Wind_Loads, HW_2 1. θ 32.6

Σχετικά έγγραφα
APPENDIX 1: Gravity Load Calculations. SELF WEIGHT: Slab: 150psf * 8 thick slab / 12 per foot = 100psf ROOF LIVE LOAD:


Radio détection des rayons cosmiques d ultra-haute énergie : mise en oeuvre et analyse des données d un réseau de stations autonomes.

HONDA. Έτος κατασκευής

ITU-R BT ITU-R BT ( ) ITU-T J.61 (

ο3 3 gs ftffg «5.s LS ό b a. L Μ κ5 =5 5 to w *! .., TJ ο C5 κ .2 '! "c? to C φ io -Ρ (Μ 3 Β Φ Ι <^ ϊ bcp Γί~ eg «to ιο pq ΛΛ g Ό & > I " CD β U3

ITU-R P (2009/10)

20/01/ of 8 TOW SSD v3. C 2.78AC Σ Cumul. A*C. Tc 1 =A14+1 =B14+1 =C14+1 =D14+1 =E14+1 =F14+1 =G14+1 =H14+1 =I14+1 =J14+1 =K14+1

ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ

Q π (/) ^ ^ ^ Η φ. <f) c>o. ^ ο. ö ê ω Q. Ο. o 'c. _o _) o U 03. ,,, ω ^ ^ -g'^ ο 0) f ο. Ε. ιη ο Φ. ο 0) κ. ο 03.,Ο. g 2< οο"" ο φ.

Dissertation Title: The Genealogy of the Seleucids: Seleucid Marriage, Succession, and Descent Revisited

CONSULTING Engineering Calculation Sheet

Chapter 6 BLM Answers

Lisun Electronics Inc. Tel:+86(21)

Łs t r t rs tø r P r s tø PrØ rø rs tø P r s r t t r s t Ø t q s P r s tr. 2stŁ s q t q s t rt r s t s t ss s Ø r s t r t. Łs t r t t Ø t q s

5 Ι ^ο 3 X X X. go > 'α. ο. o f Ο > = S 3. > 3 w»a. *= < ^> ^ o,2 l g f ^ 2-3 ο. χ χ. > ω. m > ο ο ο - * * ^r 2 =>^ 3^ =5 b Ο? UJ. > ο ο.

Couplage dans les applications interactives de grande taille

FACTORY DIRECT LIGHTING

P = {present, notpresent} M = {left, right}

Proses = 0 / 0 Proses = 0 / 36 16" 4576 / 2.3 Barat : 4833 / Utara : 5941 / 3.05 Proses = 63 / 37 Flow : 9936 / 3.2

Solving an Air Conditioning System Problem in an Embodiment Design Context Using Constraint Satisfaction Techniques

Math 6 SL Probability Distributions Practice Test Mark Scheme

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

ο ο 3 α. 3"* > ω > d καΐ 'Ενορία όλις ή Χώρί ^ 3 < KN < ^ < 13 > ο_ Μ ^~~ > > > > > Ο to X Η > ο_ ο Ο,2 Σχέδι Γλεγμα Ο Σ Ο Ζ < o w *< Χ χ Χ Χ < < < Ο

Transfert sécurisé d Images par combinaison de techniques de compression, cryptage et de marquage

(... )..!, ".. (! ) # - $ % % $ & % 2007

P10. Specifications. True Spectrum /60Hz UL Standard Output Voltage-Less than 48V DC. Illumination (3feet):

(x y) = (X = x Y = y) = (Y = y) (x y) = f X,Y (x, y) x f X

Ε.Ε. Παρ. I(II) Αρ. 3887,

P r s r r t. tr t. r P

ΓΗΣ ΕΠΙΣΗΜΟΥ ΕΦΗΜΕΡΙΔΟΣ ΤΗΣ ΔΗΜΟΚΡΑΤΙΑΣ ύττ* *Αρ. 870 της 23ης ΑΠΡΙΛΙΟΥ 1971 ΝΟΜΟΘΕΣΙΑ

LEM. Non-linear externalities in firm localization. Giulio Bottazzi Ugo Gragnolati * Fabio Vanni

