Trigonometry (4A) Trigonometric Identities. Young Won Lim 1/2/15

Σχετικά έγγραφα
Trigonometry Functions (5B) Young Won Lim 7/24/14

CORDIC Background (4A)

CORDIC Background (2A)

Sampling Basics (1B) Young Won Lim 9/21/13

Digital Signal Octave Codes (0B)

Spectrum Representation (5A) Young Won Lim 11/3/16

BandPass (4A) Young Won Lim 1/11/14

CT Correlation (2B) Young Won Lim 8/15/14

CRASH COURSE IN PRECALCULUS

Section 7.7 Product-to-Sum and Sum-to-Product Formulas

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

If we restrict the domain of y = sin x to [ π 2, π 2

LTI Systems (1A) Young Won Lim 3/21/15

PARTIAL NOTES for 6.1 Trigonometric Identities

Trigonometric Formula Sheet

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Anti-aliasing Prefilter (6B) Young Won Lim 6/8/12

MathCity.org Merging man and maths

Chapter 6 BLM Answers

Section 8.3 Trigonometric Equations

CBC MATHEMATICS DIVISION MATH 2412-PreCalculus Exam Formula Sheets

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Εγχειρίδιο Ψαριού i. Εγχειρίδιο Ψαριού

TRIGONOMETRIC FUNCTIONS

10/3/ revolution = 360 = 2 π radians = = x. 2π = x = 360 = : Measures of Angles and Rotations

2 2 2 The correct formula for the cosine of the sum of two angles is given by the following theorem.

Section 7.6 Double and Half Angle Formulas

Homework#13 Trigonometry Honors Study Guide for Final Test#3

Inverse trigonometric functions & General Solution of Trigonometric Equations

Review-2 and Practice problems. sin 2 (x) cos 2 (x)(sin(x)dx) (1 cos 2 (x)) cos 2 (x)(sin(x)dx) let u = cos(x), du = sin(x)dx. = (1 u 2 )u 2 ( du)

Areas and Lengths in Polar Coordinates

Trigonometry 1.TRIGONOMETRIC RATIOS

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

7. TRIGONOMETRIC RATIOS, IDENTITIES AND EQUATIONS 1. INTRODUCTION 2. TRIGONOMETRIC FUNCTIONS (CIRCULAR FUNCTIONS)

Differential equations

TRIGONOMETRY:+2.1++Degrees+&+Radians+ Definitions:* 1*degree*/* ** * 1*radian* * * *

is like multiplying by the conversion factor of. Dividing by 2π gives you the

Fourier Analysis of Waves

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

1. If log x 2 y 2 = a, then dy / dx = x 2 + y 2 1] xy 2] y / x. 3] x / y 4] none of these

2 2 2 The correct formula for the cosine of the sum of two angles is given by the following theorem.

ΛΟΓΙΣΜΟΣ Συναρτήσεων µιας Μεταβλητής

Derivations of Useful Trigonometric Identities

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

Rectangular Polar Parametric

F-TF Sum and Difference angle

MATH 150 Pre-Calculus

derivation of the Laplacian from rectangular to spherical coordinates

% APPM$1235$Final$Exam$$Fall$2016$

Answer sheet: Third Midterm for Math 2339

Chapter 7 Analytic Trigonometry

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Review Exercises for Chapter 7

ΑΛΕΞΑΝΔΡΟΣ ΠΑΛΛΗΣ SCHOOLTIME E-BOOKS

ExpIntegralE. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation

Math221: HW# 1 solutions

Areas and Lengths in Polar Coordinates

10.4 Trigonometric Identities

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Equations. BSU Math 275 sec 002,003 Fall 2018 (Ultman) Final Exam Notes 1. du dv. FTLI : f (B) f (A) = f dr. F dr = Green s Theorem : y da

Radians/Arc+Length+++! Converting++Between++Radians++and++Degrees+

Γενικά Μαθηματικά Ι. Ενότητα 16: Ολοκλήρωση Τριγωνομετρικών Συναρτήσεων, Γενικευμένα Ολοκληρώματα Λουκάς Βλάχος Τμήμα Φυσικής

Solution to Review Problems for Midterm III

26 28 Find an equation of the tangent line to the curve at the given point Discuss the curve under the guidelines of Section

Note: Please use the actual date you accessed this material in your citation.

