Tutorial Note - Week 09 - Solution

Σχετικά έγγραφα
Answer sheet: Third Midterm for Math 2339

e t e r Cylindrical and Spherical Coordinate Representation of grad, div, curl and 2

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

Example 1: THE ELECTRIC DIPOLE

VEKTORANALYS. CURVILINEAR COORDINATES (kroklinjiga koordinatsytem) Kursvecka 4. Kapitel 10 Sidor

ANTENNAS and WAVE PROPAGATION. Solution Manual

Fundamental Equations of Fluid Mechanics

Laplace s Equation in Spherical Polar Coördinates

Homework 8 Model Solution Section

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (2, 1,0). Find a unit vector in the direction of A. Solution: A = 1+9 = 3.

Spherical Coordinates

CHAPTER (2) Electric Charges, Electric Charge Densities and Electric Field Intensity

STEADY, INVISCID ( potential flow, irrotational) INCOMPRESSIBLE + V Φ + i x. Ψ y = Φ. and. Ψ x

Curvilinear Systems of Coordinates

Section 8.3 Trigonometric Equations

Areas and Lengths in Polar Coordinates

Matrix Hartree-Fock Equations for a Closed Shell System

Solutions to Exercise Sheet 5

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Solutions Ph 236a Week 2

AREAS AND LENGTHS IN POLAR COORDINATES. 25. Find the area inside the larger loop and outside the smaller loop

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

Theoretical Competition: 12 July 2011 Question 1 Page 1 of 2

CRASH COURSE IN PRECALCULUS

Oscillating dipole system Suppose we have two small spheres separated by a distance s. The charge on one sphere changes with time and is described by

Differentiation exercise show differential equation

Section 7.6 Double and Half Angle Formulas

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

r = x 2 + y 2 and h = z y = r sin sin ϕ

Areas and Lengths in Polar Coordinates

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.7 Governing Equations and Boundary Conditions for P-Flow

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

dx x ψ, we should find a similar expression for rθφ L ψ. From L = R P and our knowledge of momentum operators, it follows that + e y z d

Section 8.2 Graphs of Polar Equations

The Laplacian in Spherical Polar Coordinates

Physics 505 Fall 2005 Practice Midterm Solutions. The midterm will be a 120 minute open book, open notes exam. Do all three problems.

(a,b) Let s review the general definitions of trig functions first. (See back cover of your book) sin θ = b/r cos θ = a/r tan θ = b/a, a 0

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

11.4 Graphing in Polar Coordinates Polar Symmetries

21. Stresses Around a Hole (I) 21. Stresses Around a Hole (I) I Main Topics

Chapter 7a. Elements of Elasticity, Thermal Stresses

Uniform Convergence of Fourier Series Michael Taylor

Math221: HW# 1 solutions

Example Sheet 3 Solutions

Section 9.2 Polar Equations and Graphs

Orbital angular momentum and the spherical harmonics

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Strain and stress tensors in spherical coordinates

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

1 3D Helmholtz Equation

Parametrized Surfaces

Problems in curvilinear coordinates

九十七學年第一學期 PHYS2310 電磁學期中考試題 ( 共兩頁 )

derivation of the Laplacian from rectangular to spherical coordinates

Homework 3 Solutions

Inverse trigonometric functions & General Solution of Trigonometric Equations

Trigonometric Formula Sheet

MathCity.org Merging man and maths

1 String with massive end-points

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Geodesic Equations for the Wormhole Metric

Matrices and Determinants

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

Similarly, we may define hyperbolic functions cosh α and sinh α from the unit hyperbola

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81

Problem 3.16 Given B = ˆx(z 3y) +ŷ(2x 3z) ẑ(x+y), find a unit vector parallel. Solution: At P = (1,0, 1), ˆb = B

MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

4.2 Differential Equations in Polar Coordinates

PhysicsAndMathsTutor.com

Solution to Review Problems for Midterm III

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:

Slide 1 of 18 Tensors in Mathematica 9: Built-In Capabilities. George E. Hrabovsky MAST

Trigonometry 1.TRIGONOMETRIC RATIOS

CYLINDRICAL & SPHERICAL COORDINATES

Jackson 2.25 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell

List MF19. List of formulae and statistical tables. Cambridge International AS & A Level Mathematics (9709) and Further Mathematics (9231)

General Relativity (225A) Fall 2013 Assignment 5 Solutions

Analytical Expression for Hessian

Orbital angular momentum and the spherical harmonics

6.4 Superposition of Linear Plane Progressive Waves

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

2. Μηχανικό Μαύρο Κουτί: κύλινδρος με μια μπάλα μέσα σε αυτόν.

