: Active Learning 2017/11/12

Σχετικά έγγραφα
Optimization, PSO) DE [1, 2, 3, 4] PSO [5, 6, 7, 8, 9, 10, 11] (P)

{takasu, Conditional Random Field

Gaussian Processes Classification Combined with Semi-supervised Kernels

Ενεργητική Μάθηση Με Χρήση Μηχανών ιανυσµάτων Υποστήριξης. Ανδρέας Βλάχος Πανεπιστήµιο του Εδιµβούργου

2016 IEEE/ACM International Conference on Mobile Software Engineering and Systems

Anomaly Detection with Neighborhood Preservation Principle


Στοιχεία εισηγητή Ημερομηνία: 10/10/2017

th International Conference on Machine Learning and Applications. E d. h. U h h b w k. b b f d h b f. h w k by v y

Stabilization of stock price prediction by cross entropy optimization

3: A convolution-pooling layer in PS-CNN 1: Partially Shared Deep Neural Network 2.2 Partially Shared Convolutional Neural Network 2: A hidden layer o

Big Data/Business Intelligence

1 n-gram n-gram n-gram [11], [15] n-best [16] n-gram. n-gram. 1,a) Graham Neubig 1,b) Sakriani Sakti 1,c) 1,d) 1,e)

ΔΙΠΛΩΜΑΤΙΚΕΣ ΕΡΓΑΣΙΕΣ ΠΜΣ «ΠΛΗΡΟΦΟΡΙΚΗ & ΕΠΙΚΟΙΝΩΝΙΕς» OSWINDS RESEARCH GROUP

HMY 795: Αναγνώριση Προτύπων


Automatic extraction of bibliography with machine learning

ΔΙΠΛΩΜΑΤΙΚΕΣ ΕΡΓΑΣΙΕΣ ΠΜΣ «ΠΛΗΡΟΦΟΡΙΚΗ & ΕΠΙΚΟΙΝΩΝΙΕΣ» OSWINDS RESEARCH GROUP

1530 ( ) 2014,54(12),, E (, 1, X ) [4],,, α, T α, β,, T β, c, P(T β 1 T α,α, β,c) 1 1,,X X F, X E F X E X F X F E X E 1 [1-2] , 2 : X X 1 X 2 ;


ΓΙΑΝΝΟΥΛΑ Σ. ΦΛΩΡΟΥ Ι ΑΚΤΟΡΑΣ ΤΟΥ ΤΜΗΜΑΤΟΣ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΜΑΚΕ ΟΝΙΑΣ ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

Crowdsourcing and Machine Learning

Ερευνητική+Ομάδα+Τεχνολογιών+ Διαδικτύου+

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

Toward a SPARQL Query Execution Mechanism using Dynamic Mapping Adaptation -A Preliminary Report- Takuya Adachi 1 Naoki Fukuta 2.

Εφαρμογή Υπολογιστικών Τεχνικών στην Γεωργία

Σύντομο Βιογραφικό Σημείωμα

No. 7 Modular Machine Tool & Automatic Manufacturing Technique. Jul TH166 TG659 A

[4] 1.2 [5] Bayesian Approach min-max min-max [6] UCB(Upper Confidence Bound ) UCT [7] [1] ( ) Amazons[8] Lines of Action(LOA)[4] Winands [4] 1

Buried Markov Model Pairwise

Real time mobile robot control with a multiresolution map representation

Indexing Methods for Encrypted Vector Databases

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

Map Generation of Mobile Robot by Probabilistic Observation Model Considering Occlusion

[2] T.S.G. Peiris and R.O. Thattil, An Alternative Model to Estimate Solar Radiation

(Statistical Machine Translation: SMT [1])

(Υπογραϕή) (Υπογραϕή) (Υπογραϕή)

Εφαρμογή Υπολογιστικών Τεχνικών στην Γεωργία

Study of In-vehicle Sound Field Creation by Simultaneous Equation Method

HOSVD. Higher Order Data Classification Method with Autocorrelation Matrix Correcting on HOSVD. Junichi MORIGAKI and Kaoru KATAYAMA

Gemini, FastMap, Applications. Εαρινό Εξάμηνο Τμήμα Μηχανικών Η/Υ και Πληροϕορικής Πολυτεχνική Σχολή, Πανεπιστήμιο Πατρών

Twitter 6. DEIM Forum 2014 A Twitter,,, Wikipedia, Explicit Semantic Analysis,

ER-Tree (Extended R*-Tree)


ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ ΠΡΟΣΩΠΙΚΑ ΣΤΟΙΧΕΙΑ ΣΠΟΥΔΕΣ

Query by Phrase (QBP) (Music Information Retrieval, MIR) QBH QBP / [1, 2] [3, 4] Query-by-Humming (QBH) QBP MIDI [5, 6] [8 10] [7]

ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ. Παναγιώτης Μερκούρης ΕΚΠΑΙΔΕΥΣΗ

substructure similarity search using features in graph databases

Homomorphism in Intuitionistic Fuzzy Automata

Newman Modularity Newman [4], [5] Newman Q Q Q greedy algorithm[6] Newman Newman Q 1 Tabu Search[7] Newman Newman Newman Q Newman 1 2 Newman 3

EM Baum-Welch. Step by Step the Baum-Welch Algorithm and its Application 2. HMM Baum-Welch. Baum-Welch. Baum-Welch Baum-Welch.

Online Social Networks: Posts that can save lives. Sotiria Giannitsari April 2016

Area Location and Recognition of Video Text Based on Depth Learning Method

Supplementary Materials for Evolutionary Multiobjective Optimization Based Multimodal Optimization: Fitness Landscape Approximation and Peak Detection

CSJ. Speaker clustering based on non-negative matrix factorization using i-vector-based speaker similarity

Τεχνητή Νοημοσύνη. 15η διάλεξη ( ) Ίων Ανδρουτσόπουλος.

Architecture for Visualization Using Teacher Information based on SOM

Schedulability Analysis Algorithm for Timing Constraint Workflow Models

The Simply Typed Lambda Calculus

Ανάλυση σχημάτων βασισμένη σε μεθόδους αναζήτησης ομοιότητας υποακολουθιών (C589)

Nov Journal of Zhengzhou University Engineering Science Vol. 36 No FCM. A doi /j. issn

Maxima SCORM. Algebraic Manipulations and Visualizing Graphs in SCORM contents by Maxima and Mashup Approach. Jia Yunpeng, 1 Takayuki Nagai, 2, 1

Εργαστήριο Ιατρικής Φυσικής

Ηλεκτρονικός Άτλαντας της Νήσου Λέσβου.

2 ICA. (ICA, Independent Component Analysis) (PCA, Principal Compoenent Analysis) x(t) =(x 1 (t),...,x m (t)) T t =0, 1, 2,... PCA 2 ICA.

Τοποθέτηση τοπωνυµίων και άλλων στοιχείων ονοµατολογίας στους χάρτες

Detection and Recognition of Traffic Signal Using Machine Learning

Aρχιμήδης ΙΙΙ Υποέργο 29 Σχεδίαση Συγκοινωνιακών Συστημάτων με Χρήση Μηχανικής Μάθησης

Critical Infrastructure Protection: A Roadmap for Greece D. Gritzalis

A research on the influence of dummy activity on float in an AOA network and its amendments

Jordan Form of a Square Matrix

Διακριτικές Συναρτήσεις

MIDI [8] MIDI. [9] Hsu [1], [2] [10] Salamon [11] [5] Song [6] Sony, Minato, Tokyo , Japan a) b)

Probabilistic Approach to Robust Optimization

Random Forests Leo. Hitoshi Habe 1

Vol. 31,No JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb

Supplementary Information

DECO DECoration Ontology

[5] F 16.1% MFCC NMF D-CASE 17 [5] NMF NMF 3. [5] 1 NMF Deep Neural Network(DNN) FUSION 3.1 NMF NMF [12] S W H 1 Fig. 1 Our aoustic event detect

ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ/ΕΡΓΑΣΤΗΡΙΟΥ/ΣΕΜΙΝΑΡΙΟΥ

Ελαφρές κυψελωτές πλάκες - ένα νέο προϊόν για την επιπλοποιία και ξυλουργική. ΒΑΣΙΛΕΙΟΥ ΒΑΣΙΛΕΙΟΣ και ΜΠΑΡΜΠΟΥΤΗΣ ΙΩΑΝΝΗΣ

Πτυχιακή Εργασι α «Εκτι μήσή τής ποιο τήτας εικο νων με τήν χρή σή τεχνήτων νευρωνικων δικτυ ων»

