Łs t r t rs tø r P r s tø PrØ rø rs tø P r s r t t r s t Ø t q s P r s tr. 2stŁ s q t q s t rt r s t s t ss s Ø r s t r t. Łs t r t t Ø t q s

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Łs t r t rs tø r P r s tø PrØ rø rs tø P r s r t t r s t Ø t q s P r s tr. 2stŁ s q t q s t rt r s t s t ss s Ø r s t r t. Łs t r t t Ø t q s"

Transcript

1 Łs t r t rs tø r P r s tø PrØ rø rs tø P r s r t t r s t Ø t q s P r s tr st t t t Ø t q s ss P r s P 2stŁ s q t q s t rt r s t s t ss s Ø r s t r t P r røs r Łs t r t t Ø t q s r Ø r t t r t q t rs tø P r s r t 15 rs 2017 t r2 sø PrØs t r2 r ss r rs tø r r tr t Łs r ss r rs tø P r s r t P r s 7 rt r P st t tr Ør s rs tø P r s P r s 11 r t r t r r ss r rs tø s 1 t r tr Ør s rs tø P r s rt r r ss r rs tø rr t røs t s t

2 st t t t Ø t q s ss P r s rs tø P r s r t r rt st P r s t r P s ss P r s 1

3 Øs Ø Øs Ø s tt t Łs Øt Ø Ł s t rs s Ø r t rs r r rt s q ss s t 1 t s t s r r s q s t 2 q s r r t s s Łr Ł rs s r t t rt r t t Ø t r rs Ø t s t t q t str Ø s t str t st s Ør t t r t rt rtø Øt t r Ł s t rs r s Ø r s s s t r s s s tr rłs r trø q st Ø t r tr rt tr q s t Łt s s2stł s rt r s s Øt 1 s2stł s t rt r s 2 t t r t s s t t r Øs r r r tr r P r røs t t 1 s t s tø r Ø str t s r s Ø t r s st Ø ss r t tr r s t r t s 2 t r trłs Ø Ør s r Ø s s røs t ts s t Ø trøs t t 1 s2stł s t rt r s 2s t Ø Ø r r q r t tr t r s str t s s Łr s tr r t Øt s ts r t r s s st Ø s r t r t t t s 2s t Ø s t Øt s r s s Ør t r r ØtØ sø r tø t s t t Ø tr Ø t st Ø s s q r rt t s 2s s Ø r s 1trŒ s ts s Ør t rs Ø t r s s2stł s t rt r s ss s Ø r s s t r t s

4 t rt 3 t r s r r q t s2st s t r s r t t r t str t t s t s s st 2 r t rt s r r r t rs t r s 3 t s sts t 1 t 3 t t s 2 3 t rst s r t s r t t rt rs t s rt r t r t r t t s s r t t 2 str t t r t s r t2 str t t r s s t t t tt ts s tr s r r t rs 3 t r r s s t 2 s t t s tr t t r st s t t t t 3 t r s rt s2st s 1t s t t rt s2st s t s t 2 t r t t r tr r2 s r r r s t t s r t2 str t t t r r s r s ts r r 2 t t t t rt s2st s t r r 2 t s 2s s s s r str t s st t r t ts t r s s r t t s 2s s r r r s r s s t t s s r t s s st t 2s rt t r t 2s s 1tr r s 2 r s rs 3 t r r t rs t rt s2st s r s t r t

5 r ts t s 1 r r r t t r tr t Łs t t q r sø r Ł t Łs t r t r r Ø t r t t s s t s q tr r s s t t t rø s t s r r t t s r r s r r Ø t t r s r s s tø s t s Ø s t s ss s q r t t t Łs s s r s s t r ss r s tr r t r t rt s s 2 s t Ø ts t s ss 1 r r t t r t t rs tø P r s r t r r rs tø r P r s tø t rt r tø r t t r r t Ø t q s r r r Ø s t r r s r r s t r s r r Ø t s Ør ts r s s s r t tø r t t r r t Ø t q s t ss s Ør ts r s s s r t r st t t t Ø t q s ss P r s q t t rs ØtØ Ø t rs s t r ts s rt r r s s t s r t t q r t rs tø r t t r r t Ø t q s ss r st t P tr 3 t r t t q r t rs s ss r t r s r 2 t Ø s r tł t t q r t rs Ø t r r r st t P r s t st r r tr r t s r Øt r s r rts r s tr 1 t Łs t r r ss t t s s tr s rs s t t r r s Ør r t tø Œtr r r2 t Łs t s s r s r2 s t r r r ss s s t r ts st t t q tr

6 r t t r t s r r rs tt t r ss t q t ØtØ s r r s t r t s r s r r r r s tr s rs s rs tø s r s Ør ts t Ø r s s r s s s str t t r t q r t r t Ø t q s P r s tr

7 s t Łr s tr t t røs t t s røs t ts tr t PrØs t t s tr 1 t Łs 2 t Łs s Ø Ør s Øt r t s s tr 2s t Ø t rt r ss s Ø r s s t rs ss s Ø r s s t 2 q ss s Ø r s 2s t Ø t rt r t r t s t rs Łt t r t s t 2 q t r t t s 2s s s s t t s tr r s t q t s r t2 r st t s s s st t 2 rt 2 t r t s t rt t s 2 3 t t r s ss t s t r s ts ss t s r s ts t t rt t s 2s s s t s s rt t s t t rt t s t P rs P s

8 s t Łr s P rs s 1 rs s s st s r r s tr r r 1 t 3 t t r 2 r r 2 3 t t r s Pr r t rt 3 t r t 2 t r t s2st ss t s t r s ts ss t s r s ts 1 r 2 s r t r t t r t rt s2st t t t r t t r 2 t r t t rt s2st s t s t r r 2 s r t 2 t r t s2st Pr r Pr r 1 r2 r s ts r r t rs rt s s t s r rt s t r t rs s ts r t s rt t r2 r 3 t 1 s r

9 tr tr t t røs t t s røs t ts tr t Ø q q t q Ø t t r rt r røs tø r Øt t ψ st r Ø r Øq t r r i t ψ = H(1) ψ, ø H (1) st t Ø t r H (1) = ~2 2m + V, ss t s r H = 2 (R d ) 2 (Z d ) Ø s t Ø r Øt q rt t V st t t Ø r t str t r 2s q s2stł t ss t Ør t r t t r t V (x) s s t s Øq t s t r ψ(t) = e ith (1) ψ 0 ψ(0) = ψ 0. s r Ø r r rt t s Øt ts ψ(t) st t 2s r s r r ØtØs s tr s Ør t r H (1) s t 2s st t ~2 2m r t t st t s s r ~2 2m = 1 P r s s2stł s r t t r Øs t t s Ør q s V (x x 0 ) = V (x) r t t x Z d R d t rt x 0 Z d 1Ø st Øt t s q s tr Ør t r r r H (1) st s t t t st t Ø s s s rt Ø r t s t t s t røs Øs r r t s ts rt rs s r s rt s q t q s P r s Ø r r P rs tr t Ł

10 tr tr t t røs t t s røs t ts q rt s t q r 1 2s q Ł r s s Ł rs Øs r r st r s t r r tłr Ø t r t t 1t r V s r 1 t rt r st Ø r t r Ør t r r r Ø t r H (1) (ω) = + V (x, ω), ss t s r Ψ = Ψ(x) 2 (Z d ) t ø {V (x, ω)} st t Ø t r rs Ø t s t t q t str Ø s r t s r sø (Ω, B, P) Ø Ł rt t q r t r s Ør t rs H (1) (ω) st s t rs q s tr t r røs s tr r t t Ø r ss 1 t s t s r r s tr r r ØtØ s rt t trłs tør ss t s s r t Ø t t r s2stł st s t 2 q q 1 r t q rt r st trø s r r Ø t t s r q s H s Ø s H = H pp H c = H pp H ac H sc ø H pp H c H ac t H sc s t r s t t s s s s s r r s ts s t r t t t s t t t s Łr t t s r s tr ss Ø H (1) (ω) t s s tr s s r str t s H (1) (ω) s Ør ts s s s s r σ (H (1) (ω)) = pp, c, ac, sc røs t t sø s r s tr 1 r r s t ss s t Ø rł r Łr Ø 2 q ss Ø 1 Ør t rs H (1) (ω) s t B R r Ø Z d tr 0 t r 2 R t Λ Z d r Ø rs ψ H pp q ψ H c q lim sup X e ith ψ(x) 2 = 0, R t 0 x/ B R lim T 1 T Z T 0! X e ith ψ(x) 2 dt = 0. x Λ s s t q Øt t ψ st sø s t 1 Øt ts s Øt s rr s t s ø rt s Ø s t t s s

11 tr t r rs røs t ts t Ø t q t r r 1 s r s t rs t ØtØ t s r P st r s P s r s 1 t r Ør t r t r s t rs r s Ør t rs t2 H (1) (ω) ØtØ t t r Ø r 3 t r s 1 r s str t s s tø r Ø rs s 1 s rs tr s røs t ts t s t s t t s s rs t2 r P s P r t t s Øt s s t sø s s r Øt 1 s t 2 t s t s rrø t s t s Øt t s s d 2 P r d = 2 rłs s 1 Ør s 2s q s tt r s t Łt s s d = 1 s s r s 2s t Ø rr t Œtr s rt q r s d = 1 r st s t r Ø ts s s t Ø t q s s s2stł s Øs r Øs q t q s s q q tr rø sø r r t r s s s r t sø s r 2s t Ø t Øt ss t s s s Ł rs ss s Ø r s r Øs r r t Øt rt t s s t t s P r s t rt t rt t r t tr rt Øt ss t r s t t s s s tr s t t t s t rs r Øs r r ss s Ø r s P s t r r s t s t 2s t Ø t r s t r Œ s r s t rs t t 2s t Ø s t ØtØ rø sø s s t 2 q q t ØtØ t t Ø trø r 3 t 3 s s s r t Øt s ts r t r s t s s t s Øt s ts q s q t t r t s t 2 q s Ø ss t s str t s ss 3 rø Łr Ø Ør t s t t s tø r Ø s q 2s t Ø r t tr t r r s tr t t s Ø t r s t s t t s s rs t2 r r s 1 t 2s s Ø t r st r q s Ø r Ø r ss s t s r r s t s t 2 q s t 2 q r s Øt s r s t s r 2s t Ø ØtØ Ø rt Ø trø r r t t Ł r P s t r t t tr t q s st Ø s 2s t Ø tr t s t 2 q rt s s s Ør rs s r rt t s t 2 q Ø

12 tr tr t t røs t t s røs t ts t ØtØ r Ø r r t t s tt t Łs s s r r 2s t Ø r Øt r s t rs t 2 q t rt r 2s t Ø st r Ø Ø t s r s Ø s rs { } 0 r t rø rr = b α c < α < 2 r r str r Ør t r H (1) (ω) s s C (1) (u) tø t s 1 r s s 2s t Ø s st rs Øt r Ø r ss Ø Ør t 1 t t t s s Ø s s Ø Ø ts tr s Ør t r r str t H (1) (ω) r C (1) (u) tø Øt t st sø s r t tø Ø Øtr q røs t q r t Øt r r t tr s Ø Ø ts tr s s rø s t s rr s t 1 Ø s t + 1 t røs t t tr r 2s t Ø t q t s t tø Ø Øtr q røs t Øt t Ø r ss s Ø Ø ts tr s s rt r Ø r ss s s s s s s ts t r røs røs C (1) (u) r r rt rt Ø r E r tør s t q tt Ø r s t trłs r s tr Ør t r H (1) (ω) t s s r t C (1) (u) 2 t Łs t s r s Ø s { } Øt s t s st st r r tø s røs s s t s st Ø s r r s 2 t Łs s t s r Øs r r s s Ø r s 1trŒ s st r Øt r s st Ø s Ø t s s s ss s Ø r s q s tør ss tt st Ø st sø rt s r st Ø s s q r t Ø r ss s røs t s s r s Ø r s rs s tr t tr rt s r Øt s s2 t t q s s t3 s tø Øt ts tø rø s s t t s Ø t r s rrø Øs ØtØ 2sØ r r s t q t Ø trø s t rs s s ss s r s Ø r ss t s t s s s Łt t 2t q s r r r q t Øt t s t r s t t s rrø Øs rrø t s 1 t t Ø r ss t s r Øt r s t s r r 2s t Ø st Ø r t Ø Ø rø Ø t r r t t Ø rø s P s rø t 2sØ s st t st q s s tr s s rs r r s Ør t r r r t t s t rrø Øs s rø sø s Ł rs s r 1 t t rt r r rt N 2 Øt t Ø t q t s Ør t rs st

13 tr t r t t rø t str t r Ø Ør t N rt r t r t st s t H (N) (ω) = + NX V (x j, ω) + U, j=1 Łr s r Ψ = Ψ(x 1,..., x ) 2 ((Z d )N) ø st Ør t r s r (Z d ) N = Z Nd V : Z d Ω R st Ø t r r t s r sø (Ω, P) q t r t r t t r t V (x, ω) = P N i=1 V (x i, ω) t U : (Z d ) N R st t t t r t tr s rt s q t q s t t ss Ør t r t t r t U(x) s r rs røs t ts s r s t rs s Ør t rs H (N) (ω) t ØtØ t s rt r s 2 t Øt t 2s t Ø 1 s2stł s t rt r s t tr rt r 3 t r3 q t rø sø tt 1t s r Øt s ts r t r s s s 1 s ØtØ s sø q Ø t r V st rs Ø t s t t q t str Ø s t q t r t U st rtø s s t rs Øt ss t s t s tr t 2 q s s rø r Øs r r t r t t t s Ø tø Øt s ts 3 t r3 t s sø q str t s r s Ø t r s t s tø r Ø Ør t t t q s Ø t r s q s 2 t t t s s t s tr t rt r s s rø r Øs r r t r s str t s Ør s tr tr q tr t s s ss s Ø r s Łt s rø Ø ts tr 1 r Ł rt t q r t s Øt s s2stł s t rt r s t t t s s t rłs s s tr st r tø r s røs t ts r tø t Ø r rt r s q t s t 2 s r tø rt r s tr s t s s s2stł rt r st r s r q r tø st s t sø s tr str tø Ø Ør r t t q s s tr st Ø t r r tø r t rłs røs t t ß P st r t r q r sq sßr t s tr σ(h (1) (ω)) Ør σ(h (1) (ω)) = Σ, ø Σ st s s s r Ø R s 1 st s s s s s Σ pp

14 tr tr t t røs t t s røs t ts Σ ac Σ sc t s q P r tø 1 σ pp (H (1) (ω)) = Σ pp σ ac (H (1) (ω)) = Σ ac σ sc (H (1) (ω)) = Σ sc. ø σ pp (H (1) (ω)) σ ac (H (1) (ω)) σ sc (H (1) (ω)) Øs t r s t t s tr r t t s t t t s Łr t t H (1) (ω) søq r Ør r s tr E 0 = if σ(h (1) (ω)) st Ø t r s Ø r s s r r s t s rs tr 1 t Łs PrØs t t s tr 1 t Łs s tt Øt s Łr s r tø (Ω, B, P) Ø r Ω = R Zd, B = B(R) Zd, ø B(R) st tr rø R t t t 1t r V : Z d Ω R Ø r V (x, ω) = ω x r ω = (ω i ) i Z d s tør ss rs 1 r r ØtØs s tr s s t s N rt r {H (N) (ω), ω Ω} t N 2 t r q t Œtr r tr r t r 2s t Ø Ø ss t s Ør r ss s t s H () (ω) rr s t 1 s s s2stł s rt s r t t = 1,..., N s tr t s t t s s t s r t t = 1,..., N t ν 1 s Łr r 1 s r Z ν Ø r x = max{ x 1,..., x ν }, r x = ( x 1,..., x ν Z ν s t r 1 s Ø t t s r r 1 Ø r x 1 = x x ν. r t s2stł rt s q t q s st t s s r Z d ø d 1 st t r 1Ø st r røs tø r t r x = (x 1,..., x ) (Z d ) = Z d, ø x j = (x (1) j,..., x (d) j ) Z d j = 1,..., t st s r Z d Ø r ( Ψ)(x) = X (Ψ(y) Ψ(x)) = X Ψ(y) 2dΨ(x), y Z d y x 1 =1 y Z d y x 1 =1

15 PrØs t t s tr 1 t Łs r t t Ψ 2 (Z d ) x Z d t r q st r Ø t st s t s Ør r s Ør t rs r r Ø t r H () (ω) r = 1,..., N r s t Ø H () (ω) = + X V (x j, ω) + U j=1 ss t s r s rt H () = 2 (Z d ) t s t t s t t Z d = (Z d ) x = max 1 j x j, x 1 = x x 1, r x = (x 1,..., x ) (Z d ) P r rø t t r t tr t r Łtr h > 0 q r t s r r r t r t P s rø sø t t s t H () h X (ω) = + V (x j, ω) + hu, j=1 ø Ø r t r t st s s q h > 0 st t t 2 t Łs s Ø Ør s t t t r t st r Ø t r U(x) = X 1 i<j U: (Z d ) R Φ( x i x j ), x = (x 1,..., x ) Z d, ø Φ: N R + st t s t s rt t r 0 N : supp Φ [0, r 0 ]. Øt rø t t r t Ø ss t s t r t U Œtr s t r tt r s tr t 2 t Łs s Ø Ør s t

