Development of Biocatalysts for Production of Fine Chemicals (Asymmetric Bioreduction Systems)

Σχετικά έγγραφα
9-amino-(9-deoxy)cinchona alkaloids-derived novel chiral phase-transfer catalysts

Supporting Information. Asymmetric Binary-acid Catalysis with Chiral. Phosphoric Acid and MgF 2 : Catalytic

Electrolyzed-Reduced Water as Artificial Hot Spring Water

Protease-catalysed Direct Asymmetric Mannich Reaction in Organic Solvent

Optimization of fermentation process for achieving high product concentration high yield and high productivity

1 h, , CaCl 2. pelamis) 58.1%, (Headspace solid -phase microextraction and gas chromatography -mass spectrometry,hs -SPME - Vol. 15 No.

Free Radical Initiated Coupling Reaction of Alcohols and. Alkynes: not C-O but C-C Bond Formation. Context. General information 2. Typical procedure 2

Supplementary Figure S1. Single X-ray structure 3a at probability ellipsoids of 20%.

College of Life Science, Dalian Nationalities University, Dalian , PR China.

Enantioselective Organocatalytic Michael Addition of Isorhodanines. to α, β-unsaturated Aldehydes

Direct Transformation of Ethylarenes into Primary Aromatic Amides with N-Bromosuccinimide and I 2 -aq NH 3

Antimicrobial Ability of Limonene, a Natural and Active Monoterpene

Mandelamide-Zinc Catalyzed Alkyne Addition to Heteroaromatic Aldehydes

Aluminum Electrolytic Capacitors

Novel and Selective Palladium-Catalyzed Annulation of 2-Alkynylphenols to Form 2-Substituted 3-Halobenzo[b]furans. Supporting Information

Copper-Catalyzed Oxidative Dehydrogenative N-N Bond. Formation for the Synthesis of N,N -Diarylindazol-3-ones

Heterobimetallic Pd-Sn Catalysis: Michael Addition. Reaction with C-, N-, O-, S- Nucleophiles and In-situ. Diagnostics

Electronic Supplementary Information (ESI)

Rh(III)-Catalyzed C-H Amidation with N-hydroxycarbamates: A. new Entry to N-Carbamate Protected Arylamines

Copper-catalyzed formal O-H insertion reaction of α-diazo-1,3-dicarb- onyl compounds to carboxylic acids with the assistance of isocyanide

Lewis Acid Catalyzed Propargylation of Arenes with O-Propargyl Trichloroacetimidate: Synthesis of 1,3-Diarylpropynes

using metal-organic framework Cu-MOF-74 as an efficient heterogeneous catalyst Hanh T. H. Nguyen, Oanh T. K. Nguyen, Thanh Truong *, Nam T. S.

2. Laser Specifications 2 1 Specifications IK4301R D IK4401R D IK4601R E IK4101R F. Linear Linear Linear Linear

Site-Selective Suzuki-Miyaura Cross-Coupling Reactions of 2,3,4,5-Tetrabromofuran

Aluminum Electrolytic Capacitors (Large Can Type)

*,* + -+ on Bedrock Bath. Hideyuki O, Shoichi O, Takao O, Kumiko Y, Yoshinao K and Tsuneaki G

Supporting Information

SUPPLEMENTARY INFORMATION

The N,S-Bidentate Ligand Assisted Pd-Catalyzed C(sp 2 )-H. Carbonylation using Langlois Reagent as CO Source. Supporting Information.

SIEMENS Squirrel Cage Induction Standard Three-phase Motors

MnZn. MnZn Ferrites with Low Loss and High Flux Density for Power Supply Transformer. Abstract:

Comparison of carbon-sulfur and carbon-amine bond in therapeutic drug: -S-aromatic heterocyclic podophyllum derivatives display antitumor activity

SUPPLEMENTARY INFORMATION

Supporting Information. Experimental section

Solubility Modelling and Mixing Thermodynamics of Thiamphenicol in Water and Twelve Neat Organic Solvents from T = ( to 318.

