! " #$ %& '! () * +,- *!. /0 1 23)
! " # $%& '()* +,-.'()* + /01 2+ 34 56 7 89 1 :;<==3>?@=>?AB CDE FG H&- I$ FG74J H&- I$ K LM N$O 4,- PQRS T UJ + V UW XYZB CDE G[\] ^=<.=_^=`<?ab.ac + V d Ze f,z g ]E 2+ 3hijk<3l`i=,-g ]E 2+ mdn d Ze opq
! "
# &'!" # $%
! 01 $% 23! ()* +, σ = π -. /
!"#! $$#! "#
!"#! σ!
$%&' -. 45 67 ; <= 8 9:
Jin Kook Kim Tae Sung Lim Mechanical Design Lab. with Advanced Materials
1. Investigation of major parts in plasma equipment 2. Design specification 3. Plan of plasma treatment tests 4. Information Mechanical Design Lab. with Advanced Materials
Investigation of major parts in plasma equipment A. Power part Function : plasma generation Power : 0-500 watt Frequency: 13.56 MHz or 27.12MHz Price : 5 million won B. Matching system Function : removal of plasma energy loss Price : 3-4 million won Mechanical Design Lab. with Advanced Materials
Investigation of major parts in plasma equipment C. Vacuum pump Function : vacuum in chamber, exhaust of reacted gas Constitution : Diffusion pump and Roughing pump Vacuum pressure : below 5 mtorr control Price : 1.5-2 million won D. MFC Function : control of gas flow rate Gas flow rate : 0-200 sccm Price : 3 million won Mechanical Design Lab. with Advanced Materials
Investigation of major parts in plasma equipment E. Chamber Type of electrode : ICP (Inductively Coupled Plasma) CCP (Capacitively Coupled Plasma) Price : 0.5 million won Mechanical Design Lab. with Advanced Materials
A. Power part 13.56 MHz, 0-500 watt B. Matching system C. MFC D. Vacuum system E. Electrode type F. Gas 0-200 sccm 0.05-1 torr CCP! ICP Ar! C 2 F 4! N 2 G. Gas supply 2 way H. Chamber size 300mm ( )! 200mm (h) Mechanical Design Lab. with Advanced Materials
A. Test variables a. Treatment time b. Power c. Vacuum pressure d. Gas e. Environmental temperature f. Aging time C. Tests a. Single lap shear test b. Peel test c. Contact angle test B. Materials (Adhesive: IPCO9923) a. Carbon/epoxy-Carbon/epoxy b. Carbon/epoxy-Glass/epoxy c. Carbon/epoxy-Aluminum c. Glass/epoxy-Aluminum Mechanical Design Lab. with Advanced Materials
Manufacture and Installation of Equipment Design of specimens and jigs Treatment time 1 2 3 4 5 6 7 8 9 10 11 12 Tests for manufacturing variables Power Pressure Gas Tests for Temperature environmental variables Aging Mechanical Design Lab. with Advanced Materials
A. MFC (Mass Flow Controller)!! "!! Mechanical Design Lab. with Advanced Materials
!! #! $ $!! %! #!! &! # '!!(! ) *+ %,!!!%!*% -#! Mechanical Design Lab. with Advanced Materials
./012 3 4 5! 3 +, 62! +!./012 Mechanical Design Lab. with Advanced Materials
,! *! 2! Mechanical Design Lab. with Advanced Materials
B. Pirani vacuum gauge In a Pirani gauge (see Fig.), two filaments, often platinum, are used as resistances in two arms of a Wheatstone bridge. The reference filament is immersed in a fixed-gas pressure, while the measurement filament is exposed to the system gas. Both filaments are heated by the current through the bridge. As in the T/C gauge, gas molecules conduct heat away from the immersed element and unbalance the bridge. Pirani gauges have roughly the same pressure measurement range as T/C gauges and are used in identical applications, but generally provide faster response. Mechanical Design Lab. with Advanced Materials