16 tr tr t t røs t t s røs t ts t r t U: (Z d ) R s t s t r t t = 1,..., N U(x) = X Φ( x i x j ), x = (x 1,..., x ) Z d, 1 i<j ø x = (x 1,..., x ) (Z d ) t t Φ st s Ø ss r t s t s r 0 N : supp Φ [0, r 0 ]. P r Ø r r s 2 t Łs s s r t t Ø t r V : Z d Ω R, s rt r t t s Øs r F V str t s r R s r s Ø t r s V (x, ω) t E R t s t µ s r ss Ø s r R s Ø t ss s(µ, ε) = sup a R F V (E) := P {V (0, ω) E} µ([a, b]) = F V (b) F V (a). µ([a, a + ε]) = sup(f V (a + ε) F V (a)). a R ((1 + x ) 1+κ ) := {f : R R sup f(x)(1 + x ) 1+κ < }, x R r rt κ (0, 1) s rt s r µ st Ø r supp µ = {x R µ ((x ε, x + ε)) > 0, ε > 0}. P str t µ s r s Ø t r s V (x, ω) Ør 0 supp µ [0, + ) s st Ør s r s(µ, ε) := sup P {V (0, ω) [a, a + ε]} C a R l 2A ø C (0, ) t A > 0 st s s t r. P t t Ø t r V : Z d Ω R st t r Ø 1 st M (0, ) t q supp µ [ M, M] s s r r tø µ ssł s Ø r Ø P {V (0, ω) A} = µ(a) = R A ρ(λ)dλ t ρ ((1 + x ) 1+κ ) s røs t ts s ts t ØtØ t r ts rt s

17 PrØs t t s tr 1 t Łs Øt r t s s tr t s t s s r r rs r tø st s tr Øt r q s s tr E () 0 s t s H () (ω) st r sq sßr t st t r t røs t t st r r s t rs s s 2 t Łs s Øq t s s trłs Ø Ør s (I1) t (P1) s r t r t U t t t Ø t r V tr q r sq sßr t t t s s q t tøs E () 0 s t t q t s Ø rł t = 1,..., N s s 2 t Łs s (I1) t (P1) r tø 1 [0, 4d] σ(h () (ω)) [0, + ). P r søq t E () 0 := if σ(h () (ω)) = 0 s s Ø s r r ss t Ø s s r Ør t s r P t t s s s Ør t rs r r rt r s 2 (R d ) s tr s røs t r t tr s ts r s s r r t r s s r r t t s r t q rø tø t r [0, 4d] st s tr s 2 (Z d ) t Øt t Ø q t r t st rtø t tr r s t s s Z d s r sq s t r t st t q t t 2 t s r t s t t s s t s s r Z d s Ø Ł ts r t s t s r t s s t Ø ts s t Øt t Ø s t 2 r t s rt s trø r tr s t q s t s rt t s s t r s s t s s ø t r t st s t tr s tø r st s t 2 r t r t r st s r t t Ø t r r t r P r s Øt s s r røs t t r tr s Ł rs r t t E R t lim d card : E (H () (ω) () C (0)) E 1 st t st Ø Ø s tø Øt ts tø rø H () (ω) s s 2 t Łs s Øq t s rłs røs t t ß t s tø Øt ts tø rø t rt r H () (ω) 1 st t t rt r H (1) (ω) t s røs t t q st Øt s r s r t rłs t Ø r s r Ł r s t t Ø t r r q s s s q st tø Øt ts tø rø,

18 tr tr t t røs t t s røs t ts N t rt t s t3 s s s tr r r 1 Ø rł s r s r lim E&E (1) 0 l l N (E) l(e E (1) 0 ) = d 2. t t Ø q r t s s t s H () (ω) = 1,..., N E () 0 = 0 t Ø r q t s s t s H () (ω) tt t rt t s t3 s 0 s røs t ts s ts r t rø s ss s Ø r s s t Ø trøs tr 2s t Ø t rt r ss s Ø r s s s rs rt r 2s t Ø s s r s t rt r t t Ø Ø r s 2 t s s r Øs r r r st t s r s Ø s { } s s t t s r r rt s = 1,..., N t s st Ø s r s r t tr r tø s r tøs s røs s s t Øt s rt r t t t t r t s r s r t s s s rt r s r Z d t s Ø Ł ts r t s 1 s s ts s Z d s t s r Ø t Ø ts s s rt r st r tt r s q tr t t s sø r s ø r t rt r t t s s st s t rø s tr s r t s t s tr P s rø sø t Ø t t q (x) = C(1) (x 1) C (1) (x ) st J sø r tr (y) = C(1) (y 1) C (1) (y ) s 1 st s s s J {1,, } t q [ C (1) (x j) [ [ C (1) (x j) ( C (1) (y )) =, j J j / J r ( (x), C() (y)) st t sø r s x y > 7N t s s s st J sø r tr tt r r ØtØ r t r Ø t t t 1 r rt s r s Ø t r s q r t sø r tø st =1

19 PrØs t t s tr 1 t Łs r r ØtØ r t ss t r r t s r s s s s t st ts s t r s s st s s t r r t t s r sø r tø 1 s s d = 1 t = 3 t s x = (a, a, b) Z 3 t y = (a, b, b) Z 3 rs r t t 0 s s t C (3) (x) = ([ + a, a + ] [ + a, a + ] [ + b, b + ]) Z3 C (3) (y) = ([ + a, a + ] [ + b, b + ] [ + b, b + ]) Z3 q st a b q t Œtr r tr r t r s a 6= b s t s sø r s r s r t s t rs t t rs r t t t tr t ss s r rq t s r r rt s t s r r t r t t = 1,..., N r s s sø r s t s r s Ø s +1 t s t q s r t s t t s s s s t s t s t s r Ø t Ø r r tø t rs t Ø Ł ts r t s s r t s t tt r Łr r r ØtØ st s r str t q sø r tø t r str r 2s t Ø q t t s s st s s s t r Øt r s t rs s Ø q s t s s t q r t r s t t r rt s Z d 1 st tø s st s s t r t t s r t s t t s t rs t t r r tr t t st s ss r s rø r Ø t s s s t s r t s t t s t rs t t r r r t st s r t s s sø r s s t t st r Ør t s s rt s s 1 r s r D Z d D = {x (Z d ) : x = (x,..., x), x Z d }, t s tr s t t t Łtr t q r r s t s tr s Ø s t t t t r t s t 1 s s t Ø Øs r D t s tr s t r s Łtr s r tr r t r q s r t Ø Øs s rt t t r t s s s t t t t r t s t st s s t s t 1 t s r t s t t s s t s t s r tt t s r r r t s r s Ø s s s rt r st q st t st x y > 7N s Ø t P r tr r 2s s

20 tr tr t t røs t t s røs t ts s rt t t r t s st Ø ss r Ø r s t tt t q t r t s Ø s s r t Ø Ø søq t s Ø s ss s 1 t s 2 t r rt s str t t s t t Ø st Ø r s r t s s r t r rt r s r t s s r s s s t s ø t s r r rt s s Ø t røs tø r s 2 t s s rø r Øs r r t s Œtr r t t t sø s s s ss s Ø r s t ß Œtr Ø P r 1 s Ø t s t q rt r Łtr p(n, g) + q Øs r r g + P r Ø rr r 2s t Ø ss s Ø r s s s rt st Ø s s t st Ø r Ø t r r ss s {V (x, ω)} x Z d rs Ø t s t t q t str Ø s t 1 N t t Ø m > 0 t Ø r E R (u) Z d st t (E, m) s r (E, m) s røs t (H () (u) E) 1 Ør max v Z d v u = (H() (u) E) 1 (u, v) e m(1+ 1/8 ) N +1, s s tr r t q st (E, m) s r (E, m) s s Ø rł s t q Øt t tø s st Ø s 2s t Ø s r t t s s Ø s Ø rł t = 1,..., N s s 2 t Łs s (I1) t (P1) r t t p > 6Nd 1 st m > 0 t E > E (N) 0 t q r t t r s sø r (u) t (v) P E I : (u) t 2p 4N (v) s t (E, m), r t t 0, ø I = (, E ] s t rs ss s Ø r s røs t t t s s st Ø s 2s t Ø t s Ø q s r s s q Ø r ss 1 t s t s r r s t r r 1 Øt Ø Ø r r s t 1 s2s tł s t rt r s

21 PrØs t t s tr 1 t Łs Ø rł s s 2 t Łs s (I1) t (P1) 1 st E > E (N) 0 t q P r tø 1 s tr H (N) (ω) s [E (N) 0, E ] st t r t t s t s r r s Ψ i (x, ω) rr s t 1 rs r r s E i (ω) [E (N) 0, E ] Ø r ss t 1 t t t 1 st m > 0 t C i (ω) > 0 t s q Ψ i (x, ω) C i (ω)e m x. s t 2 q ss s Ø r s t t s rø sø t s t 2 q t r r rt t tt rs st s q s tr s r s s t 2 q rø Ø t Øt s t ØtØ t t Ø Ø Ø r r t t s t 1t s Ør t rs Ør t s s R d t B 1 s s t s s r s r Ø s f : R R t s q f 1 Ø rł s s 2 t Łs s (I1) t (P1) 1 st E > E (N) 0 t s > 0 t q r t t rø r Ø K Z Nd t t t 0 < s < s E X s sup 2 f(h (N) (ω))p I (H (N) 2 (ω))1 K f B 1 HS <, ø ( X Ψ)(x) := x Ψ(x) P I (H (N) (ω)) st r t r s tr H (N) (ω) s r t r I := [E (N) 0, E ] st ss Øt r s røs t ts ss s 1 t t s Ø t r s rrø Øs Ør t t Ø r st s r t sø r tø t s s r s r t s st s s t tr t rt t st st Ø r Ø t r r ss s {V (x, ω)} x Z d q st s t t q s s r s Ø t r s V (x, ω) s t rrø Ø s s røs t ts s t q r t rø s s t r t s s t Ø trøs tr 2s t Ø t rt r t r t s Øt rø t t r t st 1 tr r r Łtr r tt t tr r r t r t U s rø r t

22 tr tr t t røs t t s røs t ts s t s rt r H () (ω) = 1,..., N s t X H () (ω) = + V (x j, ω) + hu, h R. j=1 r st Ør t r r rt r sø t t st Ø rr st Ø r t 0 q rø Ør s r r s r s s rt st Ø s s r Øt r 2s t Ø t s q s rø t t r t s s rt s røs t ts s t rt r s 1 rø t t r t r q rt Ø Łr t r r ØtØ s r tø t t Ø r tt r r ØtØ r r Łtr h r tt t tr r r t r t rsq h = 0 s2stł t rt r st s sø s s t r t st t (E, m, h) s r r r rt t H () (ω) str tø s rø r s s r s rs Øt s h rt r st Ø s2stł s s t r t Øt t s2stł t t r t r r t rt r t t s t s t tøs røs t Ø t r s2stł t t r t Ø r 1 t Ø t r s t st Ø Ø r r q s s s 2 t Łs s (I2) (P2) P r tø 1 σ(h (N) h (ω)) [ N(4d + M) h U, N(4d + M) + h U]. s r st s t s I = [ 1 N(4d + M) h U, N(4d + M) + h U + 1] t Ø t r rt > 0 t s ts x, y Z Nd F x,y (E) = (H C (N) E) 1 (x, y), F x (E) = max F x,y (E). (x) y C (N) røs t t st s t Ø rł t = 1,..., N t θ (0, 1/3) s s 2 t Łs s (I2) t (P2) 1 st h > 0 t q r t t h h t r t t r s sø r s (x) (y) P E I mi{f x (E) F y (E)} 2 p(1+θ) 5 C( I, N, d) p(+θ) 5 +(2N +1)d, r t t 0 ø I = [ 1 N(4d + M) h U, N(4d + M) + h U + 1] t p > 6Nd/(1 3θ)

23 PrØs t t s tr 1 t Łs s t rs Łt t r t Ø rł s s 2 t Łs s (I2) (P2) 1 st h > 0 t q r t t h ( h, h ) t H (N) h t r t t h t s t rs Łt P r tø 1 s tr H () r t t s t s r r s Ψ i (x, ω) r t 1 rs r r s E i (ω) I Ø r ss t r t r q Ψ j r t t x Z Nd t s st t s a, c, C i (ω) > 0 Ψ i (x, ω) C i (ω)e a(l x )1+c. s t 2 q t r t Ø t B 1 s s t s r Ø s s r s f : R R s t s s t f 1 Ø rł s s 2 t Łs s (I2) t (P2) 1 st h > 0 t q r t t h ( h, h ) t t t t rø f : R R t t rø r Ø K Z Nd t t t s > 0 E X s sup 2 f(h (N) (ω))p I (H (N) 2 h (ω))1 K f B 1 HS <. ø ( X Ψ)(x) := x Ψ(x) P I (H (N) (ω)) st r t s tr H (N) (ω) s t r I

24

25 t r t s 2s s s t s t r r s t t t s r s t t s 2s s t t r 2 t t r t r s 2 r 2 r ss t s r t t r t s s rt r t str t t r t t t st r t s s ss t s (I1) (P1) r r2 s r s ss t s (I2) (P2) r t s t t s tr r s t q t s 2 t s s t Λ Z d ts t r r2 Λ = v Z d : dist ( v, Z d \ Λ = 1, ts 1t r r2 + Λ = v Z d \ Λ : dist (v, Λ) = 1, ts r2 Λ = (v, v 0 ) Z d Z d v v 0 1 = 1 t r v Λ v 0 / Λ r v / Λ v 0 Λ. st t t s s ts Λ, Λ 0 Z d s 2 dist(λ, Λ 0 ) = mi x Λ,x 0 Λ 0 x x0. st 2 r t t r str t Λ t t s s t Λ Z d t s r2 t s ts tr 1 ts Λ (x, y) = (x, y) r x, y Λ Λ (x, y) = 0 t r s r t t st t t s 2s s t r 2 t t t s r rst t

26 t r t s 2s s s r str t N Λ s q r t r s 2 ϕ, ( ) N Λ φ = 1 X (ϕ(x) ϕ(y))(φ(x) φ(y)) 2 ϕ, φ 2 (Λ), x,y Λ x y 1 =1 t s t q t2 N Λ Λ r r r t r2 t s t tt s r r t t 2 rs r t t s tr H () Λ 2 σ(h() Λ ) ts r s t 2 1, G Λ (E) := H () Λ E E R \ σ H Λ. ts tr 1 ts G Λ (x, y; E) r s 2 t r t s t r t r H () Λ t Λ Zd t r2 r t r Γ Λ 2 1 (x, y) Λ Γ Λ (x, y) = 0 t r s. t H () r tt s s H () = H () Λ H() Λ c + Γ Λ, r t 2 (Z d ) t 2 (Λ) 2 (Λ c ) tr 1 ts H () Λ r 2 H () Λ c (H () Λ H() Λ c )(x, y) = H () Λ (x, y) x, y Λ, H () Λ (x, y) x, y Λ c, c 0 t r s. s r t s s ts Λ 1 Λ 2 Z d t r t r2 Λ2 Λ 1 = (x, y) x y 1 = 1 x Λ 1 y Λ 2 \ Λ 1 r x Λ 2 \ Λ 1 y Λ 1. t t rt t r t t H () Λ 2 Γ Λ 2 Λ 1 (x, y) = = H () Λ 1 H () Λ 2 \Λ 1 + Γ Λ 2 Λ 1, 0 x = y x Λ 1, 0 x = y x Λ 2 \ Λ 1, 1 (x, y) Λ2 Λ 1, 0 t r s.