Conductivity Logging for Thermal Spring Well

Room Temperature Highly Diastereoselective Zn-Mediated. Allylation of Chiral N-tert-Butanesulfinyl Imines: Remarkable Reaction Condition Controlled

Ελαφρές κυψελωτές πλάκες - ένα νέο προϊόν για την επιπλοποιία και ξυλουργική. ΒΑΣΙΛΕΙΟΥ ΒΑΣΙΛΕΙΟΣ και ΜΠΑΡΜΠΟΥΤΗΣ ΙΩΑΝΝΗΣ

Supporting Information

Second Order RLC Filters

Supporting Information

CRASH COURSE IN PRECALCULUS

Hiyama Cross-Coupling of Chloro-, Fluoroand Methoxy- pyridyl trimethylsilanes : Room-temperature Novel Access to Functional Bi(het)aryl

38 Te(OH) 6 2NH 4 H 2 PO 4 (NH 4 ) 2 HPO 4

Supplementary Figure 1. (X-ray structures of 6p and 7f) O N. Br 6p

Synthesis of Imines from Amines in Aliphatic Alcohols on Pd/ZrO 2 Catalyst at Ambient Conditions

Physical and Chemical Properties of the Nest-site Beach of the Horseshoe Crab Rehabilitated by Sand Placement

K r i t i k i P u b l i s h i n g - d r a f t

NTC Thermistor:TSM type

encouraged to use the Version of Record that, when published, will replace this version. The most /BCJ BIOCHEMICAL JOURNAL

Synthesis and Biological Evaluation of Novel Acyclic and Cyclic Glyoxamide derivatives as Bacterial Quorum Sensing and Biofilm Inhibitors

Supporting information

P Ò±,. Ï ± ˆ ˆŒˆ Š ƒ ˆŸ. Œ ƒ Œ ˆˆ γ-š Œˆ ƒ ƒˆ 23 ŒÔ. ² μ Ê ². Í μ ²Ó Ò Í É Ö ÒÌ ² μ, É μí±, μ²óï

Asymmetric Transfer Hydrogenation of Ketones Catalyzed by Chiral Carbonyl Iron Systems

Supplementary Material

Supporting information. Influence of Aerosol Acidity on the Chemical Composition of Secondary Organic Aerosol from β caryophyllene

ΠΡΟΣΟΜΟΙΩΣΗ ΔΙΕΡΓΑΣΙΑΣ ΥΔΡΟΓΟΝΟΑΠΟΘΕΙΩΣΗΣ ΜΕΣΑΙΩΝ ΚΛΑΣΜΑΤΩΝ ΤΟΥ ΑΡΓΟΥ ΠΕΤΡΕΛΑΙΟΥ

Design Method of Ball Mill by Discrete Element Method

ΜΕΤΑΠΤΥΧΙΑΚΗ ΕΡΕΥΝΗΤΙΚΗ ΔΙΑΤΡΙΒΗ


Patrycja Miszczyk, Dorota Wieczorek, Joanna Gałęzowska, Błażej Dziuk, Joanna Wietrzyk and Ewa Chmielewska. 1. Spectroscopic Data.

Daewoo Technopark A-403, Dodang-dong, Wonmi-gu, Bucheon-city, Gyeonggido, Korea LM-80 Test Report

CHAPTER 12: PERIMETER, AREA, CIRCUMFERENCE, AND 12.1 INTRODUCTION TO GEOMETRIC 12.2 PERIMETER: SQUARES, RECTANGLES,

HIS series. Signal Inductor Multilayer Ceramic Type FEATURE PART NUMBERING SYSTEM DIMENSIONS HIS R12 (1) (2) (3) (4)

C.S. 430 Assignment 6, Sample Solutions

Σύνθετα Υλικά: Χαρακτηρισμός και Ιδιότητες

Abstract... I. Zusammenfassung... II. 1 Aim of the work Introduction Short overview of Chinese hamster ovary cell lines...

