. Angewandte Chemie International Edition, 2005,44(46):7520 7540. [4] Han S, Bian H, Zhang Y, et al. Effect of Aerosols on visibility and radiation in Spring 2009 in Tianjin, China [J]. Aerosol and Air Quality Research, 202,2:27. [5] Katsouyanni K, Touloumi G, Spix C, et al. Short term effects of ambient sulphur dioxide and particulate matter on mortality in 2European cities: results from time series data from the APHEA project. Air pollution and health: a European approach [J]. British Medical Journal, 997,34:658 663. [6] Pope C, Burnett R, Thun M, et al. Lung cancer, cardiopulmonary mortality, and long term exposure to fine particulate air pollution [J]. Journal of the American Medical Association, 2002,287(9):34. [7],,,. 0 [J]., 203,33(9):539 545. [8],,,. [J]., 200,30(7):93 940. [9],,,. [J]., 200,30(5):585 592. [0] Zhang M, Wang X, Chen J, et al. Physical characterization of aerosol particles during the Chinese New Year s firework events [J]. Atmospheric Environment, 200,44(39):59 598. [] Drewnick F, Hings S S, Curtius J, et al. Measurement of fine particulate and gas phase species during the New Year s fireworks 2005in Mainz, Germany [J]. Atmospheric Environment, 2006,40(23):436 4327. [2] Ravindra K, Mittal A K, Grieken RV. Health risk assessment of urban suspended particulate matter with special reference to polycyclic aromatic hydrocarbons: A review [J]. Reviews on Environmental Health, 200,6(3):69 89. [3] Wang Y, Zhuang G, Xu C, et al. The air pollution caused by the burning of fireworks during the lantern festival in Beijing [J]. Atmospheric Environment, 2007,4(2):47 43 [4],,. [J]., 203,34(2):448 454. [5],,,. [J]., 2006,26(5):537 54. [6],,. [J]., 2008,24(4):6 2. [7] Vecchi R, Bernardoni V, Cricchio D, et al. The impact of fireworks on airborne particles [J]. Atmospheric Environment, 42(6):32. [8] Shi Y, Zhang N, Gao J, et al. Effect of fireworks display on perchlorate in air aerosols during the Spring Festival [J]. Atmospheric Environment, 20,45(6):323 327 [9] Sarkar S, Khillare P S, Jyethi DS, et al. Chemical speciation of respirable suspended particulate matter during a major firework festival in India [J]. Journal of Hazardous Materials, 200,84:32 330. [20],,,. [J]., 20,30(5):93 99. [2],,. [J]., 2008,8(): 83 86. [22],,. [J]., 2008,2(5):37 4 [23],,,. [J]., 20,32(5):224 230. [24] Chen Y, Ho KF, Ho SSH, et al. Gaseous and particulate polycyclic aromatic hydrocarbons (PAHs) emissions from commercial restaurants in Hong Kong [J]. Journal of Environmental Monitoring, 2007,9(2):40409. [25],,,. 3 [J]., 202,33(6): 944 95. [26] Wang H, Zhu B, Shen L, et al. Size distributions of aerosol and water soluble ions in Nanjing during a crop residual burning event [J]. Journal of Environmental Sciences, 202,24(8):457 465. [27] Bi X, Zhang G, Li L, et al. Mixing state of biomass burning particles by single particle aerosol mass spectrometer in the urban area of PRD, China [J]. Atmospheric Environment, 20,45(20):3447 3453. (988 ),,,,,,. 5.