Forced Pendulum Numerical approach

Lecture 26: Circular domains

If we restrict the domain of y = sin x to [ π 2, π 2

Exercise 1.1. Verify that if we apply GS to the coordinate basis Gauss form ds 2 = E(u, v)du 2 + 2F (u, v)dudv + G(u, v)dv 2

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

( y) Partial Differential Equations

26 28 Find an equation of the tangent line to the curve at the given point Discuss the curve under the guidelines of Section

w o = R 1 p. (1) R = p =. = 1

EE512: Error Control Coding

Edexcel FP3. Hyperbolic Functions. PhysicsAndMathsTutor.com

Transcript:

Tutoial Note - Week 9 - Solution ouble Integals in Pola Coodinates. a Since + and + 5 ae cicles centeed at oigin with adius and 5, then {,θ 5, θ π } Figue. f, f cos θ, sin θ cos θ sin θ sin θ da 5 69 5 sin θ d dθ sin θ d dθ sin θ dθ 69 b {,θ, θ π} Figue 5 f cos θ, sin θ sin sin + da cos cos 6π [ sin ] d dθ cos cos 6 dθ 5 + 5 + θ 5 Figue Figue 5 + 6 θ +. a 6 + + f, 6 + + f cos θ, sin θ 6 cosθ sin θ cos θ + sin θ sin θ sin θ sinθ o ejected

So, the pola equation sinθ is a cicle centeed at, with adius of fo θ π. {,θ sin θ, θ π} Figue 6. Hence, Volume V f, da sin θ 6 sin θ sin θ cos θ sin θ 6 cosθ sin θ d dθ dθ 5π +.5 θ.5 Figue 6 Note: sin n θ cos θ dθ n + sinn+ θ + C and sin θ cos θ + cos θ. Fo, a sin θ, θ π and b cos θ, π θ π, whee a, b +. b The volume is bounded b the two sufaces and the intesection is { +. So, the intesection is a cicle centeed at oigin with adius of and {,θ, θ π }. The height between the two sufaces is f, 6 f cos θ, sin θ 6. Volume V. a {,, } 6 d dθ dθ 6π is the pat of the unit cicle centeed at the oigin in the fist quadant, so {,θ, θ π }. e + d d e d dθ e dθ π e

{ b, }, is the uppe pat of the cicle centeed at the oigin with adius of, so {,θ, θ π}. + dd d dθ dθ π Applications of ouble Integals. a m M M ρ, da ρ, da ρ, da dd dd dd d d d Hence, the mass is m and the cente of mass is, ȳ M, M m m,. b {,, and, {, +, } Figue 7 m M M + + + dd dd dd + d 7 + d 7 + + d 5 Hence, the mass is m 7 and the cente of mass is, ȳ 5,.,, Figue 7

. a b I I I I I + + ρ, da ρ, da dd dd + ρ, da I + I 5 dd dd I I + I 97 5 d 9 5 d 5 + d 9 + 6 + + 6 d 69 Tiple Integals. a b. a b Fo dd d + dv e dv [ d d d + [ ] ] d dd d + d 7 5 + e d dd d d 5 d + d d [ ] 6 + d d d 5 e e + d 7 e e d, use integation b-pats and + d d + e dd e d e e + C.

c Since is bounded b the plane + and the -plane, so +. is the egion on the -plane and bounded b,, and. {,, } Figue and {,,,, + } dv + 5 + 6 d d d d 5 + d d Figue d Since is bounded b the plane + + 6 o 6 and the plane o the -plane, so 6. When the plane ++ 6 intesects the -plane,, the intesection on the -plane is + 6 o. is the pojection of the plane ++ 6 on the -plane and it is a tiangula egion that bounded b,, and. {,, } Figue 9a and {,,,, 6 } Figue 9 dv 6 9 9 + 9 d d d d 6 d d 6. 5....... + + 6... Figue 9 Figue 9a 5

e Since is bounded above b the plane ABC, so we have to find the equation of ABC fist. Like the tangent plane, the equation of a plane involves the nomal vecto. Using the thee points on the plane to fom two vectos and take the coss poduct fo the nomal vecto. AB [,, ] [,, ] and AC [,, ] i j k nomal vecto n [6,, ] So, the equation of the plane is 6 + + 6 + + 6. {,, } Figue a and {,,,, } Figue dv d d d d d + 6 6 + d C O..... 6 + + 6 A Figue. B O B Figue a A f Again, is bounded above b the plane OQ, so we have to find the equation of OQ fist. OQ [,, ], O [,, ] and n [,, ] So, the equation of the plane is +. {,, } Figue a and {,,,, } Figue dv d d d 6 + d 6 + d d 6