Luminaire Property. Photometric Results. Tel: Page 1 of 39 Pages. Report No.: Test Time: :51

Περικλέους Σταύρου Χαλκίδα Τ: & F: chalkida@diakrotima.gr W:

ΣYΣKEYEΣ ΘEPMIKΩN ΔIEPΓAΣIΩN

Journal of the Institute of Science and Engineering. Chuo University

5.0 DESIGN CALCULATIONS

Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté

Forêts aléatoires : aspects théoriques, sélection de variables et applications

❷ s é 2s é í t é Pr 3

Luminaire Property. Photometric Results. Page 1 of 35 Pages. Report No.: Test Time: :26. Luminaire Manufacturer: Power Factor: 0.

Weight [lb] = (Do-t)*π*L*t*40.84/ (60-1)*3.1416*100*1*40.84/144 = (20000*1*1)/(29+0.6*1) = Pipe and Shell ver 4.

SMD Wire Wound Ferrite Chip Inductors - LS Series. LS Series. Product Identification. Shape and Dimensions / Recommended Pattern LS0402/0603/0805/1008

ΔΚΣΙΜΗΗ ΣΗ ΔΓΑΦΙΚΗ ΑΠΩΛΔΙΑ Δ ΛΔΚΑΝΗ ΑΠΟΡΡΟΗ ΣΔΥΝΗΣΟΤ ΣΑΜΙΔΤΣΗΡΑ ΜΔ ΣΗ ΥΡΗΗ GIS. ΠΙΛΟΣΙΚΗ ΔΦΑΡΜΟΓΗ ΣΗ ΛΙΜΝΗ ΣΟΤ ΜΑΡΑΘΩΝΑ ΑΣΣΙΚΗ

Το άτομο του Υδρογόνου

M p f(p, q) = (p + q) O(1)

Modèles de représentation multi-résolution pour le rendu photo-réaliste de matériaux complexes

Contribution à l évolution des méthodologies de caractérisation et d amélioration des voies ferrées

RECIPROCATING COMPRESSOR CALCULATION SHEET

6.4 Superposition of Linear Plane Progressive Waves

Smaller. 6.3 to 100 After 1 minute's application of rated voltage at 20 C, leakage current is. not more than 0.03CV or 4 (µa), whichever is greater.

!"!# ""$ %%"" %$" &" %" "!'! " #$!

ACI sécurité informatique KAA (Key Authentification Ambient)

Cable Systems - Postive/Negative Seq Impedance

ΚΕΦΑΛΑΙΟ 2. Περιγραφή της Κίνησης. 2.1 Κίνηση στο Επίπεδο

(METERS) FORWARD SOLAR ILLUMINATIONS SL02 (WMK) SOLAR HIGH-LUX STREET LIGHT

Assessment of otoacoustic emission probe fit at the workfloor

Luminaire Property. Photometric Results. Page 1 of 35 Pages. Report No.: Test Time: :11. Luminaire Manufacturer: Power Factor: 0.

ITU-R P (2012/02) &' (

Surface Mount Multilayer Chip Capacitors for Commodity Solutions

Robust Segmentation of Focal Lesions on Multi-Sequence MRI in Multiple Sclerosis

ITU-R P (2009/10)

Network Neutrality Debate and ISP Inter-Relations: Traffi c Exchange, Revenue Sharing, and Disconnection Threat

Annulations de la dette extérieure et croissance. Une application au cas des pays pauvres très endettés (PPTE)

1. Από την αρχική σελίδα του web site του ΙΚΑ επιλέγετε την ελληνική σημαία για να εισέλθετε στην κεντρική σελίδα του ΙΚΑ.