Identification of Fish Species using DNA Method

Supporting Information. Table of Contents. II. Experimental procedures. II. Copies of 1H and 13C NMR spectra for all compounds

RC series Thick Film Chip Resistor

ΠΕΡΙΕΧΟΜΕΝΑ. Μάρκετινγκ Αθλητικών Τουριστικών Προορισμών 1

Consolidated Drained

Malgorzata Korycka-Machala, Marcin Nowosielski, Aneta Kuron, Sebastian Rykowski, Agnieszka Olejniczak, Marcin Hoffmann and Jaroslaw Dziadek

Η ΕΠΙΔΡΑΣΗ ΤΗΣ ΑΙΘΑΝΟΛΗΣ,ΤΗΣ ΜΕΘΑΝΟΛΗΣ ΚΑΙ ΤΟΥ ΑΙΘΥΛΟΤΡΙΤΟΤΑΓΗ ΒΟΥΤΥΛΑΙΘΕΡΑ ΣΤΙΣ ΙΔΙΟΤΗΤΕΣ ΤΗΣ ΒΕΝΖΙΝΗΣ

Supporting Information

Metal-free Oxidative Coupling of Amines with Sodium Sulfinates: A Mild Access to Sulfonamides

8Q5SAC) 8Q5SAC UV2Vis 8500 ( ) ; PHS23C ) ;721 ( ) :1 4. ;8Q5SAC : molπl ;Britton2Robinson Q5SAC BSA Britton2Robinson,

Optimizing Microwave-assisted Extraction Process for Paprika Red Pigments Using Response Surface Methodology

Biocatalysis in Drug Discovery and Development

Environmental applications of Graphene-based materials

Supporting Information One-Pot Approach to Chiral Chromenes via Enantioselective Organocatalytic Domino Oxa-Michael-Aldol Reaction

Cellular Physiology and Biochemistry

Supplementary Material for Synthesis of Compact Multidentate Ligands to Prepare Stable Hydrophilic Quantum Dot Fluorophores

Iodine-catalyzed synthesis of sulfur-bridged enaminones and chromones via double C(sp 2 )-H thiolation

Isotopic and Geochemical Study of Travertine and Hot Springs Occurring Along the Yumoto Fault at North Coast of the Oga Peninsula, Akita Prefecture

Supplementary Information. Living Ring-Opening Polymerization of Lactones by N-Heterocyclic Olefin/Al(C 6 F 5 ) 3

Supplementary Table 1. Construct List with key Biophysical Properties of the expression

Divergent synthesis of various iminocyclitols from D-ribose

Metal Oxide Varistors (MOV) Data Sheet

ESI for. A simple and efficient protocol for the palladium-catalyzed. ligand-free Suzuki reaction at room temperature in aqueous DMF.

UDZ Swirl diffuser. Product facts. Quick-selection. Swirl diffuser UDZ. Product code example:

Ceramic PTC Thermistor: PH Series

A facile and general route to 3-((trifluoromethyl)thio)benzofurans and 3-((trifluoromethyl)thio)benzothiophenes

Πτυχιακή Εργασία Η ΠΟΙΟΤΗΤΑ ΖΩΗΣ ΤΩΝ ΑΣΘΕΝΩΝ ΜΕ ΣΤΗΘΑΓΧΗ

NPI Unshielded Power Inductors

Supplementary Information. Bio-catalytic asymmetric Mannich reaction of ketimines using. wheat germ lipase

17 min R A (2009) To probe into the thermal property the mechanism of the thermal decomposition and the prospective

Structure-Metabolism-Relationships in the microsomal clearance of. piperazin-1-ylpyridazines

Screening of Respiration-deficient Saccharomyces cerevisiae Strains with Sugar-and Thermo-tolerances

Synthesis of novel 1,2,3-triazolyl derivatives of pregnane, androstane and D-homoandrostane. Tandem Click reaction/cu-catalyzed D-homo rearrangement

Transcript:

Development of Biocatalysts for Production of Fine Chemicals (Asymmetric Bioreduction ystems) umitomo Chemical Co., Ltd. rganic ynthesis Research Laboratory Hiroyuki AAK Biocatalysis has matured into the standard technology for synthesizing industrially-important chemicals such as pharmaceuticals and agrochemicals. The principal advantage of biocatalysts is their ability to catalyze reactions with high specificity (often enantio- or regio-selectively). Furthermore, biocatalysts have the advantage of operating under mild conditions, typically at ambient temperature and pressure. Here, I present recent industrial applications of biocatalysts to perform asymmetric reduction synthesis. 1) 2) 22ECD 3) BINAP 4) β 5) NADH NADPH 212