!" #$%!"# $%&
! " #$ % & '() *+, -. - /0
1 234
1 C MN Y Z X I I I G F E D I H B MX I G FED H A B C G ED H F DEC 9 2000 01:48:22 NODAL SOLUTION STEP=1 SUB =1 TIME=1 SXY (AVG) RSYS=0 PowerGraphics EFACET=1 AVRES=Mat DMX =.287E-05 SMN =783.548 SMX =4501 A =990.055 B =1403 C =1816 D =2229 E =2642 F =3055 G =3468 H =3881 I =4294 1 MX Y Z D C E G E E E E E E X E E E F MN DEC 9 2000 01:48:33 NODAL SOLUTION STEP=1 SUB =1 TIME=1 SY (AVG) RSYS=0 PowerGraphics EFACET=1 AVRES=Mat DMX =.287E-05 SMN =-11162 SMX =11162 A =-9922 B =-7441 C =-4961 D =-2480 E =0 F =2480 G =4961 H =7441 I =9922 RAIL SHEAR JOINT SIMULATION RAIL SHEAR JOINT SIMULATION τ σ
1 B G I H F I G H F E D MX I H GF E I B A DEC 9 2000 01:49:08 NODAL SOLUTION STEP=1 SUB =1 TIME=1 SXY (AVG) RSYS=0 PowerGraphics EFACET=1 AVRES=Mat DMX =.542E-05 SMN =-1193 SMX =4492 A =-876.746 B =-245.116 C =386.514 D =1018 E =1650 F =2281 G =2913 H =3545 I =4176 1 C G D E F E MX MN F E DEC 9 2000 01:49:19 NODAL SOLUTION STEP=1 SUB =1 TIME=1 SY (AVG) RSYS=0 PowerGraphics EFACET=1 AVRES=Mat DMX =.542E-05 SMN =-10715 SMX =12037 A =-9451 B =-6923 C =-4395 D =-1867 E =660.812 F =3189 G =5717 H =8245 I =10773 SINGLE LAP SHEAR JOINT SIMULATION SINGLE LAP SHEAR JOINT SIMULATION τ σ
1 E F E D CE G MX E E E MN F E D F D E D F C B DF I G E E E E D G H A C F E E DEC 9 2000 01:45:54 NODAL SOLUTION STEP=1 SUB =1 TIME=1 SXY (AVG) RSYS=0 PowerGraphics EFACET=1 AVRES=Mat DMX =.306E-05 SMN =-6117 SMX =6117 A =-5437 B =-4078 C =-2719 D =-1359 E =0 F =1359 G =2719 H =4078 I =5437 1 D D AB E E C D C HI D E G H F F G E E MX D C D F D C B MN C B C D D E AB C E F GI I E H H G F C F D G E D F D D D D C DEC 9 2000 01:45:38 NODAL SOLUTION STEP=1 SUB =1 TIME=1 SY (AVG) RSYS=0 PowerGraphics EFACET=1 AVRES=Mat DMX =.306E-05 SMN =-1375 SMX =3021 A =-1131 B =-642.366 C =-153.896 D =334.573 E =823.042 F =1312 G =1800 H =2288 I =2777 DOUBLE LAP SHEAR JOINT SIMULATION DOUBLE LAP SHEAR JOINT SIMULATION τ σ
1 Y MN MX E E D F E E DEC 27 2000 21:00:07 NODAL SOLUTION STEP=1 SUB =1 TIME=1 SXY (AVG) RSYS=0 PowerGraphics EFACET=1 AVRES=Mat DMX =.147E-06 SMN =-1354 SMX =1354 A =-1203 B =-902.476 C =-601.65 D =-300.825 E =0 F =300.825 G =601.65 H =902.476 I =1203 1 Y I MN G G G G G G H H MX DEC 27 2000 21:01:55 NODAL SOLUTION STEP=1 SUB =1 TIME=1 SY (AVG) RSYS=0 PowerGraphics EFACET=1 AVRES=Mat DMX =.147E-06 SMN =-1160 SMX =391.478 A =-1074 B =-901.69 C =-729.268 D =-556.846 E =-384.423 F =-212.001 G =-39.578 H =132.844 I =305.266 Z X Z X SHEAR JOINT SIMULATION SHEAR JOINT SIMULATION τ σ
!5 678 9: ;6 <= 2 >?@ABCD EFGH G I$JK? LM NG ρ! " 9: ;6 #$$ % &$$ #$$ #$$ O P '$ $($$
!" #$% ' ()*!"#
!" #$ %& '( )* +, '% -./ '(
0 12 3 4 5 67 89 :;5 4<! = >? @& AB CD $ E F HIJJKIJLMNOP AG!"# QIJLL
R. S S $ % $ % ABT!&" UV 6 AB W X. AG YZ [ AB \UZ
!" #$% +,-./01 0123 3* * 456
Bonding length (L) Bonding thickness (t) - Bending stiffness - Damping ratio
! "#$%#$&%#$' (! "#%(#%&# ) Load 23 "4#! "( "* ( " +,-./-% 0 1
( ' & % $ # "!