27 s t t s tr r s t q t s s r 3 r t tr r s t q t s r r t s t s 2 rt t r t t st t t s 2s s t 2 t s r s t 2 r Λ 1 Λ 2 x Λ 1 y Λ 2 \ Λ 1 E / (σ(h () Λ 1 ) σ(h () Λ 2 )) t G () Λ 2 (x, y; E) = X (v,v 0 ) Λ 1 v Λ 1,v 0 Λ 2 G () Λ 1 (x, v; E)G () Λ 2 (v 0, y; E). t Λ Z d E / σ(h () Λ ) Ψ s s t t q t H() Ψ = EΨ t r 2 x Λ Ψ(x) = X (y,z) Λ y Λ,z + Λ G () Λ (x, y; E)Ψ(z). Pr t E / (σ(h () Λ 1 ) σ(h () Λ 2 ) σ(h () Λ 2 \Λ 1 )) ss rt Pr s t t 2 2 t (H () Λ 2 E) 1 = (H () Λ 1 H () Λ 2 \Λ 1 E) 1 (H () Λ 1 H () Λ 2 \Λ 1 E) 1 Γ Λ 2 Λ 1 (H () Λ 2 E) 1. s s t t (H () Λ 1 H () Λ 2 \Λ 1 E) 1 = (H () Λ 1 E) 1 (H () Λ 2 \Λ 1 E) 1 x Λ 1 y Λ 2 \ Λ 1 (H () Λ 1 H () Λ 2 \Λ 1 E) 1 (x, y) = 0 s t s r t t (H () Λ 2 E) 1 (x, y) = X (H () Λ 1 H () Λ 2 E) 1 (x, v)γ Λ 2 Λ 1 (v, v 0 )(H () Λ 2 E) 1 (v 0, y) v,v 0 Λ 2 = X G () Λ 1 (x, v; E)G () Λ 2 (v 0, y; E). (v,v 0 ) Λ 1 v Λ 1,v 0 Λ 2 s r s r E / σ(h () Λ 2 \Λ 1 ) s r t t t tt r q t s t t Λ 2 \ Λ 1 t s s 1 st r 2t ts σ(h () Λ 1 ) σ(h () Λ 2 ) s t r s tr r E / σ(h () Λ 1 ) σ(h () Λ 2 ) t Ψ s t t q t H () Ψ = EΨ t 2 0 = (H () E)Ψ = (H () Λ H() Λ c + Γ Λ E)Ψ,

28 t r t s 2s s s s t t (H () Λ H() Λ c E)Ψ = Γ Λ Ψ r E / σ(h () Λ ) r 2 x Λ Ψ(x) = [(H () Λ E) 1 Γ Λ Ψ](x) = X (y,z) Λ G () Λ (x, y; E)Ψ(z). r t t r str t r t s r tt r t s r u = (u 1,..., u ) Z d s q t s { i : i = 1,..., } r (u) = Y i=1 C (1) i (u i ), C (1) i (u i ) = x Z d : x u i i. 2 (u) t t rt (u) = x Z d : x u. r 2 (u) := card C() (u) = (2 + 1)d t s t s r st t (u) (3)d r 2 u = (u 1,..., u ) Z d ts r t Πu 2 Πu := {u 1,..., u } Z d, r u = (u 1,..., u ). r r 2 r 2 t2 s s t J {1,..., } t J r t 2 Π J u := {u j, j J } Z d. t t t r J = {1,..., } Π J = Π s t 2 r rt r t (u) = C 1 (u 1 ) C (u ) Z d s r ts J r t r 2 J {1,..., } Π J (u) = [ j J C j (u j ) Z d. r J = {1,..., } r t Π (u) st Π J (u) r t2 t s r t2 s r r t r t r st t s r rt t t t r t2 r s s 2 r t2 s t 2 tr t r r t t rt t s 2s s t s r t s t t

29 r t2 t t (x) = Q i=1,..., C(1) i (x i ) (y) = Q i=1,..., C(1) (y i ) t r t s (x) s J r s r r (y) t r 1 sts t2 s s t J {1,, } s t t [ Π j (x) [ Π j (x) Π (y) =. j J j / J 0 i r ( (x), (y)) s r s r t r t s J r s r r t t r t = max{ i, 0 i : i = 1,..., } r (C() (x), (y)) s s r 2 t s r s r x y > 7N st t s tr ts r rs s r s t > 1 x Z d r 1 sts t rt s 2 (x( ) ) t x ( ) {x 1,..., x } r = 1,, = 1,..., κ() κ() s t t r t y s t s s y x > 7N y / κ() [ =1 2 (x( ) ), t t s (x) C() (y) r s r t (y) Zd rt 2 (x) t y x > max 1 i,j y i y j + 5N s J s r r (y) r s J {1,..., } Pr r s t > 0 6= J {1,..., } y Z d {y j } j J s st r t [ C (1) (y j) t s t t t2 s t s s ts r t s x, y Z d r s s j J 1t t s t t r y t 1 st rs Γ 1,..., Γ M t r 2 t M

30 t r t s 2s s s s t y i rr s s t 1 t 2 st r Γ j j = j(i) {1,..., M} t r 1 sts j {1,..., M} s t t Γ j Π (y) C() (x) r s r (x) = t s s r t r = 1,..., M Γ Π (x) 6= s r = 1,..., M i = 1,..., s t t Γ C (1) (x i) 6= r 2 j = 1,..., t r 1 sts = 1,..., M s t t y j Γ r r r s 2 2 t s s t r 1 sts i = 1,..., s t t Γ C (1) (x i) 6= 1t t z Γ C (1) (x i) s t t z x i t t y j x i y j z + z x i 2 + = 2 s y j, z Γ t t t t y j z 2 st 2 s y j s t r t st r Γ r j = 1,..., y j st t t s C (1) 2 (x i) r t s t s (y 1,..., y ) t κ() = r 2 t st κ() ss t s y = (y 1,..., y ) st t t rt s r t s s 3 2 t d s s 3 2 t ss rt t s t R(y) = max 1 i,j y i y j + 5N s r (x) t y x > R(y) t r 1 sts i 0 {1,..., } s t t y i0 x i0 > R(y) s r t 1 t t Λ x := S i J C(1) (x i) t Si C(1) (x i) t x i0 ts t r s 2 2 dist(λ x, Π (y)) = mi u v, u,v s t x i0 y i0 x i0 u + u v + v y i0, dist(λ x, Π (y)) = mi u v u,v x i0 y i0 diam(λ x ) max v,y i0 v y i0. t t diam(λ x ) 2 max v,y i0 v y i0 max v y j + max y j y i0, v y i0

31 r st t s r s j = 1, s t t v C (1) (y j) 2 t dist(λ x, Π (y)) > R(y) diam(λ x) (2 + diam(πy)) > 0, t s s t t (x) s J s r r C() (y) t J t 1 s s t r t t Λ x r st t s r st t s t 2 tr 2 r 2 r r t t st t t s 2s s r s s t s s r 2 2 t r s rt r s s t t r t t t t rt s2st s 2 s 2 t t t t s s 1t t rr t r t t s 2 s 2 rs r t t t rt r st t s r s t 2 t s str t s t s t2 t J t2 s t t r t2 J = p J s t t {1,..., p} t R J = R p t s t s s (e 1,..., e p ) s r R J + = {q = (q 1,..., q p ) R J : q j 0, j = 1,..., p}. t Φ : R R s 2 t r r R J + v RJ Φ(v + r) Φ(v). r r r e = e e p R J r v R J t > 0 Φ(v + te) Φ(v) t. t s s t 2 r t r r r t s r s t t r s r r t r t t s t r t2 str t µ r t t r t 2 s r r t s r s t r µ J = µ µ R J t s t J 1 s t t r t2 J = p µ r t2 s r R µ J = µ µ r t s r R J t t Φ : R J R s 2 t t r 2 t r I R µ J {q : Φ(q) I} p s(f V, I ).

32 t r t s 2s s s Pr t I = (a, b) b a = ε > 0 t A = {q : Φ(q) a}, A ε 0 = A A ε j = A ε j 1 + [0, ε]e j := q + te j : q A ε j 1, t [0, ε]. r 2 A ε j s r s s q j t t2 2 t s s Φ s {q : Φ(q) < b} A ε p. Φ(q) < b t r r := q ε e Φ(r) Φ(r + εe) ε = Φ(q) ε b ε a. s r {Φ a} = A q = r + ε e A ε p. t t {q : Φ(q) I} = {q : Φ(q) (a, b)} = {q : Φ(q) < b} \ {q : Φ(q) a} A ε p \ A. r r µ p {q : Φ(q) I} µ p ( A ε p \ A = µ p p[ px j=1 j=1 (! A ε j \ A ε j 1 µ ( p A ε j \ A ε j 1 r q 0 6=1 = (q 2,, q p ) R p 1 s t I 1 (q 0 6=1) = {q 1 R : (q 1, q 0 6=1) A ε 1 \ A}. 2 t (q 1, q6=1 0 ) Aε 1 \ A t r 1 st (a 1,..., a p ) A ε 1 \ A s t t q6=1 0 = (a 2,..., a 2 ) q 1 = a 1 + t r s t ]0, ε] r r I 1 (q6=1 0 ) s t r t ε µ p s r t s r Z Z µ p (A ε 1 \ A) = dµ p 1 (q6=1) 0 dµ(q 1 ) s(f V, ε). I 1

33 r st t s r 2 t r j = 2,, p µ p (A ε j \ A ε j 1) s(f V, ε). r r µ p {q : Φ(q) I} px µ p (A ε j \ A ε j 1) p s(f V, ε). j=1 t t 1 β = 1/2 E R s r r t (u) = Q i=1 C(1) i (u i ) s t = mi i=1,..., { i } (u) s E r s t E t r s t s E r s t E h dist E, σ ( H () C (u) i < e β. () t t E R (v) Zd s 3 2 s E t 2 r s t E t s t t 2 E s 3 2/3 rt r C (v) s ts E r t r s r r t s (u) = Q Q i=1 C(1) (u 0 0 i ) i r 2 ε > 0 E R h i P dist σ(h () (u) ), E < ε r 2 ε > 0 h i P dist σ(h () ), σ(h() (u) (u 0 ) ) < ε i=1 C(1) i (u i ) (u 0 ) = (u) mi i=1,..., Π i (u) s(f V, 2ε), (u 0 ) (u) max i=1,..., max u,u 0 { Π i (u), Π i (u 0 ) } s(f V, 2ε). Pr t t ss r t2 ss t t 1 = mi i=1,..., { i } s t J = Π 1 (u) p = J ss t t J = {y 1,..., y p } t {λ () (u) : = 1,..., C() (u) } t s H () (ω) r 2 (u) s s t Λ Z d t 2 P Λ E Λ t r t2 t 1 t t t r s t t r r s {ω x : x Λ} r t H () (u)

34 t r t s 2s s s r t s H () (u) (ω) = + U(x) + X i=1 ω xi X px = + U(x) + δ xi,y j ω yj i=1 j=1 X X + δ xi,yω y. i=1 y Π (u)\j P ω : dist(e, σ(h () (u) (ω))) ε = = (u) X =1 (u) X =1 (u) X =1 s r t t Φ(ω) := λ () t P E λ () (u) (ω) ε P ΠC () (u)\)j P J { E λ () (ω) ε} (u) E ΠC () (u)\j[µ J ((ω x ) x J : E λ () (ω) ε)]. (u) H () (u) (ω + t (1,..., 1)) = + U(x) + X + t (ω) s t t Φ s 2 X i=1 px j=1 δ xi,y j i=1 H () (ω) + t Id, (u) px δ xi,y j ω yj s x 1 J s t t P i=1 P p j=1 δ x i,y j 1 r r 2 t 1 r r j=1 λ () (ω + t (1,..., 1) λ() (ω) + t. (u) (u) t 2 t t s t µ J (ω = (ω x ) x J : λ () (ω) E ε) J s(µ, ε). (u)

35 r st t s 2 P dist(e, σ(h () (u) (ω))) ε (u) Π 1 (u) s(f V, 2ε), r s t t ss r t2 ss t t (u) s r s r r (u 0 ) J {1,..., } : Π J (u) Π J c (u) Π (u 0 ) =. t r s 1 t r s (u) (u 0 ) t {λ : = 1,..., (u) }, {λ 0 : 0 = 1,, (u 0 ) }, t s H () H() (u) (u 0 ) r s t 2 r 2 i J r s s t J = Π i (u) s ss s t t J = {y 1,..., y p } r r P dist(σ(h () ), σ(h() (u) (u 0 ) )) ε = P ΠC () (u) Π (u 0 )\J P J {dist(σ(h () ), σ(h() )) ε} (u) (u 0 ) (u) X i=1 (u 0 ) X j=1 E ΠC () (u) $ (u )\J[µ J ((ω 0 x ) x J : λ (i) (ω) λ(j) (ω) ε)]. (u) (u 0 ) s s t t t t Φ(ω) := λ (i) t r r t t s s t t (u) (ω) s 2 µ J {ω = (ω x ) x J : λ (i) (ω) λ(j) (u) (u 0 ) (ω) ε} J s(f V, 2ε), 2 P dist(σ(h () ), σ(h() (u) (u 0 ) )) ε (u 0 ) (u) max i=1,..., max u,u 0 { Π i (u), Π i (u 0 ) } s(f V, 2ε). r r2 t α = 3/2 p > 6Nd ss t t t r t t s t s s ss t (P1) t A > 4 N αp + 6αNd t r 2 E R P (x) s t E 4N p,

36 t r t s 2s s s P E R : t r (x) r C() (y) s E 4N p. Pr P (x) s t E = P y (x) : 1/α, (x) ( + 1) P (2 + 1) d ( + 1) P (y) s E (y) s E dist[e, σ(h () )] < e β (y) (3) d+1 (y) C (1) (y 1 ) s(µ, 2e β ) Cst 3d+1 A/α < 4Np, r s r q t ss t (P1) r t t2 t r str t µ q t r s r rst t t t r 2 r s 1 (u 1 ) 2 (u 2 ) t 1/α 1, 2 s P E R 1 (u 1 ) 2 (u 2 ) r E = P E R : dist[e, σ(h () C j (u j ) )] < e β j, j = 1, 2 P dist[σ(h () C 1 (u 1 )), σ(h() C 2 (u 2 ))] < 2e β/α (3) (2+1)d Cst A/α, 2 r ss t (P1) t t r ss t rs u 1, u 2 t r s t s r s t r ss s 1, 2 t t P E R : t r (x) r C() (y) s E = P{ E R u 1 (x) u2 (y) 1, 2 t 1/α 1, 2 : 1 (u 1 ) 2 (u 2 ) r E } (3) 2d 2 (3) (2+1)d Cst A/α 4N p, s A > 4 N pα + 9Nd

37 s s st t r r2 ss t t t r t t s t s s ss t (P2) t r 2 E R P (x) s t E e τ 1 1/2, r s τ 1 (0, 1) P E R : t r (x) r C() (y) s E e τ 2 1/2, r s τ 2 (0, 1) Pr r s t s s s t t r r2 t t s r s 1 t 2 s s t r t t2 t r t2 str t st t r t t2 s r r2 s s st t s s st t r s r s rr r r r t s t ss s t r t r r s t r t r t r2 s s t r t Λ Z d A r t r 2 (Λ) t tr 1 ts A(u, v) A s r r Pr t s s t a 1 = sup u Λ a 2 = sup v Λ X A(u, v) < v Λ X A(u, v) <. u Λ A a 1/2 1 a 1/2 2. B(u, v) = A(u, v) 1/2, C(u, v) = A(u, v) 1/2 s A(u, v) t s A(u, v) = 0 A(u, v) = 0 s A(u, v) = A(u,v) A(u,v) A(u, v) 6= 0 A(u, v) = B(u, v)c(u, v).

38 t r t s 2s s s Af 2 = X u X B(u, v) 2 a 1 < v Λ X C(u, v) 2 a 2 <. u Λ X A(u, v) hδ v, fi v 2 = X X 2 B(u, v)c(u, v) hδ v, fi u v X " X B(u, v) X # 2 C(u, v) hδ v, fi 2 u v v X a 1 C(u, v) 2 hδ v, fi 2 u,v X a 1 a 2 hδ v, fi 2 v = a 1 a 2 f 2 s Af a 1/2 1 a 1/2 2 f r f 2 (Λ) r s r tt r r r t r H Λ = Λ + W (x) t 2 (Λ) Λ Z ν s t s s t ν 1 t r tr r2 t t W : Λ R s t t E R s s t t dist(e, σ(h)) η t η (0, 1] x, y Λ (H E) 1 (x, y) 2η 1 e η 12ν x y. Pr t µ > 0 t s t r 1 x 0 Λ t r t r t t F = F x0 2 (Λ) 2 F u(x) = F x0 u(x) = e µ x 0 x 1 u(x). r 2 r t r A ( F 1 x 0 AF x0 (x, y) = e µ x 0 x 1 A(x, y)e µ x 0 y 1. s s t s s s t rt r t rs t t r 2 2 t r t t s

39 s s st t tt F = F x (H E) 1 (x, y) = e µ x y 1 F 1 (H E) 1 F (x, y) = e µ x y 1 (F 1 HF E) 1 (x, y) e µ x y 1 (F 1 HF E) 1. r r s t r s t q t Pr s t (F 1 HF E) 1 = (H E) 1 (F 1 HF E) 1 (F 1 HF H)(H E) 1 2 (F 1 HF E) 1 (I + (F 1 HF H)(H E) 1 ) = (H E) 1. (F 1 HF H)(H E) 1 < 1 t t r t r (I+(F 1 HF H)(H E) 1 ) s rt t (F 1 HF E) 1 = (H E) 1 (I + (F 1 HF H)(H E) 1 ) 1. s t r t r F 1 HF H q t s X (Fx 1 HF x H)(u, v) X e µ x u 1 e µ x v 1 1 v Λ v: u v 1 =1 2νµe µ. r t st q t2 s t t r u v 1 1 rt r r a 1 µ > 0 x u 1 x v 1 u v 1 1. e µa 1 e µ 1 = e µ 1 Z 1 0 µe µt dt µe µ s st t t r u s t 2 1 t r s u v s F 1 HF H 2νµe µ. t µ = η 12ν η 1 (F 1 HF H)(H E) 1 (F 1 HF H)(H E) 1 2νµe µ 1 η = 2ν η 12ν e η 1 12ν η 1 2.