Lifting Entry (continued)

Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation. Mathematica StandardForm notation

Principles of Mathematics 12 Answer Key, Contents 185

Section 8.2 Graphs of Polar Equations

Notations. Primary definition. Specific values. General characteristics. Series representations. Traditional name. Traditional notation

f (x + h) f (x) h f (x) = lim h 0 f (z) f (x) z x df (x) dx, df dy dx,

d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n 1

COMPLEX NUMBERS. 1. A number of the form.

1 Adda247 No. 1 APP for Banking & SSC Preparation Website:store.adda247.com

AREAS AND LENGTHS IN POLAR COORDINATES. 25. Find the area inside the larger loop and outside the smaller loop

Περισσότερα+για+τις+στροφές+

Sum of Two Sinusoids by Richard (Rick) Lyons

Homework 8 Model Solution Section

Ένδειξη Γλώσσας Πληκτρολογίου

Paper Reference. Paper Reference(s) 6665/01 Edexcel GCE Core Mathematics C3 Advanced. Thursday 11 June 2009 Morning Time: 1 hour 30 minutes

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

(a,b) Let s review the general definitions of trig functions first. (See back cover of your book) sin θ = b/r cos θ = a/r tan θ = b/a, a 0

Παράγωγος πραγματικής συνάρτησης

Spherical Coordinates

Section 9.2 Polar Equations and Graphs

CHAPTER 70 DOUBLE AND TRIPLE INTEGRALS. 2 is integrated with respect to x between x = 2 and x = 4, with y regarded as a constant

Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and

ΜΑΣ002: Μαθηματικά ΙΙ ΑΣΚΗΣΕΙΣ (για εξάσκηση)

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

DIFFERENTIATION OF TRIGONOMETRIC FUNCTIONS

Ελεύθερο Λογισμικό / Λογισμικό Ανοικτού Κώδικα

The Project Gutenberg EBook of Gerodimos Pamphletes, by Argyris Eftaliotis

ΤΡΟΠΟΣ ΑΡΙΘΜΗΤΙΚΗ ΠΑΡΕΜΒΟΛΗ (INTERPOL ATION)

The Nottingham eprints service makes this work by researchers of the University of Nottingham available open access under the following conditions.

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός

Review of Single-Phase AC Circuits

Εγχειρίδιο Sticky Notes i. Εγχειρίδιο Sticky Notes

Strain gauge and rosettes

CAMI Wiskunde: Graad 10

Transcript:

Trigonometry (4 Trigonometric Identities 1//15

Copyright (c 011-014 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1. or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no ack-cover Texts. copy of the license is included in the section entitled "GNU Free Documentation License". Please send corrections (or suggestions to youngwlim@hotmail.com. This document was produced by using OpenOffice and Octave. 1//15

Co-function Identities cos( π α = sin α y x, y sin( π α = cos α 1 π α x 1 tan( π α = cot α cot ( π α = tan α csc( π α = sec α sin = y cos( π α sec( π α = sec α cos = x sin( π α tan = y / x cot( π α Trigonometric Identities 3 1//15

ngle Sum and Difference Identities (1 sin (60 + 30 = 1 1 y π α x x, y 1 sin (60 = 3 cos(60 = 1 3 3 + 1 1 = 1 sin (30 = 1 cos(30 = 3 sin (60 30 = 1 sin(α + β = sin α cosβ + cos α sinβ sin(α β = sin α cosβ cos α sinβ sin (60 = 3 cos(60 = 1 sin (30 = 1 cos(30 = 3 3 3 1 1 = 1 Trigonometric Identities 4 1//15

