Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 16 Supporting Information Introduction of a α,β-unsaturated carbonyl conjugated pyrene-lactose hybrid as a fluorescent molecular probe for micro-scale anisotropic media Ivy Sarkar a, Arasappan Hemamalini b, Thangamuthu Mohan Das* b,c, Ashok Kumar Mishra* a a Department of Chemistry, Indian Institute of Technology Madras, Chennai 6 36, India b Department of Organic Chemistry, University of Madras, Guindy Campus, Chennai - 6 5, India c Department of Chemistry, School of Basic and Applied Sciences, Central University of Tamil Nadu, Thiruvarur 61 11, India Fluorescence intensity.5x1 6 3.6x1 6.7x1 6 1.8x1 6 9.x1 5 % of 1,-dioxane in water 1 5 1 3 5 7 9 95 98 1 1,-Dioxane 1..7 8 5 56 6. 35 5 5 55 6 65 7 Wavelength (nm).9.8 Water Figure S1: Fluorescence spectra of pyd-lact in water with increasing % of 1,-dioxane and inset shows normalized fluorescence spectra, at λ ex 38 nm. 1
Emission wavenumber (cm -1 ) 5 1,-Dioxan THF 15 1 DMF Acetonitrile 5 i-propanol NaDC NaC / P13 gel Ethanol 195 -CD Methanol 19 185 P13 sol 18 Water 55 6 65 7 75 8 85 9 95 Kosower solvent parameter Figure S: Determination of the medium polarity from λ em value using Kosower Z scale for β- CD, bile salts (NaC, NaDC) and pluronics media. Absorbance.1.8.6.. isosbestic point (7 nm) [ CD] (mm) 16. 35 5 5 Wavelength (nm) Figure S3: Absorbance spectra of pyd-lact in water and 16 mm β-cd concentration.
Table S1: Fluorescence lifetime data of pyd-lact with increasing β-cd concentration, λ ex = 37 nm. [β-cd] (mm) τ 1 (β 1 ) τ (β ) τ avg (ns).5 (.99) 3.65 (.1).55 1.1 1.5 (.89) 1.9 (.11).69 1.37.56 (.81) 1.8 (.19).8 1.3 3.61 (.77) 1.8 (.3).89 1.3.6 (.75) 1.8 (.5).91 1.8 5.7 (.75) 1.87 (.5) 1.1 1.9 6.71 (.7) 1.86 (.6) 1.1 1.7 7.7 (.7) 1.85 (.6) 1.3 1.13 8.9 (.78) 1.97 (.) 1.13 1.37 9.75 (.7) 1.8 (.6) 1.3 1.1 1.76 (.7) 1.8 (.6) 1. 1.18 1.78 (.7) 1.81 (.6) 1.5 1.6 1.93 (.83).3 (.17) 1.1 1.37 16.96 (.8).6 (.16) 1.1 1.1 χ 3
- [ -CD] = mm = 1.1-1 3 - [ -CD] = 1 mm = 1.37-1 3 - [ -CD] = mm = 1.3-1 3 - [ -CD] = 3 mm = 1.3-1 3 - [ -CD] = mm = 1.8-1 3 - [ -CD] = 5 mm = 1.9-1 3 - [ -CD] = 6 mm = 1.7-1 3 - [ -CD] = 7 mm = 1.13-1 3 - [ -CD] = 8 mm = 1.37-1 3 - [ -CD] = 9 mm = 1.1-1 3
- [ -CD] = 1 mm = 1.18-1 3 - [ -CD] = 1 mm = 1.6-1 3 - [ -CD] = 1 mm = 1.37-1 3 - [ -CD] = 16 mm = 1.1-1 3 Figure S: Residue distribution plots of pyd-lact in β-cd (corresponds to Table S1). Table S: Fluorescence lifetime data of pyd-lact with increasing NaC concentration, at λ ex = 37 nm. [NaC] (mm) τ 1 (β 1 ) τ (β ) τ avg (ns).5 (.99) 3.65 (.1).55 1.1.63 (.88).9 (.1).81 1.19 8 1.3 (.78).51 (.) 1.36 1. 1 1. (.81).51 (.19) 1.3 1.5 1.88 (.79).3 (.1) 1.18 1. 16.79 (.75).17 (.5) 1.13 1..89 (.81).36 (.19) 1.17 1..8 (.79). (.1) 1.9 1. 8.88 (.78).3 (.) 1.18 1.6 3.8 (.78).19 (.) 1.1 1.5 36.86 (.8).6 (.) 1.1 1..77 (.78).1 (.) 1.7 1.19.81 (.8).5 (.) 1.1 1.1 8.77 (.79).18 (.1) 1.7 1. χ 5