40 t r t s 2s s s s t t e η 12ν e 3 s η 1 r r t r t r I + (F 1 HF H)(H E) 1 s rt s t s r s t t (I + (F 1 HF H)(H E) 1 ) 1 2. q t s t (F 1 HF E) 1 = (H E) 1 (I + (F 1 HF H)(H E) 1 ) η (H E) 1 (x, y) e µ x y 1 (F 1 HF E) 1 2 η e η 12ν x y 1. 2 rt 2 t r t s t 2 rt 2 t r t rt (u) Zd s 2 t r t rt 2 t r t P t r s diam Πu max i6=j u i u j (2 + r 0 ), P rt 2 t r t 2 t r t s r s t r r t t st t t s 2s s t 1ts t t rs r 2 t t P s t s st t t (u) s P t t r 1 sts s s t J {1,..., } t 1 card J 1 s t t dist Π J (u), Π J cc() (u) > r 0. Pr t s t t s t t Z d, R d t t t t ss R d s ts r tt s t R := 2 + r 0 ss t t diam Πu = max i,j u i u j > R t s R/2 (u i) 1 i r t s t t r r s t r s t t t ts t r 2 (2(R/2)) = R diam Πu R tr ts t 2 t s s r r t r 1 sts

41 2 rt 2 t r t s 1 s s t J {1,..., } s t t u j1 u j2 > 2(R/2) r j 1 J j 2 J c t s s t t dist Π J (u), Π J cc() (u) = mi dist C (1) j 1 J,j 2 J c (u j 1 ), C (1) (u j 2 ) mi j 1 J,j 2 J c u j 1 u j2 2 > r 0. t (u) s P 2 t r t t s (u) = C(0 ) (u0 ) C (00 ) (u00 ), dist ΠC (0 ) (u0 ), ΠC (00 ) (u00 ) > r 0, r u 0 = u J = (u j : j J ) u 00 = u J c = (u j : j J c ) 0 = card J 00 = card J c r t s t (u) s t 2 ss t t t s t s t t r s s t t P (u) t t r rt t r t s s s U(u) = U(u 0 ) + U(u 00 ) s s t t t r rt s s r t 0 rt s s2st s r 2 0 < t r t tr r rt s s t 2 > 2r 0 s r t rt 2 t r t (u) C() (v) t x y > 7 s Pr r s R > 0 Π (u) ΠC() (v)) =. R < x y = max 1 j x j y j, t t r 1 sts 1 j 0 s t t x j0 y j0 > R t s r 2 t r t s r t t rs x, y r t x j0 x i diam Πx (2 + r 0 ), y j0 y j diam Πy (2 + r 0 ). 2 tr q t2 r 2 1 i, j R > 7 > r 0 x i y j x j0 y j0 x j0 x i y j0 y j > 6 + 2r 0 2(2 + r 0 ) = 2.

42 t r t s 2s s s r r r 2 1 i, j mi dist(c (1) i,j (x i), C (1) (y j)) mi x i y j 2 > 2( 1) 2. i,j s s t t dist(π (x), ΠC() t t α = 3/2 (y)) = mi i,j dist C (1) (x i), C (1) (y j) > 0. t s 2s s s s t s { } 0 s s s s t s { } 0 s s q t rs 2 t t t s 0 > 0(r 0, N, d) r s r 0 (N, d, r 0 ) > 0 2 t r rr r t = b α c + 1. s t s { } 0 s ss t s t t t t s 2s s 1 t t t t rs t 2s s t s t r q r t t 0 r t t m > 0 E R (u) Zd 1 N s (E, m) s r (E, m) E / σ(h () max v (u) G () C r γ(m,, ) = γ(m,,, N) s 2 (u)) (u)(u, v; E) e γ(m,,), γ(m,, ) = m(1 + 1/8 ) N +1 > m. t r s t s (E, m) s r (E, m) rt (u) E R t 2 M sep ( (u), E) t 1 r r s s r (E, m) s r s (u (j) ) (u) 2 M sep PI (C() (u), E) t 1 r r s s r (E, m) s r P s (u (j) ) (u) 2 M PI ( (u), E) t 1 r t ss r 2 s r (E, m) s r P s (u (j) ) (u) t u (j) u (j0) > 7N r j 6= j 0

43 2 rt 2 t r t s 2 M FI ( (u), E) t 1 r (E, m) s r s (u (j) ) (u) t u (j) u (j0) > 7N r j 6= j 0 2 M( (u), E) t 1 r (E, m) s r s (u (j) ) (u) t dist(u (j), (u)) > 2 u (j) u (j0) > 7N r j 6= j 0 rt r s t M PI ( (u), I) := sup E I M FI ( (u), I) := sup E I M PI ( (u), E). M FI ( (u), E). r 2 2 M PI ( (u), E) + M FI ( (u), E) M( (u), E). M( (u), E) κ()+2 t κ() = t M sep ( (u), E) M PI ( (u), E) κ() + 2 t M sep PI (C() (u), E) 2 Pr ss t t M sep ( (u), E) < 2 t r s r s r s r s (u) t M( (u), E) κ()+2 (u) st t t st κ() + 2 s (v i ) 0 i κ() + 1 r s r t s t s 2 v i v i 0 > 7N r i 6= i 0 t t r 2 t r r t st κ() s 2 (y i ) s t t 2 (x) t x / S κ() j=1 C() 2 (y j ) s s r r (v 0 ) r i 6= i 0 v i v i 0 > 7N t r st t st t r v i r 2 (y j ) 1 j κ() t tr t κ() + 1 κ() v i S j C() 2 (y j ) i = 1,, κ() + 1 s 2s s s tr s r 2 P s t t 1 N s 2 t t t s s ts A, B Z d t A B 6= r t r 1 st x A y B s t t x y = 1 t t t 2 t s (u (j) ) (u (j0) ) t u (j) u (j0) > 7N r t t 2 s r

44 t r t s 2s s s t t r t r t rt s t r st t t 1t r r s 2 t r t r J := + 5 t m = (12Nd) 1/2 0 E R s t t (u) s E M PI ( (u), E) + M FI ( (u), E) J t r 1 sts 2(J, N, d) > 0 s t t 0 2(J, N, d) t t (u) s (E, m) Pr 2 t r r t st J s s 3 t (u) t t rs t st > 7N t t r (E, m) r r x i (u) t dist(x i, (u)) 2 i = 1,, r J s t t x (u) \ r[ i=1 2 (x i ), t (x) s (E, m) s r t t t s 2 (x i ) 2 (x i 0) r i 6= i 0 t t dist( 2 (x i ), 2 (x i 0)) x i x i 0 4 > 7N 4 > 1. t t t x + 2 (x j ) r s j = 1,, r t x / S r i=1 C() 2 (x i ) 1t t Λ (u) x Λ y (u) \ Λ t s r t r s t t t2 t t s G () (x, y; E) = X (u) +1 G () (x, y; E) (u) +1 (z,z 0 ) Λ " X z Λ G () Λ G () Λ (x, z; E) (x, z; E)G() (u) (z0, y; E). +1 # G () (z 1, y; E) r s z 1 + Λ 1 v (u) t x (u) t dist(x, (u)) t s s

45 2 rt 2 t r t s (x) s (E, m) t s s X G () (x, z; E) 2 d d d 1 e γ(m,,), z (x) 2 G () (x, v; E) (u) 2d d d 1 e γ(m,,) G () (z 1, y; E), +1 r s z 1 + (x) (x) s (E, m) t s s t t x 2 (x i ) r s i = 1,, r dist( 2 (x i ), (u)) +1 t q t s G () (x, v; E) (u) +1 r s z (x i ) + 1 s X z 2 (x i ) G () 2 (x i ) (x, z; E) G () (z 1, v; E) (u) +1 s r t t dist( 2 (x i ), (u)) dist(z 1, (u)). t s 2 (x i ) r E G () (u) (x, v; E) 2Nd Nd(2 ) d 1 e (2 ) 1/2 G () (u) (z 1, v; E) s t (z 1 ) s (E, m) 2 tt G () (x, v; E) (u) (2Nd Nd) 2 (2 ) d 1 d 1 +1 r s z 2 + (z 1 ) s e (2 ) 1/2 γ(m,,) G () (u) (z 2, v; E) (2 Nd Nd) 2 (2) d 1 ( + 1) 2(d 1) e (2 ) 1/2 γ(m,,) G () +1 (u)(z 2, v; E) G () (x, v; E) (m,,) G () (z 2, v; E) (u) e γ0 +1 (u) +1

46 t r t s 2s s s r γ 0 (m,, ) = γ(m,, ) 1 [(2 ) 1/2 + 2(d 1) l( + 1) s m = (12Nd) 1/2 x (u) dist W (x) = + l((2 Nd Nd) 2 )(2) d 1 )] γ(m,, ) 6Nd + 2 l(2 Nd Nd) 1/2 > m 6Nd + 2 l(2 Nd Nd) 1/2 0 > 0, 0 x, (u) t 2 d d d 1 e γ(m,,) x s s s e γ0 (m,,) x s s s. r s r s s 2 t t G () (u) (x, v; E) W (x) G() (u) +1 (z, v; E), r s z (u) st t G () (u) (u, v; E) r v (u) st rt r u z 1, z 2, t r r r t 2 ss tt t r r st s G () (u) (u, v; E) W (u) G() (z 1, v; E) W (u)w (z 1 ) G () (z 2, v; E) (u) +1 (u) +1 W (u)w (z 1 ) W (z r 1 ) G () (u) (z r, v; E). r t s t ss z 1,... z r 1 st s t s 2 t t s t r r s r t t t rst st r x = u t r s r s t s s t t t s t z 1,..., z r 1 s t2 (u) s (E, m) t r s t r s (u) s (E, m) u 2 (x i ) r s i 1t t 2 diam( 2 (x i )) t t r 2 (x i )) dist( 2 (x i ), (u)) diam( 2 (x i )) 4 > + 1,

47 2 rt 2 t r t s 0 > C(N, J) r s st t C(N, J) > 0 s t t s s r s t s t r 1 r 2 t r t s t s r s t 2 G () (u) (u, v; E) 2Nd Nd d 1 (e γ(m,,) ) r 1 (e γ0 (m,,) ) r 2 G () (u) (z r 1 +r 2 +1, v; E). t t t r r r 1 rr s t t s r t s i r t 2 r 1 4J 1 4J. 2 t ss t t (u) s E s G C () (u) (E) < e 1/2 +1 γ 0 (m,, ) > 0 e r 2γ 0 (m,,) 1 r r G () (u, v; E) 2 Nd Nd d 1 (u) e γ(m, r1,) e 1/ r 1 e m0 m 0 = 1 ( r1 γ(m,, ) r 1 l(2 Nd Nd) d /2 +1 4J r 1 1 t m 0 γ(m,, ) γ(m,, ) 4J 1 l(2 Nd Nd) d 1 ) 1 1/2 +1 γ(m,, ) γ(m,, ) 4J 1/2 1 (l(2nd Nd)) + (d 1) l( )) 3/4 γ(m,, )[1 (4J + l(2 Nd Nd) + Nd) 1/2 ] 0 2(J, N, d) r s 2(J, N, d) > 0 r γ(m,, ) = m(1 + 1/8 ) N +1 γ(m,, ) γ(m,, ) = 1 + 1/ /16! N / /16

48 t r t s 2s s s r r t γ(m,, ) γ(m,, ) (1 (4J + l(2nd Nd) + Nd) 1/2 ) 1 + 1/ /16 (1 (4J + l(2 Nd Nd) + Nd) 1/2 ) > 1, r 0 2(J, N, d) r s r 2(J, N, d) > 0 t 2 C(J, N, d) t st t 4J + l(2 Nd 2Nd) + Nd s r t t 0 2(J, N, d) r s r 2(J, N, d) > 0 t s t t 2 t s 1 > C(J, N, d) 3/8 + C(J, N, d) 5/8 + 3/16, 1/8 > C(J, N, d) 1/2 + C(J, N, d) 5/8 + 3/16, 1 C(J, N, d) 1/2 + 1/8 C(J, N, d) 5/8 > 1 + 3/16, (1 + 1/8 )(1 C(J, N, d) 1/2 ) > 1 + 3/16, 2 t s r 1 + 1/ /16 (1 C(J, N, d) 1/2 ) > 1. r r t t t m 0 > γ(m, l +1, ) G C () (u) (u, v; E) e γ(m,,) s t s t r

49 t r t rt t s 2 3 t t r s t s t r r 3 t r t rt s2st s t r rt s 2 s t r N < N 2 2 r tr r2 t t s s t s 1 r t r st t s 2s s s r rt t r t rs s r s N ss t s t r s ts ss t s t t t r rt t r t s t r U(x) = X 1 i<j U: (Z d ) R Φ( x i x j ), x = (x 1,..., x ) Z d, r Φ: N R + s t 2 s rt t t r 0 N : supp Φ [0, r 0 ]. r 0 t r t t r t U P t s ss t t 0 supp µ [0, + ) rt r t r t2 str t t F V s r t s r r s 2 s(f V, ε) := sup(f V (a + ε) F V (a)) C a R l 2A r s C (0, ) A > 3 2 4N p + 9Nd. st t s t r t r p tr r rt2 (DS.,, N)

50 t r t rt t s 2 3 t t r s r s ts r 2 = 1,..., N t 2 σ(h () (ω)) t s tr H () (ω)) E () 0 t σ(h () (ω)) r t 1 N r ss t s (I1) (P1) t r t2 [0, 4d] σ(h () (ω)) [0, + ). s q t 2 E () 0 := if σ(h () (ω)) = 0 s r r t ss t s (I1) (P1) t r 1 sts E > E (N) 0 s t t t P r t2 t s tr H (N) (ω) [E (N) 0, E ] s t2 r t 2 t Ψ i (x, ω) t E i (ω) [E (N) 0, E ] s 1 t 2 2 t t2 t r 1 st r st t m + > 0 r st t C i (ω) > 0 s t t Ψ i (x, ω) C i (ω)e m + x. 1 t 2 B 1 t s t r t s f : R R s t t f r r t ss t s (I1) (P1) r 2 s > 0 t r 1 sts E > E (N) 0 s t t r 2 s t K Z Nd 2 s (0, s ) X s E sup 2 f(h (N) (ω))p I (H (N) 2 (ω))1 K <, f B 1 HS r ( X Ψ)(x) := x Ψ(x) P I (H (N) (ω)) s t s tr r t H (N) (ω) t t t r I := [E (N) 0, E ] rr2 t t t t r rt s r2 r 1 t N t st r 1 t r q r s r t 0 rt s2st s r 0 = 1,..., 1 s r t t t t t t st s t 2s s t s t s rt s2st t t s s2st s t 0 00 = 0 rt s r 2 0 = 1,..., 1 t s ss t t ss r2 s r r 0 rt s2st s t 2 0 = 1,..., 1

51 t t rt t s 2s s s r t s t rt t t t t s 2 s s t t st r 1 t s s s t t r s q s s 0 st rt t t s t r q r s 2 s t t s 2s s t st s t t t s 0 r t t s t r ss t t t t s t t t s 2s s s t s t 0 0(N, d, r 0 ). r s r 0(N, d, r 0 ) > 0 = 1,..., N t r rt2 r s m > 0 E > 0 2 rt t r r str t 2 (DS.,, N) r 2 r s r s (u) (v) P E I : (u), 2p 4N (v) r (E, m), r m > 0 E > 0 p > 6Nd I = (, E ] r 1 t t rt t s 2s s s t s s r 2 = 1,..., N rst r t r s t r s t s s s r t s st t r t st 2 t s t3 s2 t t s t s rt t H () (ω) = + V (x 1, ω) + + V (x, ω) + U(x) rt r r r r t r 2 (Z d ) r U V s t s 2 (I1) (P1) r s t 2 r 2 C > 0 t r 1 st r tr r 2 r 0 (C) > 0 C 1, c > 0 s t t r 2 0 (u) t st E () 0 (ω) H () (ω) s t s s (u) 0 P E () 0 (ω) 2C 1/2 0 C1 d 0e c1/4 0. Pr t t r t t t U s t t s r t 1 r t t t st E () 0 (ω) H () (ω) s r 0 2 t st E e() 0 (ω) t r t r t t t r t eh () 0 (u) (ω) = + V (x 1, ω) + + V (x, ω).