NAD NADP Fig. 1Table 1 CR-1 β CR-2 4 α CR-3 4 CR-5 6 β R1 Fig. 1 glucono lactone or acetone etc. H H CNH2 N R reduced form N + R oxidized form Asymmetric reduction and recycling of the coenzyme H R1 CNH2 H glucose or 2-propanol etc. CR-1 Fig. 2 9 Table 1 CR-1 CR-2 CR-3 CR-4 CR-5 CR-6 Reductase libraries ubstrate X C2R C2R1 C2R1 R1 R1 99%e.e. () 99%e.e. (R) > 99%e.e. (R) > 99%e.e. (R) > 99%e.e. () Microbe screening Fig. 2 Improvement of catalytic activity Cloning Expression Engineering Recombinant DNA technique Development of the biocatalyst manufacturing process Biocatalyst libraries trategy for biocatalyst development CR-14 3 212

Table 2 Biotransformation of BAM by acetone-dried microorganisms Microorganisms Molar yield (%) Arthrobacter paraffineus 4.2 Bacillus alvei 44.1 Rhodotorula minuta 1.1 Cryptococcus humicolus 12.9 Penicillium citrinum 36. 1) : not tested, 2) N.D.: not detected. NADPH tereo- selectivity R Coenzyme availability e.e. (%) Molar yield (%) 54.7 4.1 71.6 3. 82.1 1. 88..4 98.1 N.D. 2) NADH tereo- selectivity R 1) e.e. (%) 27.7 95.5 H Microbe Br CMe Br CMe BAM NAD(P)H NAD(P)+ ()-BHBM Fig. 3 Asymmetric reduction of BAM to BHBM 4 3 4 3 4 3 BAM 4 3 BHBM Fig. 3 Penicillium citrinumr Bacillus alvei Table 2 BHBM 98.1 e.e. 95.5 e.e. NADPH NADH BAM CR-1 CR-1 6) 85 AKR AKR AKR3E1 CR-1 CR-1 CR-1 CR-1 CR-137kDa BAM NADPH ph 6.5pH6 1 Fig. 442 7552 7) 4 3 1,1-1 1 Table 3 Activity (%) CR-1 activity (solid lines) and stability (dashed lines) as a function of ph. The activity was measured in the following buffers (.1 M): KPB (ph 5.5 8.; open squares), Tris-HCl buffer (ph 7. 9.; open triangles), and Tris-glycine buffer(ph 9. 1.; open diamonds). The remaining activity of CR-1 (filled circles) was also measured after incubation in the following buffers at 2 C for 1 h: citrate-k2hp4 buffer (ph 4. 5.), KPB (ph 6. 8.), Tris-HCl buffer (ph 8. 9.) and Tris-glycine buffer (ph 1.). Fig. 4 1 8 6 4 2 3 4 5 6 7 8 9 1 11 ph ptimum ph and ph stability of CR-1 212