&'())*+,-)+,. +,-)+,./ 012 34 5%67# 7# 72,-% 58 9: 9: ;6 ;6
Mechanical Design Lab. with Advanced Materials
!"# $%$& ' () * +, -. /) Mechanical Design Lab. with Advanced Materials
!" Mechanical Design Lab. with Advanced Materials
!" #$%& '( Mechanical Design Lab. with Advanced Materials
)$*)+,$,-. Mechanical Design Lab. with Advanced Materials
/01'2 3"45 (α), 01µ2 341σ2 5 µ = µ + κα µ = σ β ε = σ πε 6 1278 9: ;< * 0 =>?@ 1'278 AB 0?@ => CD# E F)G: H* -I 12J AB KL 6 FM 1'2 6 4?@ NO P; Mechanical Design Lab. with Advanced Materials
67 89 :;< 1= AB ;Q R* ()ST UV KL 6.W XO Y Z[\[][^_E `a 'Fb c CD# E dge -I1`af2 Mechanical Design Lab. with Advanced Materials
8 9: ;#<,-./ <=>? @A
Mechanical Design Lab. with Advanced Materials
!" #$ %& Mechanical Design Lab. with Advanced Materials
! %! " & " # $ '#(Ω$ ' % & #&$ µ Ω Ω %&!" #$ Mechanical Design Lab. with Advanced Materials
# "#$ 1 23 & '( ) *+,-. /0 ( + )! = π = ' *' #,$ = η = = ρ ( + )( )! = π! = ρ η ( ) π( + ) #$ 4 % ) *+ Mechanical Design Lab. with Advanced Materials
# "#$ η & & & *η. ) - & % & - *+.. ) ) - - = ε = = ( + ) π( + ) ( + ) + ε η π ε η + + ε + % #$ 4 & % & η! π Mechanical Design Lab. with Advanced Materials
= >? @ A>B >B BCD!EF 7GHIJ KLMN'MLOKLPNQ KLPNQ RS @A T
!" #$ %&' %&' ()
! "
"!
#$%&' ( ) *+, -./ 01 2)3 01 4 2!"##$ 56 % 2 &'(.789
:; %&' ( )# <= >?!#!"##$ # @ A 2 B CD :E )#<=! F6 G)H+@I J K; <L *!+# *+ M@N OP B CD Q 2 %&R S+T UV WX
YZ %,% [ \]^_ `ab Jc.' <= -./ W de $ )3 \] e3 ( <= \] % -fg )# W de #-,# e3 ( <= G)H+@I Jh i<= K;<L*!+# *+M @N OP G)H+@I $j ku? lcmq
n8o p qr )> st u *+M @N OP )# <= = j lc $v 2w st x : G)H+@I Jyz -./..*../.. W de <=. { $ B )#"} )#/..-*. ~} )#/..-*. K;<L Jh -./- :
I@n ƒ V YZ..-*.0....-.. @N : -./-)# ˆh Š_ - [ Jh G)H+@I )> Œ + ( R 8Ž 2 y Œ = s;- 8- -
= >? @ A>B >B ' R[\ ] ^U_ `,UaJF JF bc d:
Mechanical Design Lab. with Advanced Materials
!"#$% &"%'()$*$ +,-&'$#'*.#$ Mechanical Design Lab. with Advanced Materials
!"# $% &' ( )' --> Mechanical Design Lab. with Advanced Materials
!"!"#$%/ 0 = + + Mechanical Design Lab. with Advanced Materials
!"!"#$%/0 ω = = # + = + $% ω =!" = Mechanical Design Lab. with Advanced Materials
!" &"%'()$*$/ 0 *+ $#(*/1230425 1+ 12,+ (425 1+ Mechanical Design Lab. with Advanced Materials
!" &"%'()$*$/0 -+ 67('*($%.$(%#$)425 1+ 22.+ 67('*($(%#$)425 1+ 22 Mechanical Design Lab. with Advanced Materials
!",+ +,-&'$#'*.#$/ 0 *+ $#(*/1230425 1+ 12,+ (425 1+ Mechanical Design Lab. with Advanced Materials
!",+ +,-&'$#'*.#$/0 -+ 67('*($%.$(%#$).+ 67('*($(%#$)!!""# $" "#$%&'()* '()*+,-./ &% & % % % & % Mechanical Design Lab. with Advanced Materials
= >? @ A>B >B + efghn+ipflm efghn+ipflm,u ajf JF WE WE ^U_ jkl m
( )
( )! " ± ± ± ± ± ± ±
!!"!#
:!"# $% $% & '() *+, -. /01 23456 : 9 kg/set 78 9:; 23 456 : 7 kg/set (23% weight reduction) '( <= : 4-Point >? @( (KS StandardA B@)
:!"# #$%&' () 14 3.0 12 10 2.5 2.0 Force (kn) 8 6 4 2 Force (kn) 1.5 1.0 0.5 0 0 2 4 6 8 10 12 Displacement (mm) 0.0 0.0 0.5 1.0 1.5 2.0 Displacement (mm)
: Mass Euro-form Prototype #1 Steel Beam 11.5 kg 8.85 kg Plate 5 kg 5.45 kg Total 16.5 kg 14.3 kg (13% weight reduction) Composite Ply wood Photograph of the prototype #1 Section of the steel frame Sandwich panel
: Mass Euro-form Prototype #2 Steel Beam 11.5 kg 9.95 kg Plate 5 kg 5.45 kg Total 16.5 kg 15.4 kg (7% weight reduction) Photograph of the Prototype #2
1. Sandwich Panel ) *+ : RTM, -. Co-cure 2. Sandwich Panel $% /0 /0 *+ : RTM, -12 /0 /0