52 t r t rt t s 2 3 t t r s t H i = 2 (C (1) 0 (u i )) r t r r r tt s s X eh () (ω) = 1 H1 1 Hj 1 H (1) (u) j 0 j=1 {z } j 1 t s 1 Hj+1 1 H {z } j t s r H (1) j (ω) = (1) + V (x C (1) (u j j, ω) j = 1,..., s t H j t ) 0 st E e() 0 (ω) H e () (ω) s t r (u) 0 r E (1) 0,j ee () 0 (ω) = X j=1 E (1) 0,j (ω), s t st H(1) j s E (1) 0,j t t t t t2 t r t rs H (1) j t t s t t r 2 s 0 P ee () 0 (ω) s P E (1) 0,1 (ω) s. r t t 1t r r r s r r t t s rt r r r t r H (1) 1 r t s t s 3 t t r t t s t t t t r t t t s rr t r t t t s t t r r s t t r t s t s t3 t s r t s st t r ss t s (I1) (P1) r 2 p > 0 t r 1 sts r tr r 2 r 0 (N, d, p) s t t m := 12Nd 1/2 0 E := (12Nd)(2 N+1 m) t (DS.0, N) s r 2 = 1,..., N Pr t C = (12Nd) 2 2 N+1 t 0 (x) Z d s r ω Ω s t t t rst E () 0 (ω) H () 0 (ω) r E C 1/2 0 = E s t s s E() 0 (ω) > 2C 1/2 0 dist(e, σ(h () (ω))) = E() (u) 0 (ω) E > C 1/2 0 =: η > 0. 0 r r r 2 v 0 (u) t 2 t s s st t r G C () 0 (u) (E, u, v) 2C 1 1/2 0 e C 1/2 0 12Nd 0.

53 t t rt t s 2s s s s r t t C 1/2 0 12Nd r 0 r s = 2N+1 m s G C () 0 (u) (E, u, v) 2C 1 1/2 0 e 2N+1 m 0 2C 1 1/2 0 e 2γ(m, 0,) 0 e γ(m, 0,) 0, γ(m,, ) = m(1 + 1/8 ) N +1 < m 2 N. s s t t 0 (u) s (E, m) s ω {ω Ω (u) s (E, m) E E }. r r P 2 E E 0 (u) s (E, m) P E () 0 (ω) 2C 1/2 0, P E () 0 (ω) 2C 1/2 0 C1 d 0e c1/ t q t t2 C 1 d 0e cd0/4 2p 4N r 0 s t 2 r s ss t 0 s r s t s t r t2 r t s t s r t t s r 2 s 2 t r t2 t r t t s r t r st t t r t r t rs m E r s r t 2 I t t r (, E ] rt t s t st st s t s rt t s r rt2(ds.0, 1 N) t r s t r r t t st + 1 r t s rt r t H (1) (ω) 2 r r r ss t s (I1) (P1) t r 1 sts e (d) > 0 s t t 0 e r 0 (DS., 1 N) s tr t (DS. + 1, 1 N) s tr r t r t t r 1 r2 r s t t tm(c (1) (u); E) s t t t r (E, m) s C (1) (v j ) C (1) (u) t v j v j0 > 7N r j 6= j 0

54 t r t rt t s 2 3 t t r s r ss t s (I1) (P1) t 0 ss t t r rt2 (DS., 1 N) s tr r rs s r s rt s r 2 1 P M(C (1) (u); E) 2 C(, d) 2 dα 2 p 4N 1. Pr t r 1 st 2 r s s r s rt s C (1) (u (j) ) C (1) (u) 1 j 2 t t s s r s ts r 2 r C (1) (u (2i 1) ) C (1) (u (2i) ) t t s H (1) C (1) H(1) r t s r t r (u (2i 1) ) C (1) (u (2i) ) s tr r t s r i = 1,, s t A i = { E I : C (1) (u (2i 1) ) C (1) (u (2i) ) r (E, m) }. s ss t (DS., 1 N) r i = 1,, 2p 4N 1 P {A i }, 2 ts A 1,, A ( \ ) P A i i=1 2p 4N 1 s t t t t r r t s 2 s C (1) (u (j) ) s 2 1 (2 )! C(1). (u) 2 2 dα C(, d). Pr r t C (1) (x) C (1) (y) r s r s t B +1 = { E I : C (1) (x) C (1) (y) r (E, m) } Σ = { E I : t r C (1) (x) r C (1) (y) s E } M x = { E I : M(C (1) (x); E) 6} M y = { E I : M(C (1) (y); E) 6} s + 5 = 6 r = 1 t ω B +1 \ Σ M x t E I C (1) (x) r C (1) (y) s E M(C (1) (x); E) 3 C (1) (x) t E 2 t (E, m) t C (1) (y) s E (E, m) s s 2 t t M(C (1) (y); E) 6

55 t rt t s t s ω M y B +1 Σ M x M y s r r2 2 t P {B +1 } P {Σ} + P {M x } + P {M y } 4N p +1 + C(d) 6 α p 4N 1 +6d +1 r = 2 1 4N 1 2p N 1 2p +1 = 2 2 2p 4N p > 4αNd 2 ss t r 0 e r s r e > 0 t rt t s t = 2,..., N ss (DS. 1, 0 N) r 0 = 1,..., 1 (DS., 0 N) r 2 0 = 1,..., 1 r (DS.+1,, N) s r t 2 r t t r t2 s rs s (x) (y) r t P s (x) (y) r t s t s (x) r (y) s P t t r s

56 t r t rt t s 2 3 t t r s P rs P s D Z 2 y C (2) (y) x C (2) (x) C (1) (x 2 ) C (1) (x 1 ) C (1) (y 2 ) C (1) (y 1 ) P rs P s r d = 1 = 2 x = (x 1, x 2 ) y = (y 1, y 2 ) s r r r s r rt 2 t r t s (x) (y) r t t (DS. + 1,, N) s r s r t (u) = C (0 ) (u 0 ) C (00 ) (u 00 ) P s r t x = (x 0, x 00 ) r 2 t x (u) t s 2 s (u 0, u 00 ) rr s t H () C s t r (u) +1 H () (u) Ψ(x) = ( Ψ)(x) + [U(x0 ) + V(x 0, ω) + U(x 00 ) + V(x 00, ω)] Ψ(x) r t r H () = ) (u) H(0 +1 C (0 ) C (00 ) (u 0 ) I + I H(00 ) (u 00 ). r r s t t s r t 2 G (0) (u 0, v 0 ; E) G (00) (u 00, v 00 ; E) t r t s r t t H (0 ) H(00 ) C (0 ) (u 0 ) C (00 ) r s t 2 t +1 (u 00 ) +1 {(λ i, ϕ i )} i=1,..., C ( 0 ) (u 0 ) {(µ j, φ j )} j=1,..., C ( 00 ) (u 00 )

57 t rt t s t t s rr s t s H (0 ) s t rs Ψ ij H () (u) C (0 ) C (00 ) (u 0 ) H(00 ) s t s r r ts (u 00 ) Ψ ij (x) = ϕ i (x 0 ) φ j (x 00 ), rr s s r 2 t s s E ij = λ i + µ j. t rs t t s r s s q t r ts t s ss r 3 tr t t t 1 N E R (u) = ) C(0 (u0 ) C (00 ) (u00 ) E s r P (u) s E 2 r s t r µ j σ(h (00 ) ) t ) C (00 ) (u 00 ) C(0 (u0 ) s (E µ j ) r λ i σ(h (0 ) ) t C(00 ) H (0 ) (u0 ) (u00 ) s (E λ i ) t (E, m) t t 1 N E R m > 0 s r P (u) = ) C(0 (u0 ) C (00 ) (u00 ) (u) s (E, m) t t (E, m) µ j σ(h (00 ) ) s t t ) C (00 ) (u 00 ) C(0 (u0 ) t s t s r (E µ j, m) s C (0 ) l (v 1 ) C (0 ) l (v 2 ) t = bl α c + 1 t r s t s (E, m) t t (E, m) (E, m) r t t (E, m) λ i σ(h (0 ) ) s t t C(00 ) C (0 ) (u0 ) t s t s r (E λ i, m) s C (00 ) l (v 1 ) C (00 ) l (v 2 ) t = bl α c + 1 t r s t s (E, m) r t t (E, m) (u00 ) (E, m) t (E, m) t r t s (E, m) r (E, m) t r s t s (E, m) t (E, m) r r t r r r t 1t t E R P (u) = ) C(0 (u0 ) C (00 ) E t (u00 ) s t

58 t r t rt t s 2 3 t t r s t r t r 1 st 1/α x C (0 ) (u0 ) s t t t rt r t = C (0 ) (x) C (00 ) (u00 ) (u) s E r t r 1 st 1/α x C (00 ) (u00 ) s t t t rt r t = C (0 ) (u0 ) C (00 ) (x) (u) s E Pr 2 t (u) s t E t t r t r 1 sts µ j σ(h (00 ) ) s t t ) C (00 ) (u 00 ) C(0 (u0 ) s t E µ j r t r 1 sts λ i σ(h (0 ) ) s t t C(00 ) C (0 ) (u0 ) (u00 ) s t E λ i t s rst s s C (0 ) (u0 ) s t E µ j t r 1 sts 1/α x C (0 ) (u0 ) s t t C (0 ) (x) C (0 ) (u0 ) C (0 ) (x) s E µ j dist(e µ j, σ(h (0 ) )) < C (0 ) (x) e β r r t r 1 sts η σ(h (0 ) s r = C (0 ) (x) C (00 ) σ(h () ) = σ(h (0 ) C ) + σ(h(00 ) () C (0 ) (x) C( 00 ) (u 00 ) ) s t t E µ C (0 ) j η < e β (x) (u00 ) s t (u) s P ) dist(e, σ(h () )) E µ j η < e β. s s E s r ts s t t s r s s rs t α = 3/2 r 2 p > 6Nd ss t t t r t t s t s s (P1) t A > 4 N α p + 6αNd t (u) = ) C(0 (u0 ) C (00 ) (u00 ) (v) = ) C(0 (v0 ) C (00 ) (v00 ) t s s t t C ) (u) C() (v) r P s t P E R t r (u) r C() (v) s E 4Np. s t t (u) s P C() (v) s P E R (u) s t E C() (v) s t E 4N p.

59 t rt t s t Pr s P{ E R t r (u) r C() (v) s E } P{ E R 1, 2 ; 1/α 1, 2 x C (0 ) (u0 ) y C (0 ) (v0 ) 1 (x) C (00 ) (u00 ) (u) ) C(0 2 (y) C (00 ) (v00 ) (v) r E } C (0 ) + P{ E R 1, 2 1/α 1, 2 x C (00 ) (u00 ) y C (00) (v 00 ) C (0 ) (u0 ) C (00 ) 1 (x) (u) ) C(0 (v0 ) C (00 ) 2 (y) (v) r E } + P{ E R 1, 2 1/α 1, 2 x C (0 ) (u0 ) y C (00 ) (v00 ) 1 (x) C (00 ) (u00 ) (u) C(0 (v0 ) C (00 ) 2 (y) (v) r E } C (0 ) + P{ E R, 1, 2 : 1/α 1, 2 x C (00 ) (u00 ) y C (0 ) (v0 ) C (0 ) (u0 ) C (00 ) 1 (x) (u) ) C(0 2 (y) C (00 ) (v00 ) (v) r E } t s t t rst t r t r ts r t t r t r s r s r st t { E R, dist(e, σ(h C ( 0 ) 1 (x) C (00 ) (u 00 ) )) < e β 1, dist(e, σ(h C ( 0 ) 2 (y) C (00 ) (v 00 ) )) < e β 2 } {dist(σ(h C ( 0 ) 1 (x) C (00 ) (u 00 ) ), σ(h C (0 ) (3) 2+1)d Cst A/α. (y) C (00 ) 2 )) < e β/α } (v 00 ) s r t (P1) t t r ss t rs t r s t s r s t r ss s 1, 2 t (3)2d 2 (3) (2+1)d Cst A/α 1 4 4N p, s A > 4 N pα + 9Nd 2 t s t r r t2 t r s 2 s t ss rt t

60 t r t rt t s 2 3 t t r s P{ E R (u) s t E C() (v) s t E } P{ E R 1, 2 1/α 1, 2 x C (0 ) (u0 ) y (v), 1 (x) C (00 ) (u00 ) (u) C() 2 (y) (v) r E } + P{ E R 1, 2 1/α 1, 2 x C (00 ) 1 (u 000 ) y (v) C (0 ) C (0 ) (u0 ) C (00 ) 1 (x) C() (u) 2 (y) (v) r E }. t t rst t r t t t r t s t r s s r t s s s rt (3) 2d 2 (3) 2+1)d Cst A/α 1 2 4N p, s A > 4 N pα + 9Nd r r t s t t r t2 t r s 2 s t ss rt s ts r t 2 t r t r r ss t (P2) st t t r t s t r t s r s r 2 s s r st r s t E I (u) P ss t t (u) s (E, m) E (u) s (E, m) Pr s r P (u) = C (0 ) (u 0 ) C (00 ) (u 00 ) t {λ i, ϕ i } {µ j, φ j } t s rr s t rs H (0 ) H(00 ) C (0 ) (u 0 ) C (00 ) r s t 2 s t t rs Ψ ij rr s s E ij H () C (ω) s s (u) Ψ ij = ϕ i φ j, E ij = λ i + µ j. (u 00 ) 2 t ss E r rt2 t (u) r s λ i s C (00 ) (u00 ) s E λ i 1t 2 ss t E C (00 ) (u 00 ) s t t 2 r s r (E λ i, m) s r s 1 t r r 2 M( (u), E) < κ() + 2 s t t t s s

61 t rt t s t (E λ i, m) 2 max {λ i } max v 00 C (00 ) (u 00 ) s 2s s r C (0 ) max {µ j } max v 0 C (0 ) (u 0 ) G (00) (u 00, v 00 ; E λ i ) (u0 ) s s G (0) (u 0, v 0 ; E µ j ) e γ(m,, 00 ). e γ(m,, 0 ). r 2 v (u) u v = t s t r v 0 u 0 = r v 00 u 00 = s r rst t tt r s q t s t G () (u, v; E) = X i (2 + 1) ( 1)d max {λ i } t 2 t X ϕ i (u 0 )ϕ i (v 0 )φ j (u 00 )φ j (v 00 ) E λ i,j i µ j ϕ i (u 0 )ϕ i (v 0 ) G () (u 00, v 00 ; E λ i ) max v 00 (u 00 ) G () (u 00, v 00 ; E λ i ), (2 + 1) ( 1)d e γ(m,, 1) = e [γ(m,, 1) 1 l(2) ( 1)d ]. γ(m,, ) = m(1 + 1/8 ) N +1, t m = (12Nd) 1/2 0 r r r 2 N γ(m,, 1) γ(m,, ) > 1 l(2 + 1) ( 1)d. s tt C 1 = 12Nd γ(m,, 1) γ(m,, ) = m 1/8 (1 + 1/8 r 0 s t 2 r 1 ) N +1 s ϕ 1 = C 1 1/2 0 1/8 (1 + 1/8 ) N +1 > C 1 5/8, l(2 + 1) ( 1)d 1 ( 1)d(3 ) 3/8 C 1 5/8. s (u) s (E, m) 2 t s u 0 v 0 = s s r

62 t r t rt t s 2 3 t t r s t 2 N ss r rt2 (DS., 0 N) r < r 2 P (y) s P E I, (y) s (E, m) 1 4N 4p Pr s r P (y) = C (0 ) (y 0 ) C (00 ) (y 00 ) t ts T y 4 r 1 sts E I s t t (y) s (E, m) t 6 T y 4 r 1 st E I µ j σ(h (00 ) ) s t t ) C (00 ) (y 00 ) C(0 (y 0 ) t s +1 t s r (E µ j, m) s r s s 3 6 RT y 4 r 1 st E I λ i σ(h (0 ) ) s t t C(00 ) C (0 ) (y 0 ) (y 00 ) t s +1 t s r (E λ i, m) s r s s t T y T y 0 RT y 00 s E I µ j 0 E µ j E r 2 j E µ j I rt r s r rt2 (DS., 0 N) s r r t s s s t t s t t ) P {T y } C(0 (y 0 ) 2 C (00 ) 2 +1 (y 00 ) 2p4N 0 C(, N, d) 2p 4 P {RT y } C(, N, d) 2p 4 N ( 1) α +3( 1)d +1. N ( 1) α +3( 1)d +1, P E I : (y) s (E, m) C(, N, d) 4N ( 1) 2p α +3( 1)d +1. ss rt s 2 s r t t 2p 4 N ( 1) /α 3( 1)d > 4p 4 N r α = 3/2 r 0 s r p > 4αNd = 6Nd r t = 2,..., N r 1 sts 1 = 1(N, d) > 0 s t t 0 1 r 0 (DS., 0 N) s tr r 2 0 = 1,..., 1 t (DS. + 1,, N) s tr r 2 r s r P s (x) (y)

63 t rt t s t Pr t (x) (y) t s r P s s r t ts B +1 = E I : (x) (y) r (E, m), R = E I : t r (x) r (y) s E, T x = E I : (x) s (E, m), T y = E I : (y) s (E, m). ω B +1 \ R t E I (x) r (y) s E (y) s E t t st (E, m) t r s t (E, m) 2 r 2 (x) s E t t st (E, m) s s t t B +1 R T x T y. r r P {B +1 } P {R} + P{T x } + P{T y } P {R} + 1 4N 4p N 4p +1, 2 2 r s t st t P{T x } P{T y } s 2 t t P {R} 4N p +1 2 P {B +1 } 4N p p4N +1 < 2p4N +1. t t t t s ss t t (DS. 1, 0 N) s tr r 0 = 1,..., 1 t P M PI ( (u), I) κ() d 2 2d +1 4N p + 4p 4N. Pr s t t M PI ( (u), I) κ()+2 t 2 M sep PI (C() (u), I) 2 t r r t st t s r (E, m) s r P s (u (j 1) ) (u (j 2) ) s (u) r ss rs t rs {u (j 1), u (j 2) } s t t (u (j 1) ), (u (j 2) ) (u)

64 t r t rt t s 2 3 t t r s s 2 32d 2 2d +1 s tt t P {B } 4N p B = { E I (u (j 1) ) (u (j 2) ) r (E, m) }, P M sep PI (C() (u), I) 2 32d 2 2d +1 P {B } 4p 4N + 2 r B s s r P rs s D Z 2 y C (2) (y) x C (2) (x) C (1) (x 2 ) C (1) (x 1 ) C (1) (y 2 ) C (1) (y 1 ) P rs s r d = 1 = 2 x = (x 1, x 2 ) y = (y 1, y 2 ) r s t r (DS. + 1,, N) r r s r 2 t r t s (x) (y) r s t t s s s t s r t r r2 r s t 0 ss t t r rt2 (DS.,, N) s tr r rs s r s r 2 1 P M FI ( (u), I) 2 C(, N, d, ) 2 dα 2 p 4N.