Ανταλλακτικά για Laptop Lenovo

Multilayer Ceramic Chip Capacitors

Fin coil calculation with NTU

ΠΑΡΑΡΤΗΜΑ ΠΡΩΤΟΝ. ΤΗΣ ΕΠΙΣΗΜΟΥ ΕΦΗΜΕΡΙΔΟΣ ΤΗΣ ΔΗΜΟΚΡΑΤΙΑΣ υπ* Άρ. 932 της 14ης ΑΠΡΙΛΙΟΥ 1972 ΝΟΜΟΘΕΣΙΑ

Transformations d Arbres XML avec des Modèles Probabilistes pour l Annotation

Luminaire Property. Photometric Results. Page 1 of 35 Pages. Report No.: Test Time: :02

Luminaire Property. Photometric Results. Page 1 of 35 Pages. Report No.: Test Time: :40

Multilayer Ceramic Chip Capacitors

d 2 y dt 2 xdy dt + d2 x

50 Hz n= 1450 rpm. Standardised EN 733 centrifugal pumps. PERFORMANCE RANGE Flow rate up to 3000 l/min (180 m³/h) Head up to 24 m INSTALLATION AND USE

Data sheet Thin Film Chip Inductor AL Series


r t t r t t à ré ér t é r t st é é t r s s2stè s t rs ts t s

DATA SHEET Surface mount NTC thermistors. BCcomponents

&+, + -!+. " #$$% & # #'( # ) *

Calculating the propagation delay of coaxial cable

St. Louis County Masterplan

ΑΣΥΓΧΡΟΝΕΣ ΜΗΧΑΝΕΣ ΑΣΥΓΧΡΟΝΟΣ ΚΙΝΗΤΗΡΑΣ ΜΕ ΔΑΚΤΥΛΙΟΦΟΡΟ ΡΟΤΟΡΑ. Σύστημα ανύψωσης ψηκτρών. Ρότορας κινητήρα με δακτυλίδια

Parts Manual. Trio Mobile Surgery Platform. Model 1033

Points de torsion des courbes elliptiques et équations diophantiennes

LUMINAIRE PHOTOMETRIC TEST REPORT

ΕΠΙΣΗΜΗ ΕΦΗΜΕΡΙΔΑ ΤΗΣ ΚΥΠΡΙΑΚΗΣ ΔΗΜΟΚΡΑΤΙΑΣ ΚΥΡΙΟ ΜΕΡΟΣ ΤΜΗΜΑ Γ

3607 Ν. 7.28/88. E.E., Παρ. I, Αρ. 2371,

No Item Code Description Series Reference (1) Meritek Series CRA Thick Film Chip Resistor AEC-Q200 Qualified Type

LUMINAIRE PHOTOMETRIC TEST REPORT

r r t r r t t r t P s r t r P s r s r r rs tr t r r t s ss r P s s t r t t tr r r t t r t r r t t s r t rr t Ü rs t 3 r r r 3 rträ 3 röÿ r t

Hygromécanique des panneaux en bois et conservation du patrimoine culturel. Des pathologies... aux outils pour la conservation

!!" #7 $39 %" (07) ..,..,.. $ 39. ) :. :, «(», «%», «%», «%» «%». & ,. ). & :..,. '.. ( () #*. );..,..'. + (# ).

ΕΓΚΟΛΠΙΟ e-ιπταµένου 322M e-haf 22/11/08 VERSION 1.0

ΠΑΡΑΡΤΗΜΑ ΠΡΩΤΟΝ ΝΟΜΟΘΕΣΙΑ

Second Order RLC Filters

LUMINAIRE PHOTOMETRIC TEST REPORT

LUMINAIRE PHOTOMETRIC TEST REPORT

E.E., Παρ. I, 767 Ν. 39/83 Αρ. 1871,

Transcript:

Wind_Loads, HW_2 1 Risk Category and Basic Wind Speed Wind Borne Debris Region (WBDR): RC IV Essential facilities (e.g. fire, police, hospitals) Figure to use for wind velcity in Wind Borne Debris Region, V WBDR Health V 180 mph From Figure 26.5-1B, MRI = 1700 yrs Care IF: RC = IV OR Facility Then Use Figure for V WBDR: TRUE FALSE 26.5-1B, MRI = 1700 yrs Bldg Dimensions: ELSE IF: RC = II or III K d 0.85 FALSE 26.5-1A, MRI = 700 yrs L 25 ft B 50 ft Health_Care_Facility FALSE h e 25 ft Use Fig. 26.5-1B, MRI = 1700 yrs h ridge 33 ft V WBDR 160 mph o θ 32.6 = ATAN( ( h ridge - h e ) / ( L / 2 ) ) * 180 / PI() Near_Coast TRUE within 1 mi of coastal high-water line h 29 = AVERAGE( h e, h ridge ) WBDR TRUE = OR( V WBDR >= 140, AND( V WBDR >= 130, Near_Coast ) ) Enclosure Classification Areas of Walls (Ag) and Openings (Ao): OPEN FALSE - - - - - - - - - - - - - - - - - - - Wall - - - - - - - - - - - - - - - - - - - - - PARTIALLY_ENCLOSED TRUE Upwind Downwind Left Side Right Side Roof Total A o 128 sf = 2 * L / 2 / COS(θ * PI() / 180) * B Cond. 1 TRUE = A o > 1.1 * A oi Enclosure_Classification PARTIALLY ENCLOSED A g 1250 sf 1250 sf 725 sf 725 sf 1484 sf A gt 5434 sf A g 1250 sf Cond. 2 TRUE = A o > MIN( 4, 0.01 * A g ) A o 128 sf 56 sf 28 sf 28 sf 0 sf A ot 240 sf A oi 112 sf = A ot - A o Cond. 3 TRUE = A oi < 0.2 * A gi Internal Pressure Coefficient, G Cpi A o / A g 0.10 0.04 0.04 0.04 A gi 4184 sf = A gt - A g GC pi 0.55 A o / A g > 0.8 FALSE FALSE FALSE FALSE PARTIALLY_ENCLOSED TRUE = AND( Cond. 1, Cond. 2, Cond. 3 Gust Effect Factor, G Low_Rise FALSE = AND( h < 60, h < MIN( L, B ) ) Lower Bound of Natural Frequency, n a Eqns_valid TRUE = h < MIN( 300, 4 * L ) MWFRS other (average, not lower bound) n a 4.00 Hz = 1 / ( 0.02 * h^0.75 ) Calc. Nat. Freq. Rigid TRUE = OR( Low_Rise, n a >= 1 ) G 0.85 = IF( Rigid, 0.85, NA() ) Exposure Category: Surface_Roughness D Flat, unobstructed areas and water surfaces. Includes smooth mud flats, salt lats, and unbroken ice. d 1 20000 ft ft ft d 2 0 ft IF Surface Roughness AND d 1 >= AND d 2 <= THEN Exposure_Category d min_b 1500 ft = IF( h < 30, 1500, MAX( 2600, 20 * h ) ) d min_d 5000 ft = MAX( 5000, 20 * h ) B FALSE 1500 TRUE B FALSE d max_b,c 600 ft = MAX( 600, 20 * h ) D TRUE 5000 TRUE 600 TRUE D TRUE Exp_Cat D Exp. Cat: D = IF( B,, IF( D,, "C" ) ) Topographic Factor, Kzt: IF Distance to nearest upwind hill of ht H MIN( 100 * H, 2 *5280 ) feature Hill 20000 ft >= 0 TRUE H 0 ft L h 50 ft Ht of upwind upstructions 2 H 0 ft <= 0 TRUE x 0 ft pos DownWind Distance from Crest to Bldg L h 0 ft <= 50 TRUE H / L h 0.00 = MIN( 0.5, H / L h ) L h 50 = MAX( L h, 2 * H ) Height of Hill >= 0.2 * Lh K 1/(H/L h) 1.15 Fig. 26.8-1 0 ft 10 FALSE γ 4 Fig. 26.8-1 µ 1.5 Fig. 26.8-1 Height of Hill Min h = IF( Exp_Cat = "B", 60, 15 ) 0 ft >= 15 FALSE K 1 0 = K 1/(H/L h) * H / L h K 2 1.000 = 1 - x / ( µ * L h ) All_Cond's_Met FALSE