ngle Sum and Difference Identities ( cos(30 + 60 = 0 1 y π α x x, y 1 sin (60 = 3 cos(60 = 1 3 1 1 3 = 0 sin (30 = 1 cos(30 = 3 cos(α + β = cosα cosβ sin α sin β cos(α β = cosα cosβ + sin α sin β cos(30 60 = 3 sin (60 = 3 cos(60 = 1 sin (30 = 1 cos(30 = 3 3 1 + 1 3 = 3 Trigonometric Identities 5 1//15

ngle Sum and Difference Identities (3 tan(30 + 60 = + 1 y π α x x, y 1 tan(30 = 1 3 tan(60 = 3 1 3 + 3 1 1 3 3 = + tan(60 = 3 tan(30 = 1 3 tan(α + β = tan(α β = tan(α + tan(β 1 tan(αtan(β tan(α tan(β 1 + tan(αtan(β tan(30 60 = 1 3 tan(30 = 1 3 tan(60 = 3 1 3 3 1 + 1 3 3 = 1 3 tan(60 = 3 tan(30 = 1 3 Trigonometric Identities 6 1//15

ngle Sum and Difference Identities (4 sin(α + β = sin α cosβ + cos α sinβ sin(α β = sin α cosβ cos α sinβ sin α sin β sin α sin β cos α cosβ cos α cosβ cos(α + β = cosα cosβ sin α sin β cos(α β = cosα cosβ + sin α sin β sin α sin β sin α sin β cos α cosβ cos α cosβ sin(α + β cos(α + β = sin α cosβ + cos α sin β cosα cosβ sin α sin β sin(α β cos(α β = sin α cosβ cos α sin β cosα cosβ + sin α sin β tan(α + β = tan(α + tan(β 1 tan(αtan(β tan(α β = tan(α tan(β 1 + tan(αtan(β Trigonometric Identities 7 1//15

Product to Sum (1 + sin(α + β = sin α cosβ + cos α sinβ + sin(α + β = sin α cosβ + cos α sinβ + sin(α β = sin α cosβ cos α sinβ sin(α β = sin α cosβ cos α sinβ sin(α + β + sin(α β = sin α cosβ sin(α + β sin(α β = cosα sin β sin α cosβ = 1 {sin(α + β + sin(α β} cos α sinβ = 1 {sin(α + β sin(α β} + cos(α + β = cosα cosβ sin α sin β + cos(α β = cosα cosβ + sin α sin β + cos(α + β = cosα cosβ sin α sin β cos(α β = cosα cosβ + sin α sin β cos(α + β + cos(α β = cosα cosβ cos(α + β + cos(α β = sin αsin β cos α cosβ = 1 {+ cos(α + β + cos(α β} sin α sin β = 1 { cos(α + β + cos(α β} Trigonometric Identities 8 1//15

Product to Sum ( sin(α ± β = sinα cosβ ± cos α sinβ sin(α + β = sin α cosβ + cos α sinβ sin(α β = sin α cosβ cos α sinβ cos(α ± β = cosα cosβ sin α sin β cos(α + β = cosα cosβ sin α sin β cos(α β = cosα cosβ + sin α sin β sin α cosβ = 1 {sin(α + β + sin(α β} sin α cosβ = 1 {+ sin(α + β + sin(α β} cos α sinβ = 1 {+ sin(α + β sin(α β} cos α cosβ = 1 {+ cos(α + β + cos(α β} cos α cosβ = 1 {+ cos(α + β + cos(α β} sin α sin β = 1 { cos(α + β + cos(α β} Trigonometric Identities 9 1//15

ngle sum and difference identities http://en.wikipedia.org/wiki/derivative Trigonometric Identities 10 1//15

Double ngle Formula http://en.wikipedia.org/wiki/derivative Trigonometric Identities 11 1//15

Triple-angle formulae http://en.wikipedia.org/wiki/derivative Trigonometric Identities 1 1//15

Half-angle formulae http://en.wikipedia.org/wiki/derivative Trigonometric Identities 13 1//15

Power-reduction formula http://en.wikipedia.org/wiki/derivative Trigonometric Identities 14 1//15

Product-to-sum http://en.wikipedia.org/wiki/derivative Trigonometric Identities 15 1//15