65 t rt t s t Pr s t r 1 st 2 r s s r 2 t r t s (u (j) ) (u) j = 1,..., 2 2 r 2 r (u (2i 1) ) (u (2i) ) t rr s r t s H () (u (2i 1) ) H () r t s r t r s tr t r r (u (2i) ) t s r i = 1,..., s r t ts A i = E I : (u (2i 1) ) (u (2i) ) r (E, m) 2 ss t (DS.,, N) r i = 1,..., 2 ts A 1,..., A \ Y P A i = P(A i ) ( 1 i 2p 4N P {A i }, i=1 2p 4N.. t t r t t t t t t r r t s 2 s (u (j) ) (u) j = 1,..., 2 s 2 1 (2 )! +1 (u) 2 C(, N,, d) 2 dα. r t = 2,..., N r 1 sts 2 = 2(N, d) > 0 s t t 0 2 r 0 (DS. 1, 0 N) r 0 = 1,..., 1 s tr (DS., N) s tr r rs s t (DS. + 1,, N) s tr r 2 r s r s (x) (y) s t t t t (DS. 1, N) s ss t Pr s r r s r s (x) (y) s t J = κ() + 5 B +1 = E I : (x) (y) r (E, m), Σ = E I : t r (x) r (y) s E, S x = E I : M( (x); E) J + 1, S y = E I : M( (y), E) J + 1.

Mesh Parameterization: Theory and Practice

Mesh Parameterization: Theory and Practice Mesh Parameterization: Theory and Practice Kai Hormann, Bruno Lévy, Alla Sheffer To cite this version: Kai Hormann, Bruno Lévy, Alla Sheffer. Mesh Parameterization: Theory and Practice. This document is

Διαβάστε περισσότερα

Assessment of otoacoustic emission probe fit at the workfloor

Assessment of otoacoustic emission probe fit at the workfloor Assessment of otoacoustic emission probe fit at the workfloor t s st tt r st s s r r t rs t2 t P t rs str t t r 1 t s ér r tr st tr r2 t r r t s t t t r t s r ss r rr t 2 s r r 1 s r r t s s s r t s t

Διαβάστε περισσότερα

Coupling strategies for compressible - low Mach number flows

Coupling strategies for compressible - low Mach number flows Coupling strategies for compressible - low Mach number flows Yohan Penel, Stéphane Dellacherie, Bruno Després To cite this version: Yohan Penel, Stéphane Dellacherie, Bruno Després. Coupling strategies

Διαβάστε περισσότερα

Alterazioni del sistema cardiovascolare nel volo spaziale

Alterazioni del sistema cardiovascolare nel volo spaziale POLITECNICO DI TORINO Corso di Laurea in Ingegneria Aerospaziale Alterazioni del sistema cardiovascolare nel volo spaziale Relatore Ing. Stefania Scarsoglio Studente Marco Enea Anno accademico 2015 2016

Διαβάστε περισσότερα

ts s ts tr s t tr r n s s q t r t rs d n i : X n X n 1 r n 1 0 i n s t s 2 d n i dn+1 j = d n j dn+1 i+1 r 2 s s s s ts

ts s ts tr s t tr r n s s q t r t rs d n i : X n X n 1 r n 1 0 i n s t s 2 d n i dn+1 j = d n j dn+1 i+1 r 2 s s s s ts r s r t r t t tr t t 2 t2 str t s s t2 s r PP rs t P r s r t r2 s r r s ts t 2 t2 str t s s s ts t2 t r2 r s ts r t t t2 s s r ss s q st r s t t s 2 r t t s t t st t t t 2 tr t s s s t r t s t s 2 s ts

Διαβάστε περισσότερα

P P Ó P. r r t r r r s 1. r r ó t t ó rr r rr r rí st s t s. Pr s t P r s rr. r t r s s s é 3 ñ

P P Ó P. r r t r r r s 1. r r ó t t ó rr r rr r rí st s t s. Pr s t P r s rr. r t r s s s é 3 ñ P P Ó P r r t r r r s 1 r r ó t t ó rr r rr r rí st s t s Pr s t P r s rr r t r s s s é 3 ñ í sé 3 ñ 3 é1 r P P Ó P str r r r t é t r r r s 1 t r P r s rr 1 1 s t r r ó s r s st rr t s r t s rr s r q s

Διαβάστε περισσότερα

ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s

ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s P P P P ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s r t r 3 2 r r r 3 t r ér t r s s r t s r s r s ér t r r t t q s t s sã s s s ér t

Διαβάστε περισσότερα

LEM. Non-linear externalities in firm localization. Giulio Bottazzi Ugo Gragnolati * Fabio Vanni

LEM. Non-linear externalities in firm localization. Giulio Bottazzi Ugo Gragnolati * Fabio Vanni LEM WORKING PAPER SERIES Non-linear externalities in firm localization Giulio Bottazzi Ugo Gragnolati * Fabio Vanni Institute of Economics, Scuola Superiore Sant'Anna, Pisa, Italy * University of Paris

Διαβάστε περισσότερα

Transfert sécurisé d Images par combinaison de techniques de compression, cryptage et de marquage

Transfert sécurisé d Images par combinaison de techniques de compression, cryptage et de marquage Transfert sécurisé d Images par combinaison de techniques de compression, cryptage et de marquage José Marconi Rodrigues To cite this version: José Marconi Rodrigues. Transfert sécurisé d Images par combinaison

Διαβάστε περισσότερα

Analysis of a discrete element method and coupling with a compressible fluid flow method

Analysis of a discrete element method and coupling with a compressible fluid flow method Analysis of a discrete element method and coupling with a compressible fluid flow method Laurent Monasse To cite this version: Laurent Monasse. Analysis of a discrete element method and coupling with a

Διαβάστε περισσότερα

Vers un assistant à la preuve en langue naturelle

Vers un assistant à la preuve en langue naturelle Vers un assistant à la preuve en langue naturelle Thévenon Patrick To cite this version: Thévenon Patrick. Vers un assistant à la preuve en langue naturelle. Autre [cs.oh]. Université de Savoie, 2006.

Διαβάστε περισσότερα

Ax = b. 7x = 21. x = 21 7 = 3.

Ax = b. 7x = 21. x = 21 7 = 3. 3 s st 3 r 3 t r 3 3 t s st t 3t s 3 3 r 3 3 st t t r 3 s t t r r r t st t rr 3t r t 3 3 rt3 3 t 3 3 r st 3 t 3 tr 3 r t3 t 3 s st t Ax = b. s t 3 t 3 3 r r t n r A tr 3 rr t 3 t n ts b 3 t t r r t x 3

Διαβάστε περισσότερα

QBER DISCUSSION PAPER No. 8/2013. On Assortative and Disassortative Mixing in Scale-Free Networks: The Case of Interbank Credit Networks

QBER DISCUSSION PAPER No. 8/2013. On Assortative and Disassortative Mixing in Scale-Free Networks: The Case of Interbank Credit Networks QBER DISCUSSION PAPER No. 8/2013 On Assortative and Disassortative Mixing in Scale-Free Networks: The Case of Interbank Credit Networks Karl Finger, Daniel Fricke and Thomas Lux ss rt t s ss rt t 1 r t

Διαβάστε περισσότερα

ss rt t r s t t t rs r ç s s rt t r t Pr r r q r ts P 2s s r r t t t t t st r t

ss rt t r s t t t rs r ç s s rt t r t Pr r r q r ts P 2s s r r t t t t t st r t Ô P ss rt t r s t t t rs r ç s s rt t r t Pr r r q r ts P 2s s r r t t t t t st r t FichaCatalografica :: Fichacatalografica https://www3.dti.ufv.br/bbt/ficha/cadastrarficha/visua... Ficha catalográfica

Διαβάστε περισσότερα

P r s r r t. tr t. r P

P r s r r t. tr t. r P P r s r r t tr t r P r t s rés t t rs s r s r r t é ér s r q s t r r r r t str t q q s r s P rs t s r st r q r P P r s r r t t s rés t t r t s rés t t é ér s r q s t r r r r t r st r q rs s r s r r t str

Διαβάστε περισσότερα

Network Neutrality Debate and ISP Inter-Relations: Traffi c Exchange, Revenue Sharing, and Disconnection Threat

Network Neutrality Debate and ISP Inter-Relations: Traffi c Exchange, Revenue Sharing, and Disconnection Threat Network Neutrality Debate and ISP Inter-Relations: Traffi c Exchange, Revenue Sharing, and Disconnection Threat Pierre Coucheney, Patrick Maillé, runo Tuffin To cite this version: Pierre Coucheney, Patrick

Διαβάστε περισσότερα

Solving an Air Conditioning System Problem in an Embodiment Design Context Using Constraint Satisfaction Techniques

Solving an Air Conditioning System Problem in an Embodiment Design Context Using Constraint Satisfaction Techniques Solving an Air Conditioning System Problem in an Embodiment Design Context Using Constraint Satisfaction Techniques Raphael Chenouard, Patrick Sébastian, Laurent Granvilliers To cite this version: Raphael

Διαβάστε περισσότερα

Résolution de problème inverse et propagation d incertitudes : application à la dynamique des gaz compressibles

Résolution de problème inverse et propagation d incertitudes : application à la dynamique des gaz compressibles Résolution de problème inverse et propagation d incertitudes : application à la dynamique des gaz compressibles Alexandre Birolleau To cite this version: Alexandre Birolleau. Résolution de problème inverse

Διαβάστε περισσότερα

Modèles de représentation multi-résolution pour le rendu photo-réaliste de matériaux complexes

Modèles de représentation multi-résolution pour le rendu photo-réaliste de matériaux complexes Modèles de représentation multi-résolution pour le rendu photo-réaliste de matériaux complexes Jérôme Baril To cite this version: Jérôme Baril. Modèles de représentation multi-résolution pour le rendu

Διαβάστε περισσότερα

ON THE MEASUREMENT OF

ON THE MEASUREMENT OF ON THE MEASUREMENT OF INVESTMENT TYPES: HETEROGENEITY IN CORPORATE TAX ELASTICITIES HENDRIK JUNGMANN, SIMON LORETZ WORKING PAPER NO. 2016-01 t s r t st t t2 s t r t2 r r t t 1 st t s r r t3 str t s r ts

Διαβάστε περισσότερα

ACI sécurité informatique KAA (Key Authentification Ambient)

ACI sécurité informatique KAA (Key Authentification Ambient) ACI sécurité informatique KAA (Key Authentification Ambient) Samuel Galice, Veronique Legrand, Frédéric Le Mouël, Marine Minier, Stéphane Ubéda, Michel Morvan, Sylvain Sené, Laurent Guihéry, Agnès Rabagny,

Διαβάστε περισσότερα

A hybrid PSTD/DG method to solve the linearized Euler equations

A hybrid PSTD/DG method to solve the linearized Euler equations A hybrid PSTD/ method to solve the linearized Euler equations ú P á ñ 3 rt r 1 rt t t t r t rs t2 2 t r s r2 r r Ps s tr r r P t s s t t 2 r t r r P s s r r 2s s s2 t s s t t t s t r t s t r q t r r t

Διαβάστε περισσότερα

Consommation marchande et contraintes non monétaires au Canada ( )

Consommation marchande et contraintes non monétaires au Canada ( ) Consommation marchande et contraintes non monétaires au Canada (1969-2008) Julien Boelaert, François Gardes To cite this version: Julien Boelaert, François Gardes. Consommation marchande et contraintes

Διαβάστε περισσότερα

ΜΕΤΑΠΤΥΧΙΑΚΗ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. Ελευθερίου Β. Χρυσούλα. Επιβλέπων: Νικόλαος Καραμπετάκης Καθηγητής Α.Π.Θ.

ΜΕΤΑΠΤΥΧΙΑΚΗ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. Ελευθερίου Β. Χρυσούλα. Επιβλέπων: Νικόλαος Καραμπετάκης Καθηγητής Α.Π.Θ. ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΘΕΩΡΗΤΙΚΗ ΠΛΗΡΟΦΟΡΙΚΗ ΚΑΙ ΘΕΩΡΙΑ ΣΥΣΤΗΜΑΤΩΝ ΚΑΙ ΕΛΕΓΧΟΥ Αναγνώριση συστημάτων με δεδομένη συνεχή και κρουστική συμπεριφορά

Διαβάστε περισσότερα

r r t r r t t r t P s r t r P s r s r r rs tr t r r t s ss r P s s t r t t tr r r t t r t r r t t s r t rr t Ü rs t 3 r r r 3 rträ 3 röÿ r t

r r t r r t t r t P s r t r P s r s r r rs tr t r r t s ss r P s s t r t t tr r r t t r t r r t t s r t rr t Ü rs t 3 r r r 3 rträ 3 röÿ r t r t t r t ts r3 s r r t r r t t r t P s r t r P s r s r P s r 1 s r rs tr t r r t s ss r P s s t r t t tr r 2s s r t t r t r r t t s r t rr t Ü rs t 3 r t r 3 s3 Ü rs t 3 r r r 3 rträ 3 röÿ r t r r r rs

Διαβάστε περισσότερα

Multi-GPU numerical simulation of electromagnetic waves

Multi-GPU numerical simulation of electromagnetic waves Multi-GPU numerical simulation of electromagnetic waves Philippe Helluy, Thomas Strub To cite this version: Philippe Helluy, Thomas Strub. Multi-GPU numerical simulation of electromagnetic waves. ESAIM:

Διαβάστε περισσότερα

Robust Segmentation of Focal Lesions on Multi-Sequence MRI in Multiple Sclerosis

Robust Segmentation of Focal Lesions on Multi-Sequence MRI in Multiple Sclerosis Robust Segmentation of Focal Lesions on Multi-Sequence MRI in Multiple Sclerosis Daniel García-Lorenzo To cite this version: Daniel García-Lorenzo. Robust Segmentation of Focal Lesions on Multi-Sequence

Διαβάστε περισσότερα

Jeux d inondation dans les graphes

Jeux d inondation dans les graphes Jeux d inondation dans les graphes Aurélie Lagoutte To cite this version: Aurélie Lagoutte. Jeux d inondation dans les graphes. 2010. HAL Id: hal-00509488 https://hal.archives-ouvertes.fr/hal-00509488

Διαβάστε περισσότερα

Radio détection des rayons cosmiques d ultra-haute énergie : mise en oeuvre et analyse des données d un réseau de stations autonomes.

Radio détection des rayons cosmiques d ultra-haute énergie : mise en oeuvre et analyse des données d un réseau de stations autonomes. Radio détection des rayons cosmiques d ultra-haute énergie : mise en oeuvre et analyse des données d un réseau de stations autonomes. Diego Torres Machado To cite this version: Diego Torres Machado. Radio

Διαβάστε περισσότερα

E fficient computational tools for the statistical analysis of shape and asymmetryof 3D point sets

E fficient computational tools for the statistical analysis of shape and asymmetryof 3D point sets E fficient computational tools for the statistical analysis of shape and asymmetryof 3D point sets Benoît Combès To cite this version: Benoît Combès. E fficient computational tools for the statistical

Διαβάστε περισσότερα

Three essays on trade and transfers: country heterogeneity, preferential treatment and habit formation

Three essays on trade and transfers: country heterogeneity, preferential treatment and habit formation Three essays on trade and transfers: country heterogeneity, preferential treatment and habit formation Jean-Marc Malambwe Kilolo To cite this version: Jean-Marc Malambwe Kilolo. Three essays on trade and

Διαβάστε περισσότερα

Forêts aléatoires : aspects théoriques, sélection de variables et applications

Forêts aléatoires : aspects théoriques, sélection de variables et applications Forêts aléatoires : aspects théoriques, sélection de variables et applications Robin Genuer To cite this version: Robin Genuer. Forêts aléatoires : aspects théoriques, sélection de variables et applications.