Table S3: Fluorescence lifetime data of pyd-lact with increasing NaDC concentration, at λ ex = 37 nm. [NaDC] (mm) τ 1 (β 1 ) τ (β ) τ avg (ns).5 (.99) 3.65 (.1).55 1.1 1.61 (.9).76 (.8).78 1.5.66 (.89).55 (.11).87 1.36 3.9 (.8).53 (.16) 1.18 1.1.86 (.83).3 (.17) 1.11 1.31 5.8 (.81).13 (.19) 1.7 1. 6.8 (.81).8 (.19) 1.8 1. 7.87 (.83).19 (.17) 1.9 1.7 8.86 (.8).16 (.18) 1.9 1.1 1.85 (.8).13 (.18) 1.8 1.11 1.88 (.83). (.17) 1.1 1.9 1.88 (.8). (.16) 1.1 1.18 16.8 (.79).7 (.1) 1.1 1.19 18.85 (.81).11 (.19) 1.9 1.9 χ 6
- [NaC] = mm = 1.1-1 3 - [NaC] = mm = 1.19-1 3 - [NaC] = 8 mm = 1. - 1 3 - [NaC] = 1 mm = 1.5-1 3 - [NaC] = 1 mm = 1. - 1 3 - [NaC] = 16 mm = 1. - 1 3 - [NaC] = mm = 1. - 1 3 - [NaC] = mm = 1. - 1 3 - [NaC] = 8 mm = 1.6-1 3 - [NaC] = 3 mm = 1.5-1 3 7
- [NaC] = 36 mm = 1. - 1 3 - [NaC] = mm = 1.19-1 3 - [NaC] = mm = 1.1-1 3 - [NaC] = 8 mm = 1. - 1 3 Figure S5: Residue distribution plots of pyd-lact in NaC (corresponds to Table S). - [NaDC] = mm = 1.1-1 3 - [NaDC] = 1 mm = 1.5-1 3 - [NaDC] = mm = 1.36-1 3 - [NaDC] = 3 mm = 1.1-1 3 8
- [NaDC] = mm = 1.31-1 3 - [NaDC] = 6 mm = 1. - 1 3 - [NaDC] = 5 mm = 1. - 1 3 - [NaDC] = 7 mm = 1.7-1 3 - [NaDC] = 8 mm = 1.1-1 3 - [NaDC] = 1 mm = 1.11-1 3 - [NaDC] = 1 mm = 1.9-1 3 - [NaDC] = 1 mm = 1.18-1 3 - [NaDC] = 16 mm = 1.19-1 3 - [NaDC] = 18 mm = 1.9-1 3 Figure S6: Residue distribution plots of pyd-lact in NaDC (corresponds to Table S3). 9
Table S: Fluorescence lifetime data of pyd-lact in water and 1% pluronic P13 with increasing temperature, at λ ex = 37 nm. Sample Temperature ( C) τ 1 (β 1 ) τ (β ) τ avg (ns) χ Water P13 1% 5.8 (.99).7 (.1).83 1.1 11.71 (.98).3 (.).78 1.7 15.66 (.98) 3.76 (.).7 1.1.57 (.98) 3.73 (.).63 1.5.6 (.98).9 (.).67 1.3 5 1.37 (.6).6 (.7).8 1. 11 1.7 (.31).39 (.69) 1.98 1. 15 1.8 (.38).19 (.6) 1.77 1.7.97 (.67).8 (.33) 1.3 1.7 1. (.77).11 (.3) 1.7 1.3 1
- Temperature = 5 C Water = 1.1-1 3 - Temperature = 11 C Water = 1.7-1 3 Temperature = 15 C Water - = 1.1-1 3 - Temperature = C Water - = 1.5 1 3 - Temperature = C Water = 1.3-1 3 Temperature = 5 C P13 1% - = 1. - 1 3 - Temperature = 11 C P13 1% - = 1. 1 3 - Temperature = 15 C P13 1% = 1.7-1 3 Temperature = C P13 1% - = 1.7-1 3 - Temperature = C P13 1% = 1.3-1 3 Figure S7: Residue distribution plots of pyd-lact in water and 1% P13 with temperature (corresponds to Table S). 11
Figure S8: 1 H NMR spectrum of pyd-lact. 1
Figure S9: 1 H NMR expansion spectrum of pyd-lact. 13
Figure S1: 13 C NMR spectrum of pyd-lact. 1