[15], [16], [17] [6] [2] [5] Jiang [6] 2.1 [6], [10] Score(x, y) y ( 1) ( 1 ) b e ( 1 ) b e. O(n 2 ) Jiang [6] (word lattice reranking)

The Algorithm to Extract Characteristic Chord Progression Extended the Sequential Pattern Mining

Development of the Nursing Program for Rehabilitation of Woman Diagnosed with Breast Cancer

An Automatic Modulation Classifier using a Frequency Discriminator for Intelligent Software Defined Radio

Πανεπιστήμιο Πειραιώς Τμήμα Διεθνών & Ευρωπαϊκών Σπουδών

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΑΓΡΟΤΙΚΕΣ ΣΤΑΤΙΣΤΙΚΕΣ ΜΕ ΕΡΓΑΛΕΙΑ ΓΕΩΠΛΗΡΟΦΟΡΙΚΗΣ

Quick algorithm f or computing core attribute

Estimation of stability region for a class of switched linear systems with multiple equilibrium points

Feasible Regions Defined by Stability Constraints Based on the Argument Principle

Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων. Εξάμηνο 7 ο

Τεχνολογία Ψυχαγωγικού Λογισμικού και Εικονικοί Κόσμοι Ενότητα 8η - Εικονικοί Κόσμοι και Πολιτιστικό Περιεχόμενο

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Kenta OKU and Fumio HATTORI

Εφαρμογή Υπολογιστικών Τεχνικών στη Γεωργία

Βιογραφικό σημείωμα Δρ. Ψύχας Ηρακλής - Δημήτριος

ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ

Re-Pair n. Re-Pair. Re-Pair. Re-Pair. Re-Pair. (Re-Merge) Re-Merge. Sekine [4, 5, 8] (highly repetitive text) [2] Re-Pair. Blocked-Repair-VF [7]

Transcript:

: Active Learning 2017/11/12

Contents 0.1 Introduction............................................ 2 0.2..................................... 2 0.2.1 Membership Query Synthesis.............................. 2 0.2.2 Stream-based Selective Sampling............................ 3 0.2.3 Pool-based Sampling................................... 3 0.3............................................ 4 0.3.1 Uncertainty Sampling.................................. 4 0.3.2 Query-By-Committee.................................. 4 0.3.3 Epected Model Change................................. 5 0.3.4 Epected Error Reduction................................ 5 0.4........................................... 6 0.4.1 Batch-Mode Active Learning.............................. 6 0.4.2 Noisy Oracles....................................... 6 0.4.3 Variable Labeling Costs................................. 6 0.4.4 Multi-Task Active Learning............................... 6 0.4.5 Stopping Criteria..................................... 7 0.5.............................................. 7 0.5.1 Semi-Supervised Learning................................ 7 0.5.2 Submodular Optimization................................ 7 0.5.3 Graph Structure..................................... 7 1

0.1 Introduction ( ) 0.2 [16] 3 Membership Query Synthesis Stream-based Selective Sampling Pool-based Sampling 0.2.1 Membership Query Synthesis membership queries[1] Figure 1: 2

[3] 0.2.2 Stream-based Selective Sampling selective sampling[2] selective sampling membership query Figure 2: [6] [5] 0.2.3 Pool-based Sampling Figure3 Figure 3: 3

L U 0.3 A A 0.3.1 Uncertainty Sampling uncertainty sampling 0.5 3 LG = arg ma 1 P θ (ŷ ) (1) ŷ θ 1 margin sampling M = arg min P θ (ŷ 1 ) P θ (ŷ 2 ) (2) ŷ 1 ŷ 2 2 margin sampling 2 margin sampling uncertainty sampling H = arg ma i P θ (y i ) log P θ (y i ) (3) y i 0.3.2 Query-By-Committee query-by-committee (QBC) [19] QBC committee C = {θ (1),..., θ (C) } committee 2 [6] 4

V E = arg ma i V (y i ) C log V (y i) C (4) y i V (y i ) committee C committee Kullback-Leibler (KL) divergence [13] KL = arg ma 1 C C D(P θ (c) P C ) (5) c=1 D(P θ (c) P C ) = i P θ (c)(y i ) log P θ (c)(y i ) P C (y i ) (6) θ (c) committee C committee 0.3.3 Epected Model Change epective gradient length (EGL) [18] EGL l θ (L) l l θ (L, y ), y y EGL = arg ma P θ (y i ) l θ (L, y i ) (7) i 0.3.4 Epected Error Reduction 0/1 0/1 = arg min ( U P θ (y i ) i 1 P θ +,y i (ŷ (u) ) u=1 θ +,y i, y i L epected error reduction ) (8) 5