Διαβάστε περισσότερα

r t t r t t à ré ér t é r t st é é t r s s2stè s t rs ts t s

r t t r t t à ré ér t é r t st é é t r s s2stè s t rs ts t s r t r r é té tr q tr t q t t q t r t t rrêté stér ût Prés té r ré ér ès r é r r st P t ré r t érô t 2r ré ré s r t r tr q t s s r t t s t r tr q tr t q t t q t r t t r t t r t t à ré ér t é r t st é é

Διαβάστε περισσότερα

VISCOUS FLUID FLOWS Mechanical Engineering

VISCOUS FLUID FLOWS Mechanical Engineering NEER ENGI STRUCTURE PRESERVING FORMULATION OF HIGH VISCOUS FLUID FLOWS Mechanical Engineering Technical Report ME-TR-9 grad curl div constitutive div curl grad DATA SHEET Titel: Structure preserving formulation

Διαβάστε περισσότερα

Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté

Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté Alexis Nuttin To cite this version: Alexis Nuttin. Physique des réacteurs

Διαβάστε περισσότερα

P t s st t t t t2 t s st t t rt t t tt s t t ä ör tt r t r 2ö r t ts t t t t t t st t t t s r s s s t är ä t t t 2ö r t ts rt t t 2 r äärä t r s Pr r

P t s st t t t t2 t s st t t rt t t tt s t t ä ör tt r t r 2ö r t ts t t t t t t st t t t s r s s s t är ä t t t 2ö r t ts rt t t 2 r äärä t r s Pr r r s s s t t P t s st t t t t2 t s st t t rt t t tt s t t ä ör tt r t r 2ö r t ts t t t t t t st t t t s r s s s t är ä t t t 2ö r t ts rt t t 2 r äärä t r s Pr r t t s st ä r t str t st t tt2 t s s t st

Διαβάστε περισσότερα

Langages dédiés au développement de services de communications

Langages dédiés au développement de services de communications Langages dédiés au développement de services de communications Nicolas Palix To cite this version: Nicolas Palix. Langages dédiés au développement de services de communications. Réseaux et télécommunications

Διαβάστε περισσότερα

rs r r â t át r st tíst Ó P ã t r r r â

rs r r â t át r st tíst Ó P ã t r r r â rs r r â t át r st tíst P Ó P ã t r r r â ã t r r P Ó P r sã rs r s t à r çã rs r st tíst r q s t r r t çã r r st tíst r t r ú r s r ú r â rs r r â t át r çã rs r st tíst 1 r r 1 ss rt q çã st tr sã

Διαβάστε περισσότερα

M p f(p, q) = (p + q) O(1)

M p f(p, q) = (p + q) O(1) l k M = E, I S = {S,..., S t } E S i = p i {,..., t} S S q S Y E q X S X Y = X Y I X S X Y = X Y I S q S q q p+q p q S q p i O q S pq p i O S 2 p q q p+q p q p+q p fp, q AM S O fp, q p + q p p+q p AM

Διαβάστε περισσότερα

Émergence des représentations perceptives de la parole : Des transformations verbales sensorielles à des éléments de modélisation computationnelle

Émergence des représentations perceptives de la parole : Des transformations verbales sensorielles à des éléments de modélisation computationnelle Émergence des représentations perceptives de la parole : Des transformations verbales sensorielles à des éléments de modélisation computationnelle Anahita Basirat To cite this version: Anahita Basirat.

Διαβάστε περισσότερα

A Probabilistic Numerical Method for Fully Non-linear Parabolic Partial Differential Equations

A Probabilistic Numerical Method for Fully Non-linear Parabolic Partial Differential Equations A Probabilistic Numerical Metod for Fully Non-linear Parabolic Partial Differential Equations Aras Faim To cite tis version: Aras Faim. A Probabilistic Numerical Metod for Fully Non-linear Parabolic Partial

Διαβάστε περισσότερα

Molekulare Ebene (biochemische Messungen) Zelluläre Ebene (Elektrophysiologie, Imaging-Verfahren) Netzwerk Ebene (Multielektrodensysteme) Areale (MRT, EEG...) Gene Neuronen Synaptische Kopplung kleine

Διαβάστε περισσότερα

9.BbF`2iBbB2`mM; A,.Bz2`2Mx2Mp2`7?`2M 7Ƀ` T `ib2hh2.bz2`2mib H;H2B+?mM;2M 8.BbF`2iBbB2`mM; AA, 6BMBi2 1H2K2Mi2 o2`7?`2m

9.BbF`2iBbB2`mM; A,.Bz2`2Mx2Mp2`7?`2M 7Ƀ` T `ib2hh2.bz2`2mib H;H2B+?mM;2M 8.BbF`2iBbB2`mM; AA, 6BMBi2 1H2K2Mi2 o2`7?`2m R R R K h ( ) L 2 (Ω) H k (Ω) H0 k (Ω) R u h R 2 Φ i Φ i L 2 A : R n R n n N + x x Ax x x 2 A x 2 x 3 x 3 a a n A := a n a nn A x = ( 2 5 9 A = )( x ( ) 2 5 9 x 2 ) ( ) 2x +5x = 2. x +9x 2 Ax = b 2x +5x

Διαβάστε περισσότερα

Annulations de la dette extérieure et croissance. Une application au cas des pays pauvres très endettés (PPTE)

Annulations de la dette extérieure et croissance. Une application au cas des pays pauvres très endettés (PPTE) Annulations de la dette extérieure et croissance. Une application au cas des pays pauvres très endettés (PPTE) Khadija Idlemouden To cite this version: Khadija Idlemouden. Annulations de la dette extérieure

Διαβάστε περισσότερα

Contribution à l évolution des méthodologies de caractérisation et d amélioration des voies ferrées

Contribution à l évolution des méthodologies de caractérisation et d amélioration des voies ferrées Contribution à l évolution des méthodologies de caractérisation et d amélioration des voies ferrées Noureddine Rhayma To cite this version: Noureddine Rhayma. Contribution à l évolution des méthodologies

Διαβάστε περισσότερα

Transformations d Arbres XML avec des Modèles Probabilistes pour l Annotation

Transformations d Arbres XML avec des Modèles Probabilistes pour l Annotation Transformations d Arbres XML avec des Modèles Probabilistes pour l Annotation Florent Jousse To cite this version: Florent Jousse. Transformations d Arbres XML avec des Modèles Probabilistes pour l Annotation.

Διαβάστε περισσότερα

Segmentation d IRM cérébrales multidimensionnelles par coupe de graphe

Segmentation d IRM cérébrales multidimensionnelles par coupe de graphe Segmentation d IRM cérébrales multidimensionnelles par coupe de graphe Jérémy Lecoeur To cite this version: Jérémy Lecoeur. Segmentation d IRM cérébrales multidimensionnelles par coupe de graphe. Informatique

Διαβάστε περισσότερα

Q π (/) ^ ^ ^ Η φ. <f) c>o. ^ ο. ö ê ω Q. Ο. o 'c. _o _) o U 03. ,,, ω ^ ^ -g'^ ο 0) f ο. Ε. ιη ο Φ. ο 0) κ. ο 03.,Ο. g 2< οο"" ο φ.

Q π (/) ^ ^ ^ Η φ. <f) c>o. ^ ο. ö ê ω Q. Ο. o 'c. _o _) o U 03. ,,, ω ^ ^ -g'^ ο 0) f ο. Ε. ιη ο Φ. ο 0) κ. ο 03.,Ο. g 2< οο ο φ. II 4»» «i p û»7'' s V -Ζ G -7 y 1 X s? ' (/) Ζ L. - =! i- Ζ ) Η f) " i L. Û - 1 1 Ι û ( - " - ' t - ' t/î " ι-8. Ι -. : wî ' j 1 Τ J en " il-' - - ö ê., t= ' -; '9 ',,, ) Τ '.,/,. - ϊζ L - (- - s.1 ai

Διαβάστε περισσότερα

Points de torsion des courbes elliptiques et équations diophantiennes

Points de torsion des courbes elliptiques et équations diophantiennes Points de torsion des courbes elliptiques et équations diophantiennes Nicolas Billerey To cite this version: Nicolas Billerey. Points de torsion des courbes elliptiques et équations diophantiennes. Mathématiques

Διαβάστε περισσότερα

Couplage dans les applications interactives de grande taille

Couplage dans les applications interactives de grande taille Couplage dans les applications interactives de grande taille Jean-Denis Lesage To cite this version: Jean-Denis Lesage. Couplage dans les applications interactives de grande taille. Réseaux et télécommunications

Διαβάστε περισσότερα

UNIVERSITE DE PERPIGNAN VIA DOMITIA

UNIVERSITE DE PERPIGNAN VIA DOMITIA Délivré par UNIVERSITE DE PERPIGNAN VIA DOMITIA Préparée au sein de l école doctorale Energie et Environnement Et de l unité de recherche Procédés, Matériaux et Énergie Solaire (PROMES-CNRS, UPR 8521)

Διαβάστε περισσότερα

Pathological synchronization in neuronal populations : a control theoretic perspective

Pathological synchronization in neuronal populations : a control theoretic perspective Pathological synchronization in neuronal populations : a control theoretic perspective Alessio Franci To cite this version: Alessio Franci. Pathological synchronization in neuronal populations : a control

Διαβάστε περισσότερα

Measurement-driven mobile data traffic modeling in a large metropolitan area

Measurement-driven mobile data traffic modeling in a large metropolitan area Measurement-driven mobile data traffic modeling in a large metropolitan area Eduardo Mucelli Rezende Oliveira, Aline Carneiro Viana, Kolar Purushothama Naveen, Carlos Sarraute To cite this version: Eduardo

Διαβάστε περισσότερα

P P Ô. ss rt çã r s t à rs r ç s rt s 1 ê s Pr r Pós r çã ís r t çã tít st r t

P P Ô. ss rt çã r s t à rs r ç s rt s 1 ê s Pr r Pós r çã ís r t çã tít st r t P P Ô P ss rt çã r s t à rs r ç s rt s 1 ê s Pr r Pós r çã ís r t çã tít st r t FELIPE ANDRADE APOLÔNIO UM MODELO PARA DEFEITOS ESTRUTURAIS EM NANOMAGNETOS Dissertação apresentada à Universidade Federal

Διαβάστε περισσότερα

Déformation et quantification par groupoïde des variétés toriques

Déformation et quantification par groupoïde des variétés toriques Défomation et uantification pa goupoïde de vaiété toiue Fédéic Cadet To cite thi veion: Fédéic Cadet. Défomation et uantification pa goupoïde de vaiété toiue. Mathématiue [math]. Univeité d Oléan, 200.

Διαβάστε περισσότερα

u = 0 u = ϕ t + Π) = 0 t + Π = C(t) C(t) C(t) = K K C(t) ϕ = ϕ 1 + C(t) dt Kt 2 ϕ = 0

u = 0 u = ϕ t + Π) = 0 t + Π = C(t) C(t) C(t) = K K C(t) ϕ = ϕ 1 + C(t) dt Kt 2 ϕ = 0 u = (u, v, w) ω ω = u = 0 ϕ u u = ϕ u = 0 ϕ 2 ϕ = 0 u t = u ω 1 ρ Π + ν 2 u Π = p + (1/2)ρ u 2 + ρgz ω = 0 ( ϕ t + Π) = 0 ϕ t + Π = C(t) C(t) C(t) = K K C(t) ϕ = ϕ 1 + C(t) dt Kt C(t) ϕ ϕ 1 ϕ = ϕ 1 p ρ

Διαβάστε περισσότερα

J J l 2 J T l 1 J T J T l 2 l 1 J J l 1 c 0 J J J J J l 2 l 2 J J J T J T l 1 J J T J T J T J {e n } n N {e n } n N x X {λ n } n N R x = λ n e n {e n } n N {e n : n N} e n 0 n N k 1, k 2,..., k n N λ

Διαβάστε περισσότερα

Stéphane Bancelin. Imagerie Quantitative du Collagène par Génération de Seconde Harmonique.

Stéphane Bancelin. Imagerie Quantitative du Collagène par Génération de Seconde Harmonique. Imagerie Quantitative du Collagène par Génération de Seconde Harmonique Stéphane Bancelin To cite this version: Stéphane Bancelin. Imagerie Quantitative du Collagène par Génération de Seconde Harmonique.

Διαβάστε περισσότερα

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Α Ρ Χ Α Ι Α Ι Σ Τ Ο Ρ Ι Α Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Σ η µ ε ί ω σ η : σ υ ν ά δ ε λ φ ο ι, ν α µ ο υ σ υ γ χ ω ρ ή σ ε τ ε τ ο γ ρ ή γ ο ρ ο κ α ι α τ η µ έ λ η τ ο ύ

Διαβάστε περισσότερα

Stratégies Efficaces et Modèles d Implantation pour les Langages Fonctionnels.

Stratégies Efficaces et Modèles d Implantation pour les Langages Fonctionnels. Stratégies Efficaces et Modèles d Implantation pour les Langages Fonctionnels. François-Régis Sinot To cite this version: François-Régis Sinot. Stratégies Efficaces et Modèles d Implantation pour les Langages

Διαβάστε περισσότερα

Conditions aux bords dans des theories conformes non unitaires

Conditions aux bords dans des theories conformes non unitaires Conditions aux bords dans des theories conformes non unitaires Jerome Dubail To cite this version: Jerome Dubail. Conditions aux bords dans des theories conformes non unitaires. Physique mathématique [math-ph].

Διαβάστε περισσότερα

Approximation de haute précision des problèmes de diffraction.

Approximation de haute précision des problèmes de diffraction. Approximation de haute précision des problèmes de diffraction. Sophie Laurens To cite this version: Sophie Laurens. Approximation de haute précision des problèmes de diffraction.. Mathématiques [math].

Διαβάστε περισσότερα

k k ΚΕΦΑΛΑΙΟ 1 G = (V, E) V E V V V G E G e = {v, u} E v u e v u G G V (G) E(G) n(g) = V (G) m(g) = E(G) G S V (G) S G N G (S) = {u V (G)\S v S : {v, u} E(G)} G v S v V (G) N G (v) = N G ({v}) x V (G)

Διαβάστε περισσότερα

!!" #7 $39 %" (07) ..,..,.. $ 39. ) :. :, «(», «%», «%», «%» «%». & ,. ). & :..,. '.. ( () #*. );..,..'. + (# ).