Wind_Loads, HW_2 2 he h Leeward Wall Pressure Coefficient "Flat Roofs" ( θ < 10 o ) z 15 25 29 ft L/B 0.5 Cp Roof for θ < 10 o K 3 0.301 1.000 1.000 0.135 0.098 = EXP( -γ * z / L h ) L/B Cp Reduction Factor (RF) for Cp = -1.3 h 25.0 ft = h e RF 0.85 1-0.5 h 25 ft = h e L 25 ft K zt 1.00 1.00 1.00 1.00 1.00 = ( 1 + K 1 * K 2 * K 3 )^2 2-0.3 B 50 ft h/l 1.00 = h / L h/2 13 K zt 1.00 1.00 1.00 1.00 1.00 = IF( All_Cond's_Met, K zt, 1 ) 4-0.2 A trib 625 sf = h/2 * B h 25 A trib RF 2h 50 row L/B Cp 100 1 Velocity Pressure Coefficient, Kz and Velocity Pressure, q lower 1 1-0.5 250 0.9 1. Negative Pressures α 11.5 1000 0.8 - - - Dist. from Windward Edge - - - z g 700 ft actual 0.50-0.50 h/l 0 - h/2 h/2 - h h - 2h > 2h row A trib RF 0.5-0.9-0.9-0.5-0.3 ft he h upper 1 1-0.5 lower 2 250 0.9 z 15 25 29 ft 1.00-1.11-0.70-0.70-0.70 K z 0.00 0.00 1.03 1.13 1.16 = 2.01 * ( z / z g )^(2/α) C p_lee_wall -0.50 actual 625 0.85 1-1.11-0.7-0.7-0.7 q 0.0 0.0 72.6 79.4 81.5 psf = 0.00256 * K zt * K z * K d * V^2 upper 3 1000 0.8 RF 0.85 - - - Dist. from Windward Edge - - - 0-13 13-25 25-50 > 50 ft MWFRS: Cp_FLAT_ROOF_1-1.11-0.70-0.70-0.70 G 0.85 h 29.0 ft L/B 0.50 = L / B GC pi 0.55 L 25 ft h/l 1.16 = h / L 2. Small Negative Pressures q z 80 psf B 50 ft q h 82 psf θ 32.6 o Cp_FLAT_ROOF_2-0.18 External Pressure Coefficients, Cp: "Pitched Roofs" ( θ >= 10 o ) Cp Roof for θ >= 10 o C p -.25,.20-0.60 h 29 ft h/l 1.16 = h / L Walls: Reduction Factor (RF) for Cp = -1.3 L 25 ft θ 32.62 degrees Windward 0.8 L 25 ft RF 0.85 Leeward -0.50 0.8-0.50 B 50 ft Negative Pressures Side -0.7 A trib 625 sf = L/2 * B Windward θ Leeward θ A trib RF h/l 10 15 20 25 30 35 45 60 10 15 20 Roof: 100 1 0.25-0.7-0.5-0.3-0.2-0.2 0-0.3-0.5-0.6 Pitched C p_2 250 0.9 0.5-0.9-0.7-0.4-0.3-0.2-0.2 0-0.5-0.5-0.6 Windward -0.25 0.20 1000 0.8 1-1.11-1 -0.7-0.5-0.3-0.2 0-0.7-0.6-0.6 Leeward -0.60 = (-1.3) * RF row A trib RF lower upper lower upper Flat - - - - - - - - C p_1 - - - - - - - - - - C p_2 lower 2 250 0.9 5 6 3 3 - - - Dist. from Windward Edge - - - h/l \ θ 30 32.62 35 20 32.62 20 0-13 13-25 25-50 > 50 ft -0.18 actual 625 0.85 lower 3 1-0.3-0.25-0.2-0.6-0.60-0.6-1.11-0.70-0.70-0.70 1.16-0.25-0.60 upper 3 1000 0.8 upper 3 1-0.3-0.25-0.2-0.6-0.60-0.6 RF 0.85 Cp_PITCHED_WINDWARD_1-0.25 Cp_PITCHED_LEEWARD -0.60 Design Wind Pressures, p: - - - +'ve Gcpi - - - - - - -'ve Gcpi - - - Positive Pressures Windward θ - - - - - - p, psf - - - - - - - - -62-87 59 3 h/l 10 15 20 25 30 35 45 60 +'ve GCpi -'ve GCpi 0.25-0.18 0 0.2 0.3 0.3 0.4 0.4 0.326 0.5-0.18-0.18 0 0.2 0.2 0.3 0.4 0.326 Walls: 9-80 100 10 1-0.18-0.18-0.18 0 0.2 0.2 0.3 0.326 Windward 9 100 Leeward -80 10 Side -94-4 lower upper 5 6 Roof: h/l \ θ 30 32.62 35 Pitched lower 3 1 0.2 0.20 0.2 Windward -62 59 1.16 0.20 use zero rather than interpolate between +'ve and -'ve values Leeward -87 3.3 upper 3 1 0.2 0.20 0.2 Flat - - - - - - - +'ve Gcpi - - - - - - - - - - - - - Dist. from Windward Edge - - - 0-13 13-25 25-50 > 50 ft -'ve GCpi Cp_PITCHED_WINDWARD_2 0.20-122 -94-94 -94-58