Table 3 ubstrate specificity of CR-1 ubstrate Relative activity (%) Aldehydes Acetaldehyde 2.2 n-butylaldehyde 3.4 n-valeraldehyde 2.8 DL-glyceraldehyde 3.2 Pyridine-3-aldehyde 2. Ketones Ethyl 4-Chloro-3-oxobutyrate 1 BAM 139 Ethyl 4-bromo-3-oxobutyrate 667 Isopropyl 4-bromo-3-oxobutyrate 125 ctyl 4-bromo-3-oxobutyrate 24 1,1-Dichloroacetone 42 Chloroacetone 2.5 3-Chloro-2-butanone 2.4 Methyl 3-oxopentanoate 1.2 2-Bromo-1-indanone 2 Dihydroxyacetone 56 CR-1 GDH CR-1 GDH CR-1 GDH DNA DNA DNAGDH CR-1 DNA Table 4 a)cr-1gdh DNA Table 4 b)gdhcr-1 GDHA CR-1A DNA Table 4 c) BAM GDH Table 4 c) DNA Table 4 Table 4 c)dna BAM ph6.5 2 NADP 3 ph 6.5 2 ()-BHBM 197.9 e.e. CR-1 CR-1 44 2 CR-1 A3-49 A8-39 T1-99 3 Table 5A3-49 245 K245RA8-39 271 N271DT1-99 54 L54Q14 Table 4 Activities of CR-1 and GDH of recombinant E. coli cells Plasmid a) P D D b) P D D c) P D GDH CR-1 CGCGGTA ATGTCTAACGG CR-1 activity GDH activity (units/ml of culture) (units/ml of culture) 2.5 11.7 6.6 P: Promoter, D: hine-dalgarno sequence 26.1.8 29. Table 5 Clone CR-1 A3-49 A8-39 T1-99 Thermostability and enantioselectivity of CR-1 mutants generated by random mutagenesis Mutation site(s) None K245R N271D L54Q/R14C Remaining activity at 4 C for 2 h (%) 1.7 3.8 1.1 74.9 ()-BHBM e.e. (%) 97.1 97. 96.8 99. 212

R14C2 T1-99 BAM 4 CR-1 3 L54Q K245R N271DTable 6 Table 6 Mutation site(s) Thermostability and enantioselectivity of CR-1 mutants generated by site-directed mutagenesis None (wild-type) L54Q R14C L54Q/R14C N271D L54Q/N271D L54Q/R14C/N271D K245R L54Q/K245R L54Q/K245R/N271D L54Q/R14C/K245R/N271D Remaining activity at 45 C for 7 h (%) 54.1 9.6 53.1 41.7 42.3 69.9 18.1 ()-BHBM e.e. (%) 97.1 98.7 97.7 99. 96.8 98.6 98.8 97. 98.6 98.3 98.7 L54Q 5419 54 KR HD E BAM 97.1 e.e. 98 e.e. 4 3 CAE 63.1 e.e. 9 e.e. L54 L54A L54D L54ETable 7 CR-1 L54Q Km453 CR-1 L54Q Fig. 5CR-1 54 Fig. 6 54 Table 7 Thermostability and enantioselectivity for BAM and CAE of CR-1(L54) mutants generated by saturation mutagenesis Mutation None (wild-type) L54G L54 L54T L54C L54Y L54N L54Q L54A L54V L54I L54M L54P L54F L54W L54K L54R L54H L54D L54E Remaining activity at 45 C for 2 h (%) 64. 7.7 2.2 5. 49.6 53.8 23.5 9.9 49.2 41.3 51.4 38.3 12.9 BAM Relative activity (%) ()-BHBM e.e. (%) 1 97.1 113 98.3 11 98.8 122 97.7 67 97.5 114 98.4 9 98.3 153 98.8 125 98.7 69 98.8 84 98.6 17 98.2 119 97.4 152 95.5 52 96.9 1 98.1 147 98.6 121 97.4 97 98.4 11 98.9 CAE Relative activity (%) ()-CHBE e.e. (%) 1 63.1 127 89.1 151 91.2 131 7.4 123 76.9 285 86.7 12 88.7 245 89.7 175 92.6 59 84.8 128 78.1 138 83.7 19 8.9 26 67.2 128 74.8 74 82.8 123 88.6 173 82.2 124 9.4 97 9.3 212