Sum-to-product http://en.wikipedia.org/wiki/derivative Trigonometric Identities 16 1//15

Euler's Formula e i θ = cos(θ + i sin(θ i( + e = cos( + + i sin ( + e i e i = (cos( + i sin( (cos( + i sin ( = [cos(cos( sin ( sin(] + i[cos( sin( + sin( cos(] sin( + = sin( cos( + cos( sin ( cos( + = cos( cos( sin( sin( Trigonometric Identities 17 1//15

Sin( angle sum and difference sin ( + sin ( sin( sin (cos( cos( sin ( cos( cos( sin ( sin ( sin ( sin (cos( cos( sin ( cos( cos( Trigonometric Identities 18 1//15

Cos( angle sum and difference cos( + sin ( sin( cos( cos( sin( sin ( cos( cos( cos( sin( sin ( cos( cos( + sin( sin( cos( cos( Trigonometric Identities 19 1//15

Product to Sum : sin cos sin ( + +sin ( sin( sin( sin ( sin( cos( cos( cos( cos( sin( + + sin( sin( cos( Trigonometric Identities 0 1//15

Product to Sum : cos sin sin( + sin( cos( sin( sin ( + sin( sin ( sin( sin ( sin( cos( cos( cos( cos( Trigonometric Identities 1 1//15

Product to Sum : cos cos cos( + +cos( sin ( sin( sin ( sin( cos( cos( cos( cos( cos( + + cos( cos( cos( Trigonometric Identities 1//15

Product to Sum : sin sin cos( + cos( sin( sin( cos( + + cos( +sin( sin( cos( + cos( sin ( sin( sin ( sin( cos( cos( cos( cos( Trigonometric Identities 3 1//15

Product to Sum sin ( + +sin ( sin( sin( sin ( sin( cos( cos( cos( cos( sin ( + sin( sin ( sin( sin ( sin( cos( cos( cos( cos( Trigonometric Identities 4 1//15

Product to Sum cos( + +cos( sin ( sin( sin ( sin( cos( cos( cos( cos( cos( + cos( sin ( sin( sin ( sin( cos( cos( cos( cos( Trigonometric Identities 5 1//15

Sum and Difference + = X = Y X +Y = ++ = X Y = + + = Trigonometric Identities 6 1//15

Product to Sum sin (X +sin (Y sin ( X +Y sin( X Y sin ( X +Y sin ( X Y cos( X +Y cos( X Y cos( X +Y cos( X Y X +Y X Y X +Y X Y sin (X sin(y sin ( X +Y sin( X Y sin ( X +Y sin ( X Y cos( X +Y cos( X Y cos( X +Y cos( X Y X +Y X Y X +Y X Y Trigonometric Identities 7 1//15

Product to Sum cos(x +cos(y sin ( X +Y sin( X Y sin ( X +Y sin ( X Y cos( X +Y cos( X Y cos( X +Y cos( X Y X +Y X Y X +Y X Y cos(x cos(y sin ( X +Y sin( X Y sin ( X +Y sin ( X Y cos( X +Y cos( X Y cos( X +Y cos( X Y X +Y X Y X +Y X Y Trigonometric Identities 8 1//15

Product-to-Sum & Sum-to-Product SUM sin( + + sin( sin( cos( sin( + sin( cos( sin( cos( + + cos( cos( cos( cos( + + cos( sin( sin( SUM PRODUCT PRODUCT sin(x + sin(y sin( X +Y cos( X Y sin(x sin(y cos( x+y X Y sin( cos(x + cos(y cos( X +Y cos( X Y cos( X + cos(y sin( X +Y sin( X Y Trigonometric Identities 9 1//15

References [1] http://en.wikipedia.org/ [] http://planetmath.org/ [3] litzer, R. lgebra & Trigonometry. 3rd ed, Prentice Hall [4] Smith, R. T., Minton, R.. Calculus: Concepts & Connections, Mc Graw Hill [5] 홍성대, 기본 / 실력수학의정석, 성지출판 1//15