!! #7 $39 % (07) ..,..,.. $ 39. ) :. :, «(», «%», «%», «%» «%». & ,. ). & :..,. '.. ( () #*. );..,..'. + (# ). 1 00 3 !!" 344#7 $39 %" 6181001 63(07) & : ' ( () #* ); ' + (# ) $ 39 ) : : 00 %" 6181001 63(07)!!" 344#7 «(» «%» «%» «%» «%» & ) 4 )&-%/0 +- «)» * «1» «1» «)» ) «(» «%» «%» + ) 30 «%» «%» )1+ / + : +3

Διαβάστε περισσότερα

γ 1 6 M = 0.05 F M = 0.05 F M = 0.2 F M = 0.2 F M = 0.05 F M = 0.05 F M = 0.05 F M = 0.2 F M = 0.05 F 2 2 λ τ M = 6000 M = 10000 M = 15000 M = 6000 M = 10000 M = 15000 1 6 τ = 36 1 6 τ = 102 1 6 M = 5000

Διαβάστε περισσότερα

Αρµονική Ανάλυση. Ενότητα: Χώροι L p - Ασκήσεις. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών

Αρµονική Ανάλυση. Ενότητα: Χώροι L p - Ασκήσεις. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών Ενότητα: Χώροι L p - Ασκήσεις Απόστολος Γιαννόπουλος Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

ITU-R P (2012/02) &' (

ITU-R P (2012/02) &' ( ITU-R P.530-4 (0/0) $ % " "#! &' ( P ITU-R P. 530-4 ii.. (IPR) (ITU-T/ITU-R/ISO/IEC).ITU-R http://www.itu.int/itu-r/go/patents/en. ITU-T/ITU-R/ISO/IEC (http://www.itu.int/publ/r-rec/en ) () ( ) BO BR BS

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΠΙΘΑΝΟΤΗΤΩΝ ΕΙΣΑΓΩΓΙΚΟ ΜΑΘΗΜΑ ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ

ΘΕΩΡΙΑ ΠΙΘΑΝΟΤΗΤΩΝ ΕΙΣΑΓΩΓΙΚΟ ΜΑΘΗΜΑ ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ ΘΕΩΡΙΑ ΠΙΘΑΝΟΤΗΤΩΝ ΕΙΣΑΓΩΓΙΚΟ ΜΑΘΗΜΑ ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ Επιµέλεια: Ι. Σπηλιώτης Άσκηση.3 σελ.45 Εξάγονται δύο σφαίρες από την Α και τοποθετούνται στην Β. Υπάρχουν τρία δυνατά ενδεχόµενα: Ε : εξάγονται δύο

Διαβάστε περισσότερα

ο3 3 gs ftffg «5.s LS ό b a. L Μ κ5 =5 5 to w *! .., TJ ο C5 κ .2 '! "c? to C φ io -Ρ (Μ 3 Β Φ Ι <^ ϊ bcp Γί~ eg «to ιο pq ΛΛ g Ό & > I " CD β U3

ο3 3 gs ftffg «5.s LS ό b a. L Μ κ5 =5 5 to w *! .., TJ ο C5 κ .2 '! c? to C φ io -Ρ (Μ 3 Β Φ Ι <^ ϊ bcp Γί~ eg «to ιο pq ΛΛ g Ό & > I  CD β U3 I co f - bu. EH T ft Wj. ta -p -Ρ - a &.So f I P ω s Q. ( *! C5 κ u > u.., TJ C φ Γί~ eg «62 gs ftffg «5.s LS ό b a. L κ5 =5 5 W.2 '! "c? io -Ρ ( Β Φ Ι < ϊ bcp «δ ι pq ΛΛ g Ό & > I " CD β U (Ν φ ra., r

Διαβάστε περισσότερα

m i N 1 F i = j i F ij + F x

m i N 1 F i = j i F ij + F x N m i i = 1,..., N m i Fi x N 1 F ij, j = 1, 2,... i 1, i + 1,..., N m i F i = j i F ij + F x i mi Fi j Fj i mj O P i = F i = j i F ij + F x i, i = 1,..., N P = i F i = N F ij + i j i N i F x i, i = 1,...,

Διαβάστε περισσότερα

Développement d un nouveau multi-détecteur de neutrons

Développement d un nouveau multi-détecteur de neutrons Développement d un nouveau multi-détecteur de neutrons M. Sénoville To cite this version: M. Sénoville. Développement d un nouveau multi-détecteur de neutrons. Physique Nucléaire Expérimentale [nucl-ex].

Διαβάστε περισσότερα

cos t dt = 0. t cos t 2 dt = 1 8 f(x, y, z) = (2xyz, x 2 z, x 2 y) (2xyz) = (x2 z) (x 2 z) = (x2 y) 1 u du =

cos t dt = 0. t cos t 2 dt = 1 8 f(x, y, z) = (2xyz, x 2 z, x 2 y) (2xyz) = (x2 z) (x 2 z) = (x2 y) 1 u du = ΛΥΣΕΙΣ. Οι ασκήσεις από το βιβλίο των Marsden - Tromba. 1. 7.1.()(b) σ (t) (cos t sin t 1) οπότε σ (t) και σ f(x y z) ds π (c) σ (t) i + tj οπότε σ (t) 1 + 4t και σ f(x y z) ds 1 t cos 1 + 4t dt 1 8 cos

Διαβάστε περισσότερα

La naissance de la cohomologie des groupes

La naissance de la cohomologie des groupes La naissance de la cohomologie des groupes Nicolas Basbois To cite this version: Nicolas Basbois. La naissance de la cohomologie des groupes. Mathématiques [math]. Université Nice Sophia Antipolis, 2009.

Διαβάστε περισσότερα

Aboa Centre for Economics. Discussion paper No. 122 Turku 2018

Aboa Centre for Economics. Discussion paper No. 122 Turku 2018 Joonas Ollonqvist Accounting for the role of tax-benefit changes in shaping income inequality: A new method, with application to income inequality in Finland Aboa Centre for Economics Discussion paper

Διαβάστε περισσότερα

Voice over IP Vulnerability Assessment

Voice over IP Vulnerability Assessment Voice over IP Vulnerability Assessment Humberto Abdelnur To cite this version: Humberto Abdelnur. Voice over IP Vulnerability Assessment. Networking and Internet Architecture [cs.ni]. Université Henri

Διαβάστε περισσότερα

6.642, Continuum Electromechanics, Fall 2004 Prof. Markus Zahn Lecture 8: Electrohydrodynamic and Ferrohydrodynamic Instabilities

6.642, Continuum Electromechanics, Fall 2004 Prof. Markus Zahn Lecture 8: Electrohydrodynamic and Ferrohydrodynamic Instabilities 6.64, Continuum Electromechnics, Fll 4 Prof. Mrus Zhn Lecture 8: Electrohydrodynmic nd Ferrohydrodynmic Instilities I. Mgnetic Field Norml Instility Courtesy of MIT Press. Used with permission. A. Equilirium

Διαβάστε περισσότερα

Logique et Interaction : une Étude Sémantique de la

Logique et Interaction : une Étude Sémantique de la Logique et Interaction : une Étude Sémantique de la Totalité Pierre Clairambault To cite this version: Pierre Clairambault. Logique et Interaction : une Étude Sémantique de la Totalité. Autre [cs.oh].

Διαβάστε περισσότερα

Une Théorie des Constructions Inductives

Une Théorie des Constructions Inductives Une Théorie des Constructions Inductives Benjamin Werner To cite this version: Benjamin Werner. Une Théorie des Constructions Inductives. Génie logiciel [cs.se]. Université Paris- Diderot - Paris VII,

Διαβάστε περισσότερα

Pierre Grandemange. To cite this version: HAL Id: tel https://tel.archives-ouvertes.fr/tel

Pierre Grandemange. To cite this version: HAL Id: tel https://tel.archives-ouvertes.fr/tel Piégeage et accumulation de positons issus d un faisceau pulsé produit par un accélérateur pour l étude de l interaction gravitationnelle de l antimatière Pierre Grandemange To cite this version: Pierre

Διαβάστε περισσότερα

t ts P ALEPlot t t P rt P ts r P ts t r P ts

t ts P ALEPlot t t P rt P ts r P ts t r P ts t ts P ALEPlot 2 2 2 t t P rt P ts r P ts t r P ts t t r 1 t2 1 s r s r s r 1 1 tr s r t r s s rt t r s 2 s t t r r r t s s r t r t 2 t t r r t t2 t s s t t t s t t st 2 t t r t r t r s s t t r t s r t

Διαβάστε περισσότερα

T : g r i l l b a r t a s o s Α Γ Ί Α Σ Σ Ο Φ Ί Α Σ 3, Δ Ρ Α Μ Α. Δ ι α ν ο μ έ ς κ α τ ο ί κ ο ν : 1 2 : 0 0 έ ω ς 0 1 : 0 0 π μ

T : g r i l l b a r t a s o s Α Γ Ί Α Σ Σ Ο Φ Ί Α Σ 3, Δ Ρ Α Μ Α. Δ ι α ν ο μ έ ς κ α τ ο ί κ ο ν : 1 2 : 0 0 έ ω ς 0 1 : 0 0 π μ Α Γ Ί Α Σ Σ Ο Φ Ί Α Σ 3, Δ Ρ Α Μ Α g r i l l b a r t a s o s Δ ι α ν ο μ έ ς κ α τ ο ί κ ο ν : 1 2 : 0 0 έ ω ς 1 : 0 π μ Δ ι α ν ο μ έ ς κ α τ ο ί κ ο ν : 1 2 : 0 0 έ ω ς 0 1 : 0 0 π μ T ortiyas Σ ο υ

Διαβάστε περισσότερα

Development of a Digital Offset Laser Lock

Development of a Digital Offset Laser Lock College of William and Mary W&M ScholarWorks Undergraduate Honors Theses Theses, Dissertations, & Master Projects 5-2016 Development of a Digital Offset Laser Lock Ian W. Hage College of William and Mary

Διαβάστε περισσότερα

k k ΚΕΦΑΛΑΙΟ 1 G = (V, E) V E V V V G E G e = {v, u} E v u e v u G G V (G) E(G) n(g) = V (G) m(g) = E(G) G S V (G) S G N G (S) = {u V (G)\S v S : {v, u} E(G)} G v S v V (G) N G (v) = N G ({v}) x V (G)

Διαβάστε περισσότερα

❷ s é 2s é í t é Pr 3

❷ s é 2s é í t é Pr 3 ❷ s é 2s é í t é Pr 3 t tr t á t r í í t 2 ➄ P á r í3 í str t s tr t r t r s 3 í rá P r t P P á í 2 rá í s é rá P r t P 3 é r 2 í r 3 t é str á 2 rá rt 3 3 t str 3 str ýr t ý í r t t2 str s í P á í t

Διαβάστε περισσότερα

Chromodynamique quantique sur réseau et propriétés du nucléon

Chromodynamique quantique sur réseau et propriétés du nucléon Chromodynamique quantique sur réseau et propriétés du nucléon Rémi Baron To cite this version: Rémi Baron. Chromodynamique quantique sur réseau et propriétés du nucléon. Physique [physics]. Université

Διαβάστε περισσότερα

Teor imov r. ta matem. statist. Vip. 94, 2016, stor

Teor imov r. ta matem. statist. Vip. 94, 2016, stor eor imov r. ta matem. statist. Vip. 94, 6, stor. 93 5 Abstract. e article is devoted to models of financial markets wit stocastic volatility, wic is defined by a functional of Ornstein-Ulenbeck process

Διαβάστε περισσότερα

4 8 c +t +t - (t +t ) - <t +t < - < t t < + +c ( ) +t + ( ) +t + [ - (t +t )] (t + t ) + t + t t 0 + +c c x i R + (i ΔABC ABC ) x i x i c ABC 0 ABC AC

4 8 c +t +t - (t +t ) - <t +t < - < t t < + +c ( ) +t + ( ) +t + [ - (t +t )] (t + t ) + t + t t 0 + +c c x i R + (i ΔABC ABC ) x i x i c ABC 0 ABC AC 8 No8Vol JOURNALOF NEIJIANG NORMAL UNIVERSITY * * ( 6499) : ; ; ; ; ; : ; ; DOI:060/jcki-6/z0808006 :G647 :A :67-78(08)08-00-09 0 [4] [] [6] [7] ( ) ( [8] ) [9] [] : [] [] :08-06- : (ZG0464) (ZY600) 06

Διαβάστε περισσότερα

ITU-R P (2009/10)

ITU-R P (2009/10) ITU-R.45-4 (9/) % # GHz,!"# $$ # ITU-R.45-4.. (IR) (ITU-T/ITU-R/ISO/IEC).ITU-R http://www.tu.t/itu-r/go/patets/e. (http://www.tu.t/publ/r-rec/e ) () ( ) BO BR BS BT F M RA S RS SA SF SM SNG TF V.ITU-R

Διαβάστε περισσότερα

a,b a f a = , , r = = r = T

a,b a f a = , , r = = r = T !" #$%" &' &$%( % ) *+, -./01/ 234 5 0462. 4-7 8 74-9:;:; < =>?@ABC>D E E F GF F H I E JKI L H F I F HMN E O HPQH I RE F S TH FH I U Q E VF E WXY=Z M [ PQ \ TE K JMEPQ EEH I VF F E F GF ]EEI FHPQ HI E

Διαβάστε περισσότερα

Transformation automatique de la parole - Etude des transformations acoustiques

Transformation automatique de la parole - Etude des transformations acoustiques Transformation automatique de la parole - Etude des transformations acoustiques Larbi Mesbahi To cite this version: Larbi Mesbahi. Transformation automatique de la parole - Etude des transformations acoustiques.

Διαβάστε περισσότερα

r q s r 1t r t t 2st s

r q s r 1t r t t 2st s r q s r 1t r t t 2st s ss rt t 3 r r s s r s s t r r r r tr r r r r r sí r s t t r Pr r Pr r ã P r st s st Pr r sé r t s r t t s ö t s r ss s t ss r urn:nbn:de:gbv:ilm1-2017000099 t t t t rs 2 s r t t

Διαβάστε περισσότερα

gr mol g lit mg lit mlit lit mol NaCl 96 NaCl HCl HCl

gr mol g lit mg lit mlit lit mol NaCl 96 NaCl HCl HCl 1 ( - ) ( ) : 5 ( CH 3 COOH ).1 0 /1M NaOH35ml CH COOH 3 = /3 gr mol 211/05 mg 3 /5mgr 210 /1gr 3 /5gr ppm.2 mg mlit mg lit g lit µg lit.3 1mol (58 /8 NaCl ) 0 /11F 14 /9ml NaCl.4 14 /9 96 0 /0149 0 /096

Διαβάστε περισσότερα

UNIVtrRSITA DEGLI STUDI DI TRIESTE

UNIVtrRSITA DEGLI STUDI DI TRIESTE UNIVtrRSITA DEGLI STUDI DI TRIESTE XXVNI CICLO DEL DOTTORATO DI RICERCA IN ASSICURAZIONE E FINANZA: MATEMATICA E GESTIONE PRICING AND HEDGING GLWB AND GMWB IN THE HESTON AND IN THE BLACK-SCHOLES \MITH

Διαβάστε περισσότερα

! " #$% & '()()*+.,/0.

!  #$% & '()()*+.,/0. ! " #$% & '()()*+,),--+.,/0. 1!!" "!! 21 # " $%!%!! &'($ ) "! % " % *! 3 %,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0 %%4,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,5

Διαβάστε περισσότερα

η η η η GAR = 1 F RR η F RR F AR F AR F RR η F RR F AR µ µ µ µ µ µ Γ R N=mxn W T X x mean X W T x g W P x = W T (x g x mean ) X = X x mean P x = W T X d P x P i, i = 1, 2..., G M s t t

Διαβάστε περισσότερα

Multi-scale method for modeling thin sheet buckling under residual stress : In the context of cold strip rolling

Multi-scale method for modeling thin sheet buckling under residual stress : In the context of cold strip rolling Multi-scale method for modeling thin sheet buckling under residual stress : In the context of cold strip rolling Rebecca Nakhoul To cite this version: Rebecca Nakhoul. Multi-scale method for modeling thin

Διαβάστε περισσότερα

ο ο 3 α. 3"* > ω > d καΐ 'Ενορία όλις ή Χώρί ^ 3 < KN < ^ < 13 > ο_ Μ ^~~ > > > > > Ο to X Η > ο_ ο Ο,2 Σχέδι Γλεγμα Ο Σ Ο Ζ < o w *< Χ χ Χ Χ < < < Ο

ο ο 3 α. 3* > ω > d καΐ 'Ενορία όλις ή Χώρί ^ 3 < KN < ^ < 13 > ο_ Μ ^~~ > > > > > Ο to X Η > ο_ ο Ο,2 Σχέδι Γλεγμα Ο Σ Ο Ζ < o w *< Χ χ Χ Χ < < < Ο 18 ρ * -sf. NO 1 D... 1: - ( ΰ ΐ - ι- *- 2 - UN _ ί=. r t ' \0 y «. _,2. "* co Ι». =; F S " 5 D 0 g H ', ( co* 5. «ΰ ' δ". o θ * * "ΰ 2 Ι o * "- 1 W co o -o1= to»g ι. *ΰ * Ε fc ΰ Ι.. L j to. Ι Q_ " 'T

Διαβάστε περισσότερα

!"! #!"!!$ #$! %!"&' & (%!' #!% #" *! *$' *.!! )#/'.0! )#/.*!$,)# * % $ %!!#!!%#'!)$! #,# #!%# ##& )$&# 11!!#2!

!! #!!!$ #$! %!&' & (%!' #!% # *! *$' *.!! )#/'.0! )#/.*!$,)# * % $ %!!#!!%#'!)$! #,# #!%# ##& )$&# 11!!#2! # $ #$ % (% # )*%%# )# )$ % # * *$ * #,##%#)#% *-. )#/###%. )#/.0 )#/.* $,)# )#/ * % $ % # %# )$ #,# # %# ## )$# 11 #2 #**##%% $#%34 5 # %## * 6 7(%#)%%%, #, # ## # *% #$# 8# )####, 7 9%%# 0 * #,, :;

Διαβάστε περισσότερα

Μιχάλης Παπαδημητράκης. Μερικές Διαφορικές Εξισώσεις

Μιχάλης Παπαδημητράκης. Μερικές Διαφορικές Εξισώσεις Μιχάλης Παπαδημητράκης Μερικές Διαφορικές Εξισώσεις Περιεχόμενα 1 Γενικά. 1 1.1 Μερικές διαφορικές εξισώσεις............................ 1 1.2 Διαφορικοί τελεστές................................. 2 1.3

Διαβάστε περισσότερα

Parts Manual. Trio Mobile Surgery Platform. Model 1033

Parts Manual. Trio Mobile Surgery Platform. Model 1033 Trio Mobile Surgery Platform Model 1033 Parts Manual For parts or technical assistance: Pour pièces de service ou assistance technique : Für Teile oder technische Unterstützung Anruf: Voor delen of technische

Διαβάστε περισσότερα