Wind_Loads, HW_2 3 C&C: Enclosure PARTIALLY ENCLOSED Gcpi 0.55 q h 82.0 psf θ 32.6 degrees L 25 ft a 2.5 ft = MIN( 0.1 * MIN( L, W ), 0.4 * h ) W 50 ft a min 3.0 ft = MIN( 0.4 * MIN( L, W), 3 ) h 29.0 ft a 3.0 ft = MAX( a, a min) Walls: (ft) GCp* (ft) (ft) Effective (sf) - - - - - - - - Surface - - - - - - - component Span Width Width A eff 4 & 5-4 -5 studs 15.00 1.33 5.00 75.00 0.85-0.95-1.09 sheathing 1.33 4.00 4.00 5.33 1.00-1.10-1.40 fastener 1.33 1.00 1.00 1.33 1.00-1.10-1.40 *from C&C GCp sheet Calc Wall p, psf GCp's - - - - - - - - Surface - - - - - - - component GCpi 4 & 5-4 -5 studs +'ve 24.2-122.6-134.6 = qh * (GCp - GCpi) -'ve 114.4-32.4-44.4 = qh * (GCp + GCpi) sheathing +'ve 36.9-135.3-159.9 -'ve 127.1-45.1-69.7 Wall Surfaces Roof Surfaces, θ <= 7 ο fastener +'ve 36.9-135.3-159.9 -'ve 127.1-45.1-69.7 Roof Surfaces, 7 ο < θ <= 27 ο Roof Surfaces, 27 ο < θ <= 45 ο Roof: overhang TRUE (ft) GCp* (ft) (ft) Effective (sf) - - - - - - - - Surface - - - - - - - component Span Width Width A eff 1, 2 & 3-1 -2-3 top chord 14.8 2.00 4.95 73.42 0.81-0.82-2.00-1.82 sheathing 2.00 4.00 4.00 8.00 0.90-1.00-2.00-2.00 fastener 2.00 1.00 1.00 2.00 0.90-1.00-2.00-2.00 *from C&C GCp sheet Calc Roof p, psf GCp's - - - - - - - - Surface - - - - - - - component GCpi 1, 2 & 3-1 -2-3 top chord +'ve 21.1-112.0-209.1-194.0 = qh * (GCp - GCpi) -'ve 111.3-21.8-118.9-103.8 = qh * (GCp + GCpi) sheathing +'ve 28.7-127.1-209.1-209.1 -'ve 118.9-36.9-118.9-118.9 fastener +'ve 28.7-127.1-209.1-209.1 -'ve 118.9-36.9-118.9-118.9

/+ rj S"h tj t ^* Pr*;s-**::,)r--#-#, I r\q,j{=&s r i t tlgf d,n*i uq #4BSLa* \S L-,6,, Cor--,^.p ef,,t.^^t*} * qn " J l*. S t-ruq J ) 7o? f'f t^ffil$ sil*e&-rc i F, rj a t\ :r ln**.{l*5, (o'<} grrfr Gr*IR$i\ L *; ], {rr$ i v^.*f r?*d $L*r: ^, o tp S L Fb t{ (J rj = lopyfirca-a3].g" +-,trgfogfrf) d= t*t&* B.?p,so t'f1 frf ar*sllyr,nq ^*f {lna3 s+q El }tf i' EJ.e. Ttr-- *p.e -to/z.c-, cja11.q.,p- = I 3oprf > rt? p r$ ff ' BearatruG txh \q fs* Ai* p^q3*^ L *-"J L(: {3 + ".Gt^) ) O l^e* mc \^on t. S s L") ryut-: TPeTte*{t