Relative activity (%) 16 14 12 1 8 6 4 2 1 2 3 4 5 6 Temperature ( C) GDH BAMCR-1 L54Q 5 198 e.e. ()- BHBMCR-18 BAM 93 97 e.e. Fig. 7CR-1 L54Q CR-1 8) Purified enzyme was incubated for 3 min at the indicated temperature, and activity was determined Fig. 5 Effect of temperature on the stability of CR-1 (L54Q) (open circle) and wild-type CR-1 (filled circle) L54Q Active center Concentration (mm) 6 5 4 3 2 1 5 1 15 2 25 Time (hr) BAM (filled square), ()-BHBM (filled triangle) Fig. 7 Time-course of BAM reduction to ()-BHBM by recombinant E. coli expressing wild-type CR-1 (dashed line) and CR-1 (L54Q) (solid line) This model based on the crystal structure of AKR4C9 from Arabidopsis thaliana (PDB code: 3h7u) Fig. 6 Homology modeling of CR-1 Table 4 c) DNA CR-1 CR-1 L54Q DNA CR-1 GDH BAM CR-1Table 1CR-5 BAM CR-5 CR-52 NADPH NADH Fig. 8 9) CR-6 BAM R CR-5 2 NADH Fig. 8 1) Br CMe Glucono lactone Glucose GDH NADPH NADP + CR-1 BAM H CR-5 or 6 NADH NAD + CR-5 or 6 Acetone 2-propanol Br * Chiral BHBM CMe Fig. 8 Asymmetric reduction of BAM and recycling of the coenzyme 212

Table 8 Biocatalytic reduction of BAM CR-1(L54Q)+GDH CR-5 CR-6(HAR1) Coenzyme NADPH NADH NADH Wet cells (w/w-bam).23.55 6.6 Reaction time (h) 4 53 1 Final concn. of BHBM (mm) 589 413 176 Yield (%) 86 97 8 e.e. (%) > 99 () > 99 () > 99 (R) CR-1BAM CR-1 CR-1 L54Q CR-6CR-6 HAR1 11) 1 1 2 CR-1 L54Q ph 6.5 CR-5 CR-6 HAR1 2 CR-1 L54QGDH 4 86589mM99 e.e. ()- BHBM Table 8CR-5 97413mM99 e.e. ()- BHBMBAM 53CR-6 HAR1 1 BAM 18 176mM99 e.e. (R)-BHBM BAM CR-1 L54Q CR-1 L54QCR-5 CR-6 HAR1BAM 2 BHBM Table 9 12) CR-5 CR-6 HAR1 ph NADPH NADH BAM Table 9 CR-1(L54Q) +GDH CR-5 CR-6(HAR1) Properties of BAM reduction enzymes pecific activity Activity in for BAM E. coli cells (units/mg protein) (units/g wet cells) 144 9.1.5 179 13.4 Half-life in the two-phase system (h) 17 3.5 1 13).1 14) DNA DNA 212

1),,,,, 21-@, 4 (21). 2),,,,,,,,, 24-!, 4 (24). 3). Mitsuda, T. Umemura and H. Hirohara, Appl Microbiol. Biotechnol., 29, 31 (1988). 4) M. Mikami, T. Korenaga, T. hkuma and R. Noyori, Angew. Chem. Int. Ed. Engl. 39, 377 (2). 5). ervi, ynthesis, 1, 1 (199). 6) H. Asako, R. Wakita, K. Matsumura, M. himizu, J. akai and N. Itoh, Appl. Environ. Microbiol., 71, 111 (25). 7) N, Itoh, H. Asako, K. Banno, Y. Makino, M. hinohara, T. Dairi, R. Wakita and M. himizu, Appl. Microbiol. Biotechnol., 66, 53 (24). 8) H. Asako, M. himizu and N. Itoh, Appl. Microbiol. Biotechnol., 8, 85 (28). 9) H. Asako, M. himizu and N. Itoh, Appl. Microbiol. Biotechnol., 84, 397 (29). 1) N. Itoh, M. Matsuda, M. Mabuchi, T. Dairi and J. Wang, Eur. J. Biochem., 269, 2394 (22). 11) Y. Makino, T. Dairi and N. Itoh, Appl. Microbiol. Biotechnol., 77, 833 (27). 12) H. Asako, M. himizu, Y. Makino and N. Itoh, Tetrahedron Lett., 51, 2664 (21). 13) B. M. Matute, M. Edin, K. Bogár, F. B. Kaynak and J. E. Bäckvall, J. Am. Chem. oc., 127 (24), 8817 (25). 14),,, 38 (4), 23 (2). PRFILE Hiroyuki AAK 212