O.. +. P Figue Q P Q O Figue a Tiple Integals in Clindical Coodinates. a Since is bounded b the plane and, then. Fo the clinde, + cosθ + sin θ since and θ π. {,θ,, θ π, } Figue f,, + f cos θ, sin θ, cos θ + sin θ -. -. -. -. -. + dv -..... -. -... dθ π d d dθ d dθ Figue Figue a b Since is bounded b 9 and the -plane, then 9 o 9. The intesection between 9 and the -plane,, is a cicle on the -plane, i.e., { 9 9 + 9 since and 7

θ π. {,θ,, θ π, 9 } Figue f cosθ, sin θ, cos θ + sin θ + dv 9 6 π dθ 5 5 d d dθ 9 d dθ 9.. 7. 6. 5.... -. -. -. -....... -. -. -. -. Figue 9 9 Figue a c + cos θ + {,θ,, θ π, cosθ + } f cosθ, sin θ, sin θ dv cos θ+ sin θ sin θ d d dθ + sin θ d dθ 5 sin θ cos θ + d dθ sin θ + sin θ dθ d + since is above the -plane,. {,θ,, θ π, } f cosθ, sin θ, cos θ dv cos θ d d dθ + cos θ dθ π 5 5 + cos θ d dθ

. + and 6 6 The intesection fo and 6 is { 6 9 since. Since 6 is on the top of fo, then {,θ,, θ π, 6 } Figue. Volume V dv f,, 6 dθ 6π d d dθ 6 d dθ 6 6 7 6 Figue + 9 Figue a. + The intesection between and a is { a a {,θ, } a, θ π, a f,, K a since. 9

mass m M M M a a K d d dθ a K 6 dθ a πk a a K cos θ d d dθ a 5 K cos θ dθ 6 a a a K sin θ d d dθ a K d d dθ Ka dθ a πk a a K a d dθ a K cosθ a d dθ a 5 K sin θ dθ 6 a K 5 M m, ȳ M m, and M m a Theefoe, the mass is m a πk and the cente of mass is,, a. d dθ Tiple Integals in Spheical Coodinates. a + + ρ ρ since ρ B {ρ,θ,φ ρ, θ π, φ π} f,, + + f ρ sin φ cos θ,ρsin φ sin θ,ρcos φ ρ B + + dv ρ ρ sin φ dρdθ dφ sin φ dθ dφ 5 π 5 sin φ dφ π 5 b Since H is the hemispheical egion, then φ π. H { } ρ,θ,φ ρ, θ π, φ π f ρ sin φ cos θ,ρsin φ sin θ,ρcos φ ρ sin φ H + π dv ρ sin φ ρ sin φ dρdθ dφ π π 5 sin φ dθ dφ 5 sin φ dφ π 5 sin φ sin φ cos φ dφ π 5

c Since lies in the fist octant, then θ π and φ π. { ρ,θ,φ ρ, θ π, φ } π f ρ sin φ cos θ,ρsin φ sin θ,ρcos φ ρ sin φ sin θ dv ρ sin φ sin θ ρ sin φ dρdθ dφ 5 sin φ sin θ dθ dφ π sin φ dφ π sin φ cos θ dθ dφ d { ρ,θ,φ ρ, θ π, φ π 6} Figue 5 f ρ sin φ cos θ,ρsin φ sin θ,ρcos φ ρ + + 6 π dv ρ ρ sin φ dρdθ dφ 6 π sin φ dθ dφ 6 π sin φ dφ π ρ φ Figue 5 Figue 5a. { ρ,θ,φ ρ cos φ, θ π, φ π } Figue 6 Volume V dv π f,, cos φ 6 sin φ cos φ dθ dφ ρ sin φ dρdθ dφ π sin φ cos φ dφ π

ρ φ Figue 6 Figue 6a. { ρ,θ,φ ρ a, θ π, φ π f ρ sin φ cos θ,ρsin φ sin θ,ρcos φ Kρ cos φ } m M M M a π a Kρ sin φ cos φ dρdθ dφ a πk sin φ dφ a πk dφ π a π a a 5 πk 5 Kρ sin φ cos φ cos θ dρdθ dφ Kρ sin φ cos φ sin θ dρdθ dφ Kρ sin φ cos φ dρdθ dφ sin φ cos φ dφ a5 πk 5 a K sin φ dθ dφ a 5 K 5 sin φ cos φ cos θ dθ dφ a 5 K 5 sin φ cos φ dθ dφ Theefoe, the mass of H is a πk and the cente of mass is, ȳ,,, a 5.