(r,r\! + G(f-; I *[ \.r sa*f tj,e[i aa *b ftt f*p s qfi efrfr ) Sn t tjdin* h3b"l p,f C.*Gp'f * r ffi 4ru*l{{ r,ffiqfl $S) *A^^" 3?, x L*,i"H,'., cqa. 3 a,b*.^yl G Cf.r I r-^r=rie =,c K*rrtliill)ri (srp,f -=;;' CJ Uio I gr3 I pr f.-' -o,t^t, frl ru dto\ H (s- Bqd\tr) W B. tr3?er\ 75', I rrl -(I6qqs.J '"''lo' sagp,f * ;*= toqtr'{ fncue-.l.ea t dlk Strf, s -tqffirq,.rqp{ trja}a}rfffii;*+#,* ;L w- er# *"r \a(.s<\=.ej 3':"*ff.P4#;Y"'\ ltil;i t,*l 1 7" inf tr,tl r t rp t i,..a, ^e^ " \.J, Tn^,lt =(i,,1 rrf)(,c' *,rr',[ f,,,,],: ]8.{ tt ^**-d \),,+6r ^,26. =3llt, r= '\ o.{ k t-\ r,t,}u I ci.^-q sho^h rraits, gj = rof { l6drrai\ hos.1.., E"d s,1"0 nn^jt!*nl qtq tk-rufi SLoo+{";.m \ t 1/ea rr tt ilrl,( *fi.f Otl # ri15s["'a*[* *-rrm #, t {*r*'k** *"& drnity ffi qu d{nn}tor.n^*. Fnt\ *-d5* G-' -r'q{"^r f I F*' i*rt<rrur $*"f#erfu]

b{r{ ser y\ r. \.r"jp "^"J J o* spf-b^,) <.F a^ap(u p.r[ltr.- ro t1 E" np -L {rf l"s,-j R*J.*r,\ tr-e," usd,io,**6 t;etp:t - tofrf] (ry * rt' ) * 61t'rrt rf.r.*n I 9llolt. " *.A E (ol(prf 7rf $i^616 q.^ *'y a ^ 6rl (ptf = t3saptf 1^s< B{-,nol(s q >r.l r', \2" ot, dia. \a.rr^^{,.\l- 4o -xd1es, i"rftr'a'l- -S4ucs*s - la{b(prf r s/sj' Ci*e f 0f qlr*.j, t(..rhad, *t t,d.n'itr o oi,'r I \J 0 sl,^ tse5hr ;[., Ls-*'e(: I Lr ffi i(d trbof"fl * qqp*f a Sytrrazt{- *"ts A f(o -' C! "q, ^ T^1 6*f T 71[o P( ] r^r-(e*[, t" * e/aa u.l h+.f'j ffi t\tlffp 6ertlfiunt& S[,n*ar d"t.( L*peLs I ffi (s3l61\f * 6') fp, fl) VtEi s{=$^4 6"d."i *t{ a.ypr #- t ffi i::: "41.. B \ Lt st)$f 4.t:#' h m' &" F Se,L[ F

a^.l. I,', p.t,fij**.j,.n^ ortth{* { inrij* o[ s$. ls o"^o.c q,3ft ry,.tso F.f t\.s< Id.,nait, e!l" gl^ pa"rj "q I 'j s:h^1 ^J - t^l ol\ gl"{"\ 15 : *),.tau r',r\,tr.$r 0o *tt J" B/8" * F f p(y *"oill, V(.r* to.e.j ^.t Bt runot,g B &enffi*eft l.]-tt c *e (n^ a[ t po^o( odtx],'n O*^<(-hS+fnkfl >. f,so l^5.-t #.L*il^,^l, dv xt <n'r l.avije q"^-d cr^ L q,.t c.,^\x l {,e- " F 'sf* {).