0.4 0.4.1 Batch-Mode Active Learning Q Q best [4][10][11] 0.4.2 Noisy Oracles 0.4.3 Variable Labeling Costs [17] 0.4.4 Multi-Task Active Learning Reichart [15] 2 6

0.4.5 Stopping Criteria 0.5 0.5.1 Semi-Supervised Learning [20][14] 0.5.2 Submodular Optimization [9][8] 0.5.3 Graph Structure [12][7] 7

Bibliography [1] Dana Angluin. Queries and concept learning. Machine learning, 2(4):319 342, 1988. [2] Les E Atlas, David A Cohn, and Richard E Ladner. Training connectionist networks with queries and selective sampling. In Advances in neural information processing systems, pages 566 573, 1990. [3] Eric B Baum and Kenneth Lang. Query learning can work poorly when a human oracle is used. In International joint conference on neural networks, volume 8, page 8, 1992. [4] Klaus Brinker. Incorporating diversity in active learning with support vector machines. In Proceedings of the 20th International Conference on Machine Learning (ICML-03), pages 59 66, 2003. [5] David Cohn, Les Atlas, and Richard Ladner. Improving generalization with active learning. Machine learning, 15(2):201 221, 1994. [6] Ido Dagan and Sean P Engelson. Committee-based sampling for training probabilistic classifiers. In Proceedings of the Twelfth International Conference on Machine Learning, pages 150 157. The Morgan Kaufmann series in machine learning,(san Francisco, CA, USA), 1995. [7] Gautam Dasarathy, Robert Nowak, and Xiaojin Zhu. S2: An efficient graph based active learning algorithm with application to nonparametric classification. In Conference on Learning Theory, pages 503 522, 2015. [8] Daniel Golovin and Andreas Krause. Adaptive submodularity: A new approach to active learning and stochastic optimization. In COLT, pages 333 345, 2010. [9] Daniel Golovin and Andreas Krause. Adaptive submodularity: Theory and applications in active learning and stochastic optimization. Journal of Artificial Intelligence Research, 42:427 486, 2011. [10] Yuhong Guo and Dale Schuurmans. Discriminative batch mode active learning. In Advances in neural information processing systems, pages 593 600, 2008. [11] Steven CH Hoi, Rong Jin, Jianke Zhu, and Michael R Lyu. Batch mode active learning and its application to medical image classification. In Proceedings of the 23rd international conference on Machine learning, pages 417 424. ACM, 2006. [12] Kwang-Sung Jun and Robert Nowak. Graph-based active learning: A new look at epected error minimization. In Signal and Information Processing (GlobalSIP), 2016 IEEE Global Conference on, pages 1325 1329. IEEE, 2016. 8

[13] Andrew Kachites McCallumzy and Kamal Nigamy. Employing em and pool-based active learning for tet classification. In Proc. International Conference on Machine Learning (ICML), pages 359 367. Citeseer, 1998. [14] Ion Muslea, Steven Minton, and Craig A Knoblock. Active+ semi-supervised learning= robust multi-view learning. In ICML, volume 2, pages 435 442, 2002. [15] Roi Reichart, Katrin Tomanek, Udo Hahn, and Ari Rappoport. Multi-task active learning for linguistic annotations. In ACL, volume 8, pages 861 869, 2008. [16] Burr Settles. Active learning literature survey. University of Wisconsin, Madison, 52(55-66):11, 2010. [17] Burr Settles, Mark Craven, and Lewis Friedland. Active learning with real annotation costs. In Proceedings of the NIPS workshop on cost-sensitive learning, pages 1 10, 2008. [18] Burr Settles, Mark Craven, and Soumya Ray. Multiple-instance active learning. In Advances in neural information processing systems, pages 1289 1296, 2008. [19] H Sebastian Seung, Manfred Opper, and Haim Sompolinsky. Query by committee. In Proceedings of the fifth annual workshop on Computational learning theory, pages 287 294. ACM, 1992. [20] Xiaojin Zhu, John Lafferty, and Zoubin Ghahramani. Combining active learning and semi-supervised learning using gaussian fields and harmonic functions. In ICML 2003 workshop on the continuum from labeled to unlabeled data in machine learning and data mining, volume 